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Abstract: This study proposes a random forest–random pixel ID (RF–RID) method, which could
reduce local anomalies in the simulation of NO2 spatial distribution and significantly improve predic-
tion accuracy in rural areas. First, the 470 nm MAIAC AOD and OMI NO2 total and tropospheric
vertical column were packed using the two-step method (TWS). Second, using RID, the filled data
and auxiliary variables were combined with random forest (RF) to build an RF–RID model to predict
the 1 km/d NO2 spatial distribution in southwestern Fujian (SWFJ) in 2018. The results show that the
RF–RID achieves enhanced performance in the CV of the observed sample (R = 0.9117, RMSE = 3.895).
Meanwhile, RF–RID has a higher correlation with the road length (RL) in remote areas, and the
proposed method solves the issue related to strips or patches of NO2 spatial distribution. This model
offers insights into the related research on air pollutants in large areas.

Keywords: machine learning; NO2 concentration spatial distribution; 470 nm MAIAC AOD; OMI
NO2 total and tropospheric vertical column

1. Introduction

Nitrogen dioxide (NO2) is one of the primary pollutants in the atmosphere. Excessive
NO2 concentrations can result in a variety of environmental disasters (acid rain, the destruc-
tion of vegetation, the main precursors of fine particulate matter and ozone, etc.). It can also
have harmful effects on human health (respiratory diseases, skin diseases, mental health,
etc.) [1–4]. The primary emission sources of NOx (NOx = NO + NO2) include natural and
anthropogenic sources, such as lightning, motor vehicles, and industrial sources [5,6]. With
the development of human society, NOx emissions have increased, and anthropogenic
emission sources have also become dominant, drawing widespread attention [7–9]. The
Chinese government has established a multi-scale air-pollutant-monitoring network. How-
ever, the number and distribution of air-pollutant-monitoring stations still cannot cover
the complete land area [10–13], limiting research on NO2 management [14–16]. There-
fore, the high-precision prediction of the spatial distribution of NO2 concentrations is of
great significance.

With the continuous development of remote sensing technology, satellite inversions to
detect NO2 concentrations in the atmosphere have become important technologies [17,18].
The Aqua satellite OMI sensor launched by NASA in 2004 enables the observation of
various trace gases worldwide [19]. In addition, the ESA launched the ENVISAT and
Sentinel-5P satellites in 2002 and 2017, respectively [20]. The SCIAMACHY and TROPOMI
sensors carried by the ENVISAT and Sentinel-5P satellites also provide suitable conditions
for capturing the global NO2 distribution. OMI sensor data use the DOAS algorithm to
retrieve NO2 tropospheric concentrations as part of NASA’s Making Earth System Data
Records for Use in Research Environments (MEaSUREs) program. With advanced data
accuracy, large data volume, long storage time (since 2004), and global coverage, the OMI
NO2 total and tropospheric vertical column (OMI NO2 column) has contributed critical
data to many NO2-related studies [21]. The NO2 column data retrieved by the OMI have
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some shortcomings, such as the low spatial resolution of the NO2 column. In addition,
clouds may interfere with satellite observations, resulting in data gaps [22]. A richer remote
sensing spatiotemporal dataset that includes NO2 products, combined with NO2 from the
ground air-pollutant-monitoring network, can better simulate and predict the temporal
and spatial distribution of near-surface NO2 concentrations [23,24]. Combining machine
learning and spatiotemporal interpolation methods can generate satisfactory predictions
and recover much missing remote sensing data [25–27].

Fossil fuel consumption in urban areas is a major source of anthropogenic NO2 emis-
sions. Therefore, land use and road length data are often used as important indicators of
the spatial distribution of NO2 concentrations. However, land use and road information
release is typically delayed by one year. The low temporal resolution makes it difficult to
provide sufficient time-dimensional information and reduces the sensitivity to changes in
NO2 in local areas. NO2 is crucial in forming nitrate, ozone (O3), and nitro-PAHs. The time
needed for NO2 conversion is typically between a few hours and a few days [28]. Meteo-
rological conditions such as a stable atmospheric boundary layer, high temperature, and
high humidity are favorable for converting NO2 into nitrate aerosols, which affects aerosol
optical depth (AOD). Therefore, many scholars regard AOD as a critical parameter for the
spatial distribution of NO2 concentrations [29,30]. Compared with the yearly resolution
of land use and road length, the daily resolution of AOD is significantly higher, which
can effectively improve the reliability of the NO2 concentration spatial distribution pre-
diction [31]. The MODIS sensor combined with the Atmospheric Correction Multi-Angle
Implementation (MAIAC) algorithm is used to provide AOD products with a fixed 1 km
grid. MAIAC AOD uses time series to detect multi-angle surface features to recover the
bidirectional reflectance distribution function (BRDF). Compared with traditional DT and
DB algorithms, it can better identify AOD information in cloud and snow areas and reduce
AOD data gaps [32,33].

There are a variety of models for predicting the spatial distribution of NO2 concentra-
tions, including physical and chemical models [34], traditional statistical models [35], and
machine-learning methods [36]. The resolution of the spatial distribution of NO2 concentra-
tions in physicochemical models is usually more than 10 km, and it is not easy to apply such
models to small-scale regions. Traditional statistical models that predict the spatial distribu-
tion of NO2 concentrations include spatial interpolation methods [37], land-use-regression
models [38], and road-information-regression models [39]. Traditional statistical models
are fast, simple, and stable. However, these methods usually have difficulty balancing
global information [40]. The machine-learning method is good at exploring the in-depth
relationship between NO2 and many auxiliary variables. Numerous studies have applied
machine-learning-based approaches to predicting the spatial distribution of atmospheric
pollutants based on remote sensing [41–43]. As a traditional machine-learning model,
random forest still has an excellent fitting and generalization ability for multi-parameter
data, big data, and nonlinear data distributions. Therefore, applying random forest to
predict the spatial distribution of air pollutants has significantly improved reliability [44].

Machine learning predicts air pollutant distributions with excellent cross-validation [45–47].
However, the substantial heterogeneity of the spatial distribution of atmospheric pollutants
in the atmospheric transport process also increases the simulation’s difficulty [48]. In
addition to improving the simulation effect of machine-learning models, introducing
spatial elements into machine learning as an independent variable is considered a simple
and effective way to improve the simulation of air pollutants [49]. Wei et al. [50] and
Zhan et al. [51] improved the machine-learning model by introducing spatial elements of
different structures. Although the model’s cross-validation was improved, this approach
also caused anomalies in the spatial distribution of air pollutants, thus leading to a lack of
credibility [52,53]. Therefore, further utilizing spatial elements to improve the effect of the
NO2 spatial distribution is key to solving this problem.

This study used a modified random forest model (RF–RID) to improve the effect
of simulating the spatial distribution of NO2 concentrations. The iterated TWS model
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was used to restore the gaps of the 470 nm MAIAC AOD and OMI NO2 column, and
randomly arranged position parameters (RID) were combined in random forest modeling
to improve the ability to predict the spatial distribution of NO2 concentration. The no-
gap spatial distribution of NO2 concentrations in SWFJ in 2018 was predicted using RID
with a resolution of 1 km/d. The accuracy and effect of the RF–RID simulation were
evaluated based on cross-validation (CV) and the spatial distribution of the effects of the
NO2 concentration. Implementing an RF–RID model with good predictive performance and
the ability to address missing data will better serve NO2 management. Section 2 describes
the dataset and methods, Section 3 shows the model results and analysis, Section 4 discusses
the model and application, and Section 5 presents the conclusion.

2. Dataset and Methodology
2.1. Overview of the Study Area

Since 2013, China has established a multi-scale air-pollutant-monitoring network.
The network includes the nationwide Atmospheric Monitoring Network and the Fujian
ecological environment cloud platform. The number and density of stations constructed
in the regional atmospheric-monitoring network are higher than those on the national
scale [54]. The study area selected in this paper includes five cities in southwestern Fujian
(SWFJ) (115◦51′–119◦1′ E, 23◦31′–27◦6′ N). SWFJ includes Xiamen (1700 km2), Quanzhou
(11,015 km2), Zhangzhou (12,600 km2), Longyan (19,028 km2), and Sanming (22,965 km2).
The total administrative area of SWFJ exceeds 67,000 square kilometers, accounting for
54.3% of the total area of Fujian Province. The total population of SWFJ is 23.17 million,
accounting for 59% of the total population of Fujian Province, and the urbanization rate
is 67.1%. The topography of SWFJ is inland highland and coastal lowland and covers
prosperous cities (industrial areas, road networks, residential areas) and mountainous
environments (woodlands, lakes, rivers). Such a complex environment is conducive to
testing the stability and universality of the NO2 concentration near-surface distribution
model [55]. The location of the study area is shown in Figure 1.
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Figure 1. Study area, including SWFJ. The black dots represent the location of the ground NO2-
monitoring station. AP station represents the spatial location of the air-pollutant-monitoring station,
and Road represents the total length of the road in independent pixels, ranging from 10 m to 33353 m.
Orange pixels represent shorter total road lengths, and green pixels represent longer total road lengths.
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2.2. Datasets

This study included ground NO2-monitoring data, remote sensing datasets, and
auxiliary data. Data were collected from 1 January 2018 to 31 December 2018.

There were 272 ground NO2-monitoring sites (Figure 1), with 271 provided by the
Fujian Provincial Department of Ecology and Environment and one site (Kinmen site) pro-
vided by the Taiwan Environmental Protection Administration (www.epa.gov.tw, accessed
on 27 August 2022). We selected daily averaged NO2-monitoring data. In addition, the
ground pollutant-monitoring site data contained four daily meteorological parameters
(temperature, air pressure, humidity, and wind speed).

The remote sensing dataset included the (1) AOD dataset, (2) NO2 column, and (3) other
datasets. (1) MAIACAOD and Himawari-8 AOD include 470 nm AOD and 550 nm AOD.
NO2 has a strong absorption line between near-ultraviolet and visible light [56]. In addition,
the differential optical absorption spectroscopy (DOAS) algorithm for NO2 inversion uses the
405–465 nm spectrum, closer to the 470 nm AOD [57]. Therefore, 470 nm MAIAC AOD and
Himawari-8 AOD were selected. Among them, MAIAC AOD (earthdata.nasa.gov, accessed
on 27 August 2022) had a spatial resolution of 1 km and a temporal resolution of 1 day, while
the L3 daily product Himawari-8 AOD (ftp.ptree.jaxa.jp, accessed on 27 August 2022) had a
spatial resolution of 5 km [58]. (2) The NO2 column used the OMI NO2 L3 data with a time
resolution of 1 day and a spatial resolution of 0.25◦. (3) Other data included NDVI, terrain,
population distribution, road, and land use. The NDVI was calculated from MODIS data
(earthdata.nasa.gov, accessed on 27 August 2022), with a time resolution of 16 days and a
spatial resolution of 1 km [59]. The terrain data included elevation and slope, extracted from
SRTM data (earthdata.nasa.gov, accessed on 27 August 2022), with a spatial resolution of
90 m. The population data were obtained by LandScan (landscan.ornl.gov, accessed on 27
August 2022), with a spatial resolution of approximately 1 km [60]. The road data for 2018
were provided by OpenStreet (www.openstreetmap.org, accessed on 27 August 2022) and
consisted of line layers in ESRI .shp format. Land use data were from the Copernicus Climate
Change Service (C3S) in 2018 and had a spatial resolution of 300 m (cds.climate.copernicus.eu,
accessed on 1 November 2022) [61].

Auxiliary data included the day of the year (doy), working days and nonworking days
(wdon), the location ID of each pixel, and the 1 km-resolution grid of the UTM coordinate
system covering the study area.

2.3. Research Methods

The main processes of the RF–RID for predicting the spatial distribution of near-surface
NO2 concentrations included data preprocessing, remote sensing product gap filling (the
470 nm MAIAC AOD and OMI NO2 column), random ID (RID) establishment, random
forest training, and NO2 spatial distribution. The flow chart is shown in Figure 2.

2.3.1. Data Preprocessing

Multi-source data must be transformed to form a consistent temporal and spatial reso-
lution dataset. The time resolution was one day, and the spatial resolution was consistent
with the 1 km grid of the UTM coordinate system in the auxiliary data. Elevation (ELE) and
slope (SL) were calculated by SRTM. The ELE, SL, land use (LU), road data (RL), 470 nm
MAIAC AOD, NDVI (ND), population (POP), 470 nm AHI AOD, and OMI NO2 column
data were superimposed on the 1 km UTM grid and reproduced. The reconstruction pro-
cess was determined according to the weighted average of the pixel value of the data and
the coverage area ratio of the UTM 1 km pixel (set the length of road data in the UTM grid
as RL). Next, the data were filled in with a time resolution of more than one day (population
data, land use, NDVI, etc.). For example, the NDVI fills gaps in the time range with the
NDVI value according to a time resolution of 16 days. Finally, the cokriging method [62]
was used to interpolate the meteorological parameters (temperature (TEM), pressure (PR),
humidity (HUM), and wind speed (WS)), the covariate was ELE, and the output was the
UTM 1 km/d resolution. Accuracy verification is provided in Supplementary Figure S5.

www.epa.gov.tw
earthdata.nasa.gov
ftp.ptree.jaxa.jp
earthdata.nasa.gov
earthdata.nasa.gov
landscan.ornl.gov
www.openstreetmap.org
cds.climate.copernicus.eu
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Figure 2. The flowchart for predicting NO2 concentration using RF–RID. The iterated TWS recovered
the AOD and NO2 gaps. Multi-source and NO2-monitoring data are used as the basis for modeling.
All the data are used for predicting the spatial distribution of NO2 concentrations. Random ID is also
used in the modeling and predicting process.

The 470 nm MAIAC AOD will undoubtedly and significantly improve the effect and
spatial resolution (1 km) of NO2 simulations, but AOD gaps in data are a major challenge.
We recovered the gaps in MAIAC AOD using the TWS model developed in previous
studies. The method achieved an overall cross-validation R = 0.87 with the Aerosol Robotic
Network (AERONET) in a large-scale AOD gap-recovery study in East Asia [63]. This
study runs the TWS iteratively and finally obtains the 470 nm MAIAC AOD and OMI NO2
column without the gap, where the iterative TWS is in method S1.

2.3.2. Random Forest–Random Pixel Location ID (RF–RID)

Spatial elements assume various expressions, such as latitude, longitude, and contin-
uous pixel location ID. They directly affect the cross-validation and mapping results of
machine-learning simulations of the NO2 spatial distribution. However, the above forms
will cause banding and patchiness when simulating the spatial distribution of atmospheric
pollutants [51]. To effectively combat these phenomena, possible solutions are to increase
the complexity of the network structure, supplement the data, or modify the data structure
of some parameters. However, the cost of increasing the complexity of the network struc-
ture and supplementing the data are high. Therefore, to maintain a reasonable cost, this
study adjusted and improved the effect of NO2 concentration prediction by changing the
arrangement of spatial elements. Parameter randomization, a standard model-optimization
method in machine learning, is widely used in many kinds of research. Randomly gener-
ated data can combat overfitting in machine-learning training and simulation of extensive
data [64]. In addition, more superficial forms of spatial feature generation can reduce the
cost of model building. Therefore, we marked the positions of all pixels as independent
IDs, shuffled all the IDs with a random algorithm, and introduced random IDs (RIDs) into
random forests. The specific steps are as follows:

1. Randomize the position parameter, scramble the value of the position ID with the
random algorithm, and assign it to each pixel;

2. Normalize the position parameter and the random position ID by the 0-1 normaliza-
tion algorithm.

3. The random forest regression method was used to train and predict the spatial
distribution of the NO2 concentration.
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RID = normalization(randomID)

normalization(x) = x−xmin
xmax−xmin

preNO = RF(NOcolumn, AOD470nm, RID, MET, ELE, SL, POP, NDVI, RL, LU, DOY)
(1)

where the total number of ID is equal to the total number of pixels in the UTM 1 km grid;
random and normalization represent the random algorithm and the normalization algo-
rithm, respectively; RF represents the random forest; preNO represents the NO2 prediction;
and NOcolumn, AOD470nm, RID, MET, ELE, SL, POP, NDVI, RL, LU, and DOY represent
the NO2 column, 470 nm MAIAC AOD, random ID, meteorological parameters (tempera-
ture, air pressure, wind speed, humidity), altitude, slope, NDVI, road length, land use, and
day of year, respectively.

2.3.2.1. Validation

The formal result verification is given by CV. This paper used 10-fold CV to verify the
results, randomly selected 90% of the samples for modeling, and reserved the remainder
for testing and then repeats this process ten times to test most of the samples. The final
verification result used the average of ten verifications, using the correlation coefficient (R)
and RMSE for evaluation. The calculation formula of RMSE is shown in Equation (2):

RMSE =

√√√√ 1
N

N

∑
i=1

(τ(preNO)i − τ(groundNO)i)
2 (2)

where τ(preNO) and τ(groundNO) represent the predicted NO2 concentration and the ground-
observed NO2 concentration, respectively.

In addition, we selected four models (RF, RF–CID, RF–Ps, and RF–RID) to compare
the spatial distribution of the predicted NO2 concentrations. Compared with the RF–RID
model, RF lacks RID parameters. The RF–CID model replaces the RID parameter with a
continuous pixel location ID (CID). The RF–Ps replace the RID parameters in RF–RID with
the spatial distance variables in Wei et al. [50].

3. Results and Analysis
3.1. Basic Data Description

The average value of NO2-monitoring sites in SWFJ in 2018 was 16.6 µg/m3, the high-
est concentration month was January (22.2 µg/m3), and the lowest concentration month
was September (12.8 µg/m3). For details, see Figure S2 in the supplementary material.
The cities with the highest and lowest NO2 concentrations were Xiamen (25.6 µg/m3) and
Sanming (11.9 µg/m3), respectively. In addition, we calculated the correlation coefficient (R)
between different variables and NO2 observation data, which ranged from 0.02 (OMI-NO2)
to 0.32 (NDVI-NO2). The details are shown in Supplementary Figure S3.

3.2. Accuracy Verification
3.2.1. Data Gap Filling Accuracy Verification

After using iterative TWS, we obtained the MAIAC AOD and OMI NO2 columns
(daily, no data gaps) for the 2018 SWFJ region. There are no publicly available ground-
verified data on the AOD and NO2 columns in SWFJ. We achieved acceptable results by
randomly setting the gaps and cross-validation with the recovered MAIAC AOD and NO2
columns. The specific results are shown in Table 1 and Figure S9.

3.2.2. CV of the Spatial Distribution of NO2 Concentration

The effect of the model typically requires multi-angle verification. It includes the
cross-validation of training samples and cross-validation of prediction samples. First, we
performed 10 CVs to verify the training dataset of the 2018 SWFJ data. The verified models
included RF, RF–RID, RF–CID, and RF–Ps. The verification results are shown in Figure 3.
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In Figure 3, RF, RF–RID, RF–CID, and RF–Ps performed well in the fitting process, with
R and RMSE values of 0.9717, 0.9770, 0.9768, and 0.9776 and 2.417 µg/m3, 2.192 µg/m3,
2.194 µg/m3, and 2.161 µg/m3, respectively. Nonetheless, subtle differences were observed
in the four models. Two models (RF–RID and RF–CID) with ID added and RF–Ps with
spatial distance were introduced. The slope (0.9122, 0.9129, 0.9138), intercept (1.4895, 1.4784,
1.4629), R, and RMSE values were slightly improved compared to those of RF (slope 0.9077
and intercept 1.6069). The above results show that ID and spatial distance (spatial location
information) improve the model-fitting effect. In addition, the R and RMSE of the RF–RID
model were better than those of RF–CID, although the slope and intercept were lower
than those of RF–CID. These findings show that the overall improvement effect of random
fitting in the training process is better than that of continuous fitting (increasing R and
reducing RMSE). However, randomness is prone to bias in the simulation of individual
data (decrease slope, increase intercept). Moreover, the performance of RF–Ps was better
than that of RF, RF–RID, and RF–CID, indicating that the distance variable of the pixel is
better than the ID in the model-fitting stage.

Table 1. Iterative TWS recovery results.

Type
First Step Second Step

Covariate R Iterations R n

MAIAC AOD AHI AOD, ND, LU, RL, ELE, DOY 0.99 9 0.91 12,000

OMI NO2 column - - 4 0.95 200,000

Note: - Indicates lack of data.
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Then, RF, RF–RID, RF–CID, and RF–Ps were applied to verify the test dataset using
10-fold CV (Figure 4). The verification results of the four different models show that
introducing new variables in RF–RID, RF–CID, and RF–Ps leads to higher R and lower
RMSE than RF.
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In addition, we tested the RF, RF–Ps, RF–CID and RF–RID models by selecting the
data for one month and seven consecutive days (a week) as test samples (Figure 5).

Figure 5 shows that RF, RF–Ps, RF–CID and RF–RID were not as effective at predicting
continuous time periods as the method of randomly extracting data. The prediction
performance of the end data was consistently the worst, which is not only related to the
complex spatiotemporal variability of air pollutants but also to the insufficient performance
of the machine-learning model in predicting large amounts of continuous data (Supplement
discussion SD1). However, both the weekly CV and monthly CV of RF–RID achieved the
best results with the smallest standard deviation. Compared with RF–CID, RF–Ps and RF,
the weekly CV increased by 2%, 2.2% and 7.1%, respectively; the monthly CV increased by
3.7%, 5% and 10.5%, respectively. Compared with other methods, RF–RID had better CV in
the prediction of continuous time periods. In addition, we display the feature importance
of different models in Figure S6.

3.2.3. Evaluation of the Spatial Distribution of NO2 Concentrations

Traditional verification indicators have difficulty in comprehensively evaluating the
effect of the model. The cross-validation in Figures 3 and 4 shows that RF–CID and RF–
RID outperformed the RF and RF–Ps models. However, Zhan et al. [51] showed that
adding location information (such as latitude and longitude) to machine learning caused a
striping phenomenon. The predicted striping of air pollutants is highly inconsistent with
the aerodynamics of the air pollutants moving in the atmosphere. To this end, we randomly
selected 10 January 2018, and compared the results of the NO2 concentrations predicted by
the RF, RF–RID, RF–CID, and RF–Ps models (Figure 6).

Figure 6 shows the simulation results of the spatial distribution of NO2 from four mod-
els (RF, RF–RID, RF–CID, and RF–Ps) in SWFJ on 10 January 2018. The spatial distribution
of NO2 predicted by the four models has similar characteristics. The high-value areas of
NO2 are concentrated in the coastal zone of the southeast region of SWFJ, and the low-value
areas are distributed mainly in the interior of SWFJ. However, the simulation of the spatial
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distribution of NO2 in the four models is significantly different in detail. 1. The maximum
NO2 monitored by the site on 10 January 2018 was 46 µg/m3 (Xiamen). The maximum
predictions of the RF and RF–Ps models were 42.64 µg/m3 and 44.04 µg/m3, respectively,
which show a significant deviation from the maximum value of the site monitoring. How-
ever, the maximum values predicted by the RF–RID model and the RF–CID model were
45.18 µg/m3 and 47.25 µg/m3, respectively, and these results were more reasonable than
the predictions of RF and RF–Ps. 2. In the detailed prediction of RF, RF–CID, and RF–Ps,
the results deviated significantly from actual empirical findings due to serious overfitting.
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In circles 1” and 3” of RF–CID (c), the striping phenomenon leads to obvious geo-
graphical boundaries of the spatial distribution of NO2. However, due to the topography,
population distribution, weather, and other factors, it is difficult for the spatial distribution
of NO2 to show regular deviations on a straight line. In contrast, the striping phenomenon
does not appear in circles 1 and 3 in RF–RID (a). In addition to the striping phenomenon,
there is a patchy phenomenon of the spatial distribution of NO2 in circle 2” of RF–CID (c).
This phenomenon also appears in the RF–Ps Model (d) circle 2”’ and circle 4”’. Similarly,
this phenomenon does not frequently occur in the spatial distribution of NO2 in the natural
world. Compared with circle 2 of RF–RID (a), there is no patchy NO2 distribution. In circle
2’ of RF (b), although a striping or patchy phenomenon is not observed for the NO2 distri-
bution, a rapid change (boundary) in NO2 concentration is still found. This geographical
boundary phenomenon of NO2 concentration appears regularly and on a large scale in
the results of RF (b) (10 January 2018). Comparing the land use types in Figure 1 shows
that circle 2’ is not a critical junction between urban and mountainous areas. Thus, RF
models that do not contain key geographic elements are likely to be insufficiently fitted in
the process of simulating the spatial distribution of NO2. Similarly, this phenomenon does
not appear in RF–RID (a) circle 2.
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NOx emissions are closely related to motor vehicles, and statistics on RL pixels and
NO2 concentrations effectively reveal the model’s reliability. The RL was divided into three
categories according to the length of the road in the pixel, namely, high, medium, and low,
and the correlation coefficient between the ground monitoring data of NO2 concentration,
the results of this method, the RF model, the RF–Ps model and the RF–CID model and the
RL data was calculated. The results are shown in Table 2.
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Table 2. Comparison of the correlation between different methods and RL.

Classification (m) Ground (RL) RF–RID(RL) RF(RL) RF–Ps(RL) RF–CID(RL)

high (>5000) 0.52 0.51 0.48 0.49 0.51
medium

(2000–5000) 0.44 0.42 0.34 0.39 0.4

low (0–2000) - 0.38 0.31 0.34 0.35
Note: - Indicates lack of data.

From Table 2, the correlation of NO2 concentration predicted by RF–RID with RL was
the highest among the three categories. Among them, in areas with sparse roads (low
classification), the correlation coefficient between RF–RID and RL is significantly better
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than in other models. This result shows that RF–RID has the best simulation effect on the
spatial distribution of NO2 in the SWFJ area.

In addition, we further verified the model stability. We collected 365-day observation
data from Kinmen Station in the Taiwan Environmental Protection Administration in 2018
(annual average NO2 at Kinmen Station = 9.75 µg/m3) and compared them with the results
of RF–RID (predicted annual average NO2 at Kinmen Station = 10.51 µg/m3); R = 0.944 and
RMSE = 2.88 µg/m3. This result further proves that the RF–RID model has good stability.

3.2.4. Comparison with Related Research

With the advancement of data and algorithms, the accuracy and resolution of NO2
concentration spatial distribution predictions have been improved. However, few studies
reported the spatial distribution of NO2 concentrations in SWFJ in 2018. Accordingly, we
selected the R2, RMSE, and resolution in five studies that were relatively close in recent years
to compare with the results of this study (details are shown in Table 3). Young et al. [65] had
a higher R than RF–RID but a lower NO2 spatial resolution. In addition, in the comparison
of RMSE, the RF–RID model was better than GWR, LUR, and RF–STK. We used the TWS
model to fill the gaps in the MAIAC AOD and OMI NO2 column products. These two
parameters play a critical role in simulating NO2 with a resolution of 1 km near the ground.
In addition, RID improves model CV and avoids local overfitting of simulations. Due to the
significant differences between the comparative study and this study area, the study time
and resolution were considered. The direct comparison of the indicators of these models is
biased, and some indicators that are difficult to quantify need to be considered in the actual
comparison process (such as the spatial distribution of predicted NO2). Nevertheless, the
RF–RID model has significant advantages in comparing R, RMSE, and resolution. This
finding further shows the stability and excellent performance of the RF–RID model.

Table 3. Comparison of the effects of the spatial distribution of the NO2 concentration model.

Author CV(R2) RMSE Resolution Name

[66] <0.8 >4.7 1 km GWR
[38] 0.75 4.46 1 km LUR
[65] 0.84 - 25 km UK-LUR
[36] 0.62 13.3 0.1◦ RF–STK
[41] 0.79 - - LURF

This study 0.77 4.67 1 km RF
This study 0.826 4.11 1 km RF–Ps
This study 0.84 3.85 1 km RF–CID
This study 0.83 3.89 1 km RF–RID

Note: - Indicates lack of data.

