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Abstract: The transport process is an important part of the research of fluid dynamics, especially 
when it comes to tracer advection in the atmosphere or ocean dynamics. In this paper, a series of 
high-order semi-Lagrangian methods for the transport process on the sphere are considered. The 
methods are formulated entirely in three-dimensional Cartesian coordinates, thus avoiding any 
apparent artificial singularities associated with surface-based coordinate systems. The underlying 
idea of the semi-Lagrangian method is to find the value of the field/tracer at the departure point 
through interpolating the values of its surrounding grid points to the departure point. The 
implementation of the semi-Lagrangian method is divided into the following two main 
procedures: finding the departure point by integrating the characteristic equation backward and 
then interpolate on the departure point. In the first procedure, three methods are utilized to solve 
the characteristic equation for the locations of departure points, including the commonly used 
midpoