
 

 

 
 

 

Supplementary Materials 

A simple and effective Random Forest refit to map the spatial 
distribution of NO2 concentrations 
Yufeng Chi1,* and Yu Zhan2 

To supplement the content of the main article, the Supplementary Section includes 
Method S1, Figures S2−S9 and Supplement discussion. 

1. Method S1 (Iterate TWS) 
Recently, we developed a moving small window two−step (TWS) model for recover-

ing missing data from multiple remote sensing products. This model reports presents an 
excellent performance for AOD data recovery. At the same time, the model can be applied 
to the recovery of space−time gaps of most remote sensing products (Chi et al. 2020). Stud-
ies have shown that a single operation of TWS can reduce the AOD missing rate from 88% 
to 10%, which has been cross−validated with the ground AERONET network, with R=0.87 
and RMSE=0.23. There is no Aerosol Robotic Network (AERONET) site in SWFJ. There-
fore, data gaps are randomly established, and CV is used to verify the recovery results 
and the original data. The first step of the TWS model uses the LightGBM machine learn-
ing method, and the second step uses a multimode moving window spatiotemporal inter-
polation method (STW). TWS can be used in two steps in combination or independently. 
Among them, MAIAC AOD uses the first step and iterative second step of TWS, and the 
OMI NO2-column is recovered through the iterative second step of TWS. The technical 
route is shown in Fig.S1. The TWS details are as follows:  



 
Figure S1. Iterate TWS technology roadmap. 

1.1. First Step of TWS 
The formula to restore MAIAC AOD using LightGBM is as follows: 𝐴𝑂𝐷௠௔௜௔௖௣௥௘ = 𝐿𝑔（𝐴𝐻𝐼ସ଻଴௡௠, 𝑅𝐼𝐷, 𝑀𝐸𝑇, 𝐸𝐿𝐸, 𝑆𝐿, 𝑃𝑂𝑃, 𝑁𝐷𝑉𝐼, 𝑅𝐿, 𝐿𝑈, 𝐷𝑂𝑌） (S1) 
where, 𝐿𝑔 represents the LightGBM; 𝐴𝐻𝐼ସ଻଴௡௠, 𝑅𝐼𝐷, 𝑀𝐸𝑇, 𝐸𝐿𝐸, 𝑆𝐿, 𝑃𝑂𝑃, 𝑁𝐷𝑉𝐼, 𝑅𝐿, 𝐿𝑈, and 𝐷𝑂𝑌 represents the 470 nm AHI AOD, random ID, meteorological parame-

ters (temperature, air pressure, wind speed, humidity), altitude, slope, NDVI, road length, 
land use, and day of year, respectively. 

1.2. Second Step of TWS 
1.2.1. Design of Moving Window Size and Selection of Interpolation Mode 

The size of the mobile window is 3*3. Set four scenarios for TWS: 
(1) Use Inverse Distance Weight interpolation (IDW) interpolation when center pixel 

is missing in moving window. 
(2) The RC−Kriging method is used when five or fewer pixels are missing from the 

moving window. 
(3) We used spatiotemporal weight interpolation when the number of missing cells 

of Day 2 was greater than or equal to 5 and the number of valid pixels of Day 1 or Day 3 
was greater than or equal to 5. 

(4) When there were too few pixels in the moving window for three consecutive days 
(Day 2 had no valid pixels and the number of valid pixels for Days 1 and 3 were fewer 
than 5 pixels), we ignored this part of the calculation. 

1.2.2. Buffer Factor 
The mathematical expectation of the moving window pixels is used as a buffer factor 

to correct the bias. The formula is as follows: MoranI = 𝑛 ∑ ∑ 𝐺௜௝(𝑝௜ − 𝑝̅)௡௝ୀଵ ൫𝑝௝ − 𝑝̅൯௡௜ୀଵ∑ ∑ 𝐺௜௝௡௝ୀଵ௡௜ୀଵ ∑ (𝑝௜ − 𝑝̅)ଶ௡௜ୀଵ  (S2) 



𝐺௜௝ = 1 ට(𝑖௫ − 𝑗௫)ଶ + ൫𝑖௬ − 𝑗௬൯ଶൗ  𝑤 ← 𝑆𝑐𝑜𝑝𝑒 𝑊𝑖𝑛𝑑𝑜𝑤 ↔  𝑀𝑎𝑥(MoranI௪ିଵ, MoranI௪, MoranI௪ାଵ) 𝐸௪ = ( ෍ 𝑆௜௪∗௪
௜ୀଵ )/𝑤ଶ 