3.2.5. Spatiotemporal Distribution Characteristics of NO2 in SWFJ

Optimizing the NO2 distribution prediction model is important because it can quickly
and cost-effectively obtain the high-precision spatial distribution of air pollutants and
compensate for errors caused by the insufficient and uneven distribution of sites [36].
Figures 7 and 8 show that the average concentration of NO2 in each city of SWFJ is higher
during spring (Jan. to Mar.) and winter (Oct. to Dec.) and lower in summer and autumn
(Apr. to Sep.). High concentration areas are located in the coastal cities of Quanzhou,
Zhangzhou, and Xiamen. At the same time, low values are distributed in the inland cities of
Sanming and Longyan (Figure S4 in the supplementary material). The NO2 concentrations
from high to low were as follows: Xiamen (17.2 µg/m3, 1/2 std = 2.8 µg/m3), Zhangzhou
(13.6 µg/m3, 1/2 std = 2.4 µg/m3), Quanzhou (12.6 µg/m3, 1/2 std = 2.5 µg/m3), Longyan
(10.6 µg/m3, 1/2 std = 1.4 µg/m3), and Sanming (10.2 µg/m3, 1/2 std = 1.3 µg/m3).
Compared with statistical data from the air-pollutant-monitoring site in Figure S1 in the
supplementary material, we found that the average concentration and standard deviation
of the five cities in the spatial distribution of NO2 concentration were much smaller than the
site statistics. In addition, the city rankings of the spatial distribution of NO2 concentration
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were different from the site statistics (the prediction result of the spatial distribution of
NO2 concentration shows that Zhangzhou is second and Quanzhou is third; according to
site statistics, Quanzhou is second, and Zhangzhou is third). The site monitoring of air
pollutants was not statistically consistent with the RF–RID predictions, further confirming
the importance of RF–RID. Furthermore, we counted the monthly average of Figure 7 and
the monthly average of the OMI data in Figures S7 and S8, which can further determine
the reliability of the near-surface NO2 simulation results.
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Atmosphere 2022, 13, 1832 13 of 20
Atmosphere 2022, 13, x FOR PEER REVIEW 14 of 21 
 

 
Figure 8. Annual average distribution of NO2 concentrations in SWFJ in 2018. Mean, Max and Min 
represent the average, maximum, and minimum of monthly average pixels, respectively. The red 
highlighted region represents the NO2 concentration high value, and the blue part represents the 
NO2 concentration low value. The color bar on the right represents the NO2 concentration. 

4. Discussion 
Exploring methods for predicting the spatial distribution of near-surface NO2 con-

centrations with higher accuracy can facilitate NO2 management. Machine-learning mod-
els effectively stimulate the spatial distribution of atmospheric pollutants, but there are 
also problems such as banding and patching. In this study, randomly distributed pixel 
IDs (RID) were established as spatial elements and were combined with the iterative TWS 
to restore gaps such as the 470 nm MAIAC AOD, OMI NO2 column, and other independ-
ent variables. We used RID, a simple and effective parameter, to optimize the random 
forest model and predict the spatial distribution of NO2 at a 1 km resolution without gaps. 
The model optimizes the local spatial anomaly of the NO2 spatial distribution and im-
proves the application prospect. 

This study used iterative TWS to fill data gaps for the 470 nm MAIAC AOD and OMI 
NO2 column. The RF–RID was then combined with the reduced 470 nm MAIAC AOD, 
reduced NO2 column, interpolated meteorological parameters, ND, LU, RL, ELE, SL, POP, 
RID, and other variables to predict the spatial distribution of near-surface NO2 concentra-
tions. The simulation results of RF, RF–RID, RF–Ps, and RF–CID were compared with 
NO2-monitoring data (training, validation, and other samples). RF–RID achieved cutting-
edge performance in training (R = 0.9770, RMSE = 2.192 μg/m3), validation (R = 0.9117, 
RMSE = 3.895 μg/m3), and additional samples (R = 0.9440, RMSE = 2.88 μg/m3). This result 
was close to RF–CID and better than RF–Ps and RF. Meanwhile, the comparison results of 
RF–RID and RL were better than those of RF, RF–CID, RF–Ps and RL. In addition, the R2, 
RMSE, and resolution indicators of RF–RID were also better than or equal to those of re-
lated studies in recent years [36,38,41,65,66]. Combining the results of cross-validation 
with different parameters in Figure S2 also reflects the solid fitting ability of random forest 
to complex data. The new variables (random ID, continuous ID, and spatial distance) sig-
nificantly affected the NO2 simulation. Meanwhile, ID (location information) had better 
verification accuracy than distance variables, which shows that ID (unique) can better rep-
resent the location of each pixel than the distance variable (not unique). 

Figure 8. Annual average distribution of NO2 concentrations in SWFJ in 2018. Mean, Max and Min
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4. Discussion

Exploring methods for predicting the spatial distribution of near-surface NO2 concen-
trations with higher accuracy can facilitate NO2 management. Machine-learning models
effectively stimulate the spatial distribution of atmospheric pollutants, but there are also
problems such as banding and patching. In this study, randomly distributed pixel IDs
(RID) were established as spatial elements and were combined with the iterative TWS to
restore gaps such as the 470 nm MAIAC AOD, OMI NO2 column, and other independent
variables. We used RID, a simple and effective parameter, to optimize the random forest
model and predict the spatial distribution of NO2 at a 1 km resolution without gaps. The
model optimizes the local spatial anomaly of the NO2 spatial distribution and improves
the application prospect.

This study used iterative TWS to fill data gaps for the 470 nm MAIAC AOD and OMI
NO2 column. The RF–RID was then combined with the reduced 470 nm MAIAC AOD,
reduced NO2 column, interpolated meteorological parameters, ND, LU, RL, ELE, SL, POP,
RID, and other variables to predict the spatial distribution of near-surface NO2 concen-
trations. The simulation results of RF, RF–RID, RF–Ps, and RF–CID were compared with
NO2-monitoring data (training, validation, and other samples). RF–RID achieved cutting-
edge performance in training (R = 0.9770, RMSE = 2.192 µg/m3), validation (R = 0.9117,
RMSE = 3.895 µg/m3), and additional samples (R = 0.9440, RMSE = 2.88 µg/m3). This
result was close to RF–CID and better than RF–Ps and RF. Meanwhile, the comparison
results of RF–RID and RL were better than those of RF, RF–CID, RF–Ps and RL. In addition,
the R2, RMSE, and resolution indicators of RF–RID were also better than or equal to those
of related studies in recent years [36,38,41,65,66]. Combining the results of cross-validation
with different parameters in Figure S2 also reflects the solid fitting ability of random forest
to complex data. The new variables (random ID, continuous ID, and spatial distance)
significantly affected the NO2 simulation. Meanwhile, ID (location information) had better
verification accuracy than distance variables, which shows that ID (unique) can better
represent the location of each pixel than the distance variable (not unique).
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Furthermore, in SWFJ, the distribution of NO2 concentration is high in coastal areas,
low in inland areas, high in the southeast, and low in the northwest. It has a specific
correlation with a continuous ID and a better fitting effect than RID in the cross-validation.
Compared with Figure 3, the R of the RF model showed the most significant decrease,
and the RMSE showed the largest increase, which further shows that the new variables
(random ID, continuous ID, and spatial distance) result in improved model stability. The
RF–Ps model showed the second-largest decrease in R and the second-largest increase in
RMSE, which shows that the CV of the RF–Ps model in the test dataset is more evident
than that of the RF–RID RF–CID models. In addition, RF–CID is more stable than RF–RID
during the prediction process. Specific performance: the R value of the RF–CID model
decreased by 6.22%, the RMSE increased by 1.659 µg/m3, while for the RF–RID model,
R decreased by 6.53%, and the RMSE increased by 1.703 µg/m3. These findings show
that the continuous ID is more stable than RID in the CV of the prediction process. In
addition, RF–RID solves the stripe and patch phenomenon of the spatial distribution of
NO2 concentration predicted by RF–CID and RF–Ps and solves the geographical boundary
phenomenon of the irregular spatial distribution of NO2 concentration predicted by RF.
In addition, in the comparison of NO2 spatial distribution results and road information,
it was found that RF–RID results were better than other models. These findings suggest
that the RF–RID model estimated using 470 nm MAIAC AOD data and NO2 column data
recovered by iterative TWS, RID, and other parameters can provide highly accurate and
stable near-surface NO2 concentration spatial distribution results.

The 470 nm MAIAC AOD is not highly correlated with NO2 site observation data,
and it still plays a significant role in predicting the spatial distribution of NO2 (Figure S6).
The possible reason is that the conversion time of NO2 to nitrate is usually not long,
and nitrate is also an important component of SWFJ, especially in coastal regions [67,68].
Therefore, AOD, a key aerosol parameter, still positively influences the prediction of the
near-surface NO2 spatial distribution. Similarly, the NO2 column is the vertical integral
of tropospheric NO2, representing the NO2 concentration near the ground to a certain
extent [69]. The restored 470 nm MAIAC AOD and OMI NO2 column can provide more
training samples (by iterative TWS), enable the model to be sufficiently trained, and
improve the CV (increase R and reduce RMSE). In addition, AOD and NO2 columns with
fewer gaps can obtain a complete spatial distribution of NO2. First, NO2 predictions
develop from a site to a regional scale, and the number of gaps determines the size of the
NO2 prediction area. Fewer gaps between the AOD and NO2 columns increase the value of
NO2 spatial distribution predictions. Then, by recovering the gaps in the critical variables
(AOD and NO2 column), it is easy to obtain simulations of the spatial distribution of the
NO2 concentration without gaps. Therefore, RF–RID improved the accuracy of model
training and the spatial visualization effect of the NO2 spatial distribution.

The CV of RF–RID, RF–CID, and RF–Ps was better than that of RF (Figures 3 and 4),
indicating that the input parameters (RID, CID, and Ps) of RF–RID, RF–CID, and RF–Ps
improve the RF model training performance. Among them, we used randomly distributed
pixel ID (RID) as the input variable of RF–RID, which does not reduce the CV. Compared
with RF–CID, RF, and RF–Ps, RF–RID solves the abnormal situation of the spatial dis-
tribution prediction of NO2 concentration and the natural world (banding, patchy, and
apparent geographic boundary phenomena). Particularly, when the selected features have
large differences in temporal and spatial resolution (such as the coarse resolution of the
OMI), it is likely to cause the aforementioned phenomena, which we attribute to local
overfitting [70–72]. The spatial distribution of air pollutants is nonstationary. The regular
ID (CID) and Ps parameters become the noise in the data in the prediction stage. The
excellent performance on the training dataset reflects that the regular ID distribution is
consistent with the trend of low NO2 inland and high coastal areas. Therefore, the CV
(R and RMSE) of the training dataset was better than that of RID in training the dataset.
However, compared with RID and CID, the Ps parameter overfitted the data, showing that
the regular Ps parameter was noisier than the spatial distribution of NO2 concentration.
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Similarly, in predicting the spatial distribution of NO2 concentrations, the CID and Ps
parameters were noisier than RID. Consequently, overfitting of local strips and patches
appears. Moreover, the distribution of air-pollutant-monitoring stations is clustered (more
cities, fewer mountainous areas), leading to a severe bias between the training dataset and
the prediction dataset and increasing regular data noise. Randomness is widely used in
model construction (random forest) and in model control overfitting (random dropout
suppresses overfitting). One of the advantages of random sampling is to control overfitting
and maintain model stability. Therefore, the introduced RID balances the bias between the
training and prediction data (inhibiting noise) concerning the regular distribution, control-
ling overfitting, and solving the banding and spotting of RF–CID, RF, and RF–Ps. Apparent
geographic boundary phenomena, such as massive boundaries, ensure the stability of the
spatial distribution of the NO2 concentration predicted by RF–RID.