𝑃(ௌ೟ೖ,ா೟మ) = ∑ (𝑆௧௞ − 𝐸௧ଶ௪)௡௝ୀଵ (𝑆௧௞ − 𝜏௧ଶതതതത)ට∑ (𝑆௧௞ − 𝜏௧௞തതതത)ଶ௡௝ୀଵ ∑ (𝑆௧௞ − 𝜏௧ଶതതതത)ଶ௡௝ୀଵ     𝑘 ∈ (1,3) 

 
where MoranI represents the Global Moran’s I. Here, n represents the number of 

valid pixels; 𝑝௜ and 𝑝௝ represent the values of the two pixels, 𝑖 and 𝑗 ; 𝑥̅ represents the 
average value of the pixels; 𝑑𝑖𝑠(𝑖, 𝑗)represents the spatial distance between the two pixels, 𝑖 and 𝑗; 𝐺௜,௝ represents the inverse distance weight; 𝑆𝑐𝑜𝑝𝑒 𝑊𝑖𝑛𝑑𝑜𝑤 represents the win-
dow that corresponds to the maximum local MoranI, 𝑆𝑐𝑜𝑝𝑒 𝑊𝑖𝑛𝑑𝑜𝑤 is a square; 𝑤 rep-
resents the number of pixels on one side of the square a 𝑆𝑐𝑜𝑝𝑒 𝑊𝑖𝑛𝑑𝑜𝑤; ↔ represents it-
erative search for the 𝑆𝑐𝑜𝑝𝑒 𝑊𝑖𝑛𝑑𝑜𝑤; ← represents obtaining 𝑤; 𝑆௜represents the value 
in the 𝑆𝑐𝑜𝑝𝑒 𝑊𝑖𝑛𝑑𝑜𝑤; 𝑆௧௞ represents the value in the 𝑆𝑐𝑜𝑝𝑒 𝑊𝑖𝑛𝑑𝑜𝑤 on day 𝑡𝑘; 𝐸௪ rep-
resents the mathematical expectation in the 𝑆𝑐𝑜𝑝𝑒 𝑊𝑖𝑛𝑑𝑜𝑤  (buffer factor); 
and 𝑃(ௌ೟ೖ,ா೟మ) represents the Spearman correlation coefficient between day 𝑡𝑘 and day 𝑡2. 

1.2.3. Spatial Interpolation Method (IDW and RC Kriging) 
The formulas of IDW and RC Kriging are as follows: 𝑍ଵ = ቎෍ ෍ 𝐺௜,௝(𝑆௜,௝ − 𝐸௪)ே
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(S3) 

Where 𝑍ଵ and 𝑍ଶ represent the estimates produced by IDW and RC Kriging interpo-
lation, 𝐺௜,௝ represents the inverse distance weight, 𝑠௜,௝ represents the value at points 𝑖 and 𝑗, 𝜇 presents the Lagrange multiplier, ℷ2௜,௝ represents the weight, ，𝐶𝑜𝑣൫𝑠௜,௝൯ and 𝐶𝑜𝑣൫𝑠௝,௜൯ represent the covariance of 𝑠௜,௝  and 𝑠௝,௜ , and 𝐸௪ represents the mathematical 
expectation in the 𝑆𝑐𝑜𝑝𝑒 𝑊𝑖𝑛𝑑𝑜𝑤(buffer factor). 

1.2.4. Spatiotemporal Weight Interpolation (STW) 
The formulas of STW are as follows: 

𝑍ௌ బ் = ෍ ቌ෍ ቌ቎෍ ൬ℷ௧௞೔,ೕ ቀ𝑆௧೔,ೕ − 𝐸௧௖ቁ൰ே೟
௜ୀଵ ቏ + 𝐸௧௖ቍே೟

௝ୀଵ ቍଷ
௧௖ୀଵ  

ℷ௧௡ = ෍ ඪ൬1 − ൤(𝑃(ௌ೟భ,ா೟೙) + 𝑃(ௌ೟೙,ா೟య)) 2ൗ ൨൰ ൮ 1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑛௜, 𝑡𝑛௝)ൗ∑ ൬1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑛௜, 𝑡𝑛௝)ൗ ൰ே௜ୀଵ ൲ே
௝ୀଵ  n

= 2 

(S4) 



ℷ௧௡ = ℷ(௧௡,௧ଶ) = ෍ ඪ൬𝑃(ௌ೟೙,ா೟మ)2 ൰ଶ + ൮ 1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑛௜, 𝑡𝑛௝)ൗ∑ ൬1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑛௜, 𝑡𝑛௝)ൗ ൰ே௜ୀଵ ൲ଶே
௝ୀଵ     n ∈ (1,3) 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) = ට(𝑖௫ − 𝑗௫)ଶ + ൫𝑖௬ − 𝑗௬൯ଶ
 

where 𝑍ௌ బ் represents the 470 nm MAIAC AOD and NO2-column estimated by STW, 𝑇 represents time, 𝑡1 is the day before the estimated AOD result, 𝑡2 is the date when the 
AOD/NO2-column is estimated, and 𝑡3 is the second day when the AOD/NOcolumn is 
estimated, 𝑆௧ represents the value of effective AOD, E is the mathematical expectation, 𝐸௧௖is the global mathematical expectation of Day T, and (𝑃(ௌ೟భ,ா೟೙)) represents the R be-
tween the 𝑡1 and 𝑡n estimated AOD/NOcolumn, ℷ௧௡ represents the time weight of the 
nth day (n ∈ (1,2,3)), N is the number of pixels in the moving window (the size of the 
moving window is 7 pixels), 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑛௜, 𝑡𝑛௝) represents the spatial distance between 𝑡𝑛௜ and 𝑡𝑛௝. 

1.2.5. Priority Setting of Overlapping Pixels 
Set the priority to IDW > RC Kriging > STW. When pixel restoration causes overlap, 

fill in missing values according to their priority. Furthermore, if the restoration results are 
pixel−overlapped in the same way, the average of the restoration result overlaps should 
be determined as the final result. 

Supplement figures 

 
Figure S2. Monthly average of NO2 monitoring data in SWFJ in 2018. 



 
Figure S3. Correlation coefficient between NO2 monitoring data and remote sensing products in 
SWFJ in 2018. 

 

 
Figure S4. Monthly and annual averages of NO2 in different cities in SWFJ. (A) Monthly average 
trend chart of NO2 in different cities; (b) annual average and 1/2 standard deviation of different 
cities. The value and the value in parentheses represent the annual average and 0.5 times the stand-
ard deviation, respectively. 

The cross−validation (CV) method of interpolation includes two types. The first is to 
divide the observed data into training and validation data proportionally. This method is 
not prone to overfitting. However, since the interpolation algorithm is usually linear fit-
ting, the empirical data will directly affect the interpolation effect. This verification 
method needs to lose part of the data, which affects the fitting of the data. The second case 
is the error between the cross−validation interpolation results and the observed results. 
Although this method is prone to local overfitting, more training data can improve the 
overall interpolation effect [1,2]. Therefore, we choose the second interpolation verifica-
tion method. The result is in Fig. S5. 



 
Figure S5. (a), (b), (c), and (d) represent the cross−validation of the spatial interpolation of air pres-
sure, humidity, air temperature, and wind speed, respectively. The horizontal axis represents the 
observation results, and the vertical axis represents the interpolation results. R represents the corre-
lation coefficient, and n represents the number of samples. The black line represents the 1:1 ratio 
line, the solid red line represents the first−order linear fitting function curve, and the color bar rep-
resents the point density. 

 
Figure S6. RF, RF−Ps, RF−CID and RF−RID feature importance. The x−axis represents the factors 
used to build the different models. The y−axis represents importance values. 

 



 
Figure S7. 2018 RF−RID monthly Average. The x−axis represents the different months of 2018. The 
y−axis represents the mean NO2 concentration. 

 

Figure S8. 2018 OMI monthly Average. The x−axis represents the different months of 2018. The 
y−axis represents the mean OMI value. 

 
Figure S9. The CV scatterplot of TWS recovery OMI and AOD. (a) represents the cross−validation 
of the first step of TWS to restore AOD. (b) represents the cross−validation of the AOD recovery in 
the second step of TWS. (c) represents the cross−validation of TWS second−step recovery OMI. 

Supplement discussion 
Compared with the other three models, the RF−RID model achieved better CV in the 

7−day and weekly forecasts. However, the accuracy of continuous prediction results is 
lower than that of random prediction. The main reason is that in the process of continuous 
prediction, the continuous absence of some independent variables has a more significant 
impact on the machine learning model [3]. Taking DOY as an example, the feature im-
portance of the four models is ranked, and DOY occupies the highest position. However, 



in the continuous prediction, 7 (weekly) to 31 (monthly) DOY values will be extracted for 
model training, and these extracted data cannot participate in the model training process. 
Some DOY values are missing from the continuous predictions, making the model unable 
to learn enough features in the missing parts. Therefore, the CV value is reduced when 
making predictions. In addition, the way we ended up simulating the spatial distribution 
of NO2 is closer to random validation, so the reduced accuracy of continuous predictions 
has less of an impact on the simulation process. Under circumstances RF−RID obtains bet-
ter CV in random sampling or continuous sample tests, indicating that RF−RID is more 
robust than other models. 
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