According to the information published in the 2018 Ecological and Environmental
Bulletin (https://www.mee.gov.cn/ywdt/tpxw/201905/t20190529_704841.shtml, accessed
on 2 August 2022), the high-value areas of the spatial distribution of NO2 concentrations
in China are mainly in the Beijing-Tianjin-Hebei region (43 µg/m3) and the Yangtze River
Delta (35 µg/m3). In contrast, the NO2 concentration in SWFJ is relatively low (the observed
value is 16.57 µg/m3, and the predicted value is 11.66 µg/m3). However, acid rain is severe
in parts of Sanming and Xiamen [73]. Although the factors affecting acid rain are very
complicated, two of the essential factors are the concentration and spatial distribution of
NO2. In addition, the results of air-pollutant-monitoring sites differ significantly from the
predicted results of the spatial distribution of NO2 concentrations, especially in Zhangzhou
and Quanzhou. The main reason for this difference is that the representativeness of the
geographical distribution of air-pollutant-monitoring sites needs improvement. Hence, the
predicted average concentration of NO2 was significantly different from the monitored
concentration. In addition, the monitoring site’s average concentration of NO2 in Quanzhou
is higher than that in Zhangzhou; the simulation average of the spatial distribution of
NO2 in Quanzhou is also lower than that in Zhangzhou. Combined with Figure 1 and
Table 2, the distribution of air pollution points is concentrated mainly in urban population
clusters and is lacking in areas with sparse roads. Although this distribution method
can improve the monitoring level of air pollutants in critical urban areas, it ignores the
distribution of air pollutants in small counties and the overall situation. Advanced air
pollutant concentration spatial distribution prediction methods can compensate for this
deficiency, shifting the temporal and spatial distributions of air pollutants in different cities
closer to the correct level. Therefore, a more accurate estimation of the spatial and temporal
distribution of regional NO2 concentrations will provide a basis for policy formulation for
environmental management.

The nearest distance between Kinmen and Xiamen is only 2 km; however, the differ-
ence in NO2-monitoring concentration between Kinmen and Xiamen is significant. The
convective movement of the land-sea breeze circulations in the local area may have blocked
regional NO2 transmission. Meanwhile, differences in the urbanization process between
Xiamen and Kinmen have enhanced the accumulation of air pollutants caused by the
land-sea breeze circulation [74,75]. Therefore, the variables related to the transmission
distance of NO2 (such as gridded atmospheric convection products) should be increased,
and the volume of NO2-monitoring station data (based on atmospheric pollutant obser-
vation station data in China) should be increased. In addition, adding new parameters,
including TROPOMI, has excellent potential to improve the feasibility of accuracy and the
spatial resolution of NO2 simulations [76,77]. In the future, we will provide optimized
high-resolution (1 km) products for the near-surface temporal and spatial distribution of
NO2 concentrations in China. In addition, most current research on predicting the spatial
distribution of air pollutants near the ground, whether applying a traditional model or a
machine-learning model, still requires accurate ground observation data of air pollutants
as the basis for modeling. However, significant errors in ground-based observations can
affect prediction models, interfering with local or global predictions of atmospheric pollu-
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tants. Therefore, we will also research feasible solutions to eliminate or correct abnormal
air-pollutant-monitoring data values.

5. Conclusions

The introduction of geocoding information to improve the performance and stability
of NO2 concentration prediction is of great help for NO2 environmental management and
ecological applications. This study predicted the NO2 concentration spatial distribution
(without gaps) in SWFJ in 2018 at a 1 km/d resolution by constructing an RF–RID. The
results show that RF–RID has improved accuracy (R = 0.9110, RMSE = 3.89 µg/m3) and
enhanced generalization ability (Kinmen Station R = 0.9440 and RMSE = 2.88 µg/m3)
compared with existing studies. In addition, in contrast to the RF, RF–CID, and RF–Ps
models, RF–RID has better prediction results for NO2 concentrations in remote areas and
solves the local overfitting problem of NO2 concentration spatial distribution prediction.
Among them, the random distribution feature of RID reduces the input noise of location
information, improves the reliability of simulating NO2 spatial distribution in remote areas
with sparse roads, and reduces streaks and patches. Finally, the RF–RID model enhances
model stability by optimizing the data structure without requiring higher-performance
hardware and data volume and provides an essential reference for optimizing the air
pollutant prediction model. In follow-up research, continuous improvements in NO2
concentration prediction accuracy, temporal resolution, and spatial resolution will be the
priority research direction. The primary way to achieve this advancement is to continuously
optimize the model and introduce a deep learning model to further explore the critical
impact of multiple heterogeneous data on NO2 concentration prediction.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos13111832/s1, Method S1 (Iterate TWS), Figure S1. Iterate
TWS technology roadmap. Figure S2. Monthly average of NO2 monitoring data in SWFJ in 2018.
Figure S3. Correlation coefficient between NO2 monitoring data and remote sensing products in
SWFJ in 2018. Figure S4. Monthly and annual averages of NO2 in different cities in SWFJ. (A) Monthly
average trend chart of NO2 in different cities; (b) annual average and 1/2 standard deviation of
different cities. The value and the value in parentheses represent the annual average and 0.5 times
the standard deviation, respectively. Figure S5. (a), (b), (c), and (d) represent the cross−validation of
the spatial interpolation of air pressure, humidity, air temperature, and wind speed, respectively. The
horizontal axis represents the observation results, and the vertical axis represents the interpolation
results. R represents the correlation coefficient, and n represents the number of samples. The black
line represents the 1:1 ratio line, the solid red line represents the first−order linear fitting function
curve, and the color bar represents the point density. Figure S6. RF, RF−Ps, RF−CID and RF−RID
feature importance. The x−axis represents the factors used to build the different models. The y−axis
represents importance values. Figure S7. 2018 RF−RID monthly Average. The x−axis represents the
different months of 2018. The y−axis represents the mean NO2 concentration. Figure S8. 2018 OMI
monthly Average. The x−axis represents the different months of 2018. The y−axis represents the
mean OMI value. Figure S9. The CV scatterplot of TWS recovery OMI and AOD. (a) represents the
cross−validation of the first step of TWS to restore AOD. (b) represents the cross−validation of the
AOD recovery in the second step of TWS. (c) represents the cross−validation of TWS second−step
recovery OMI. References [78,79].
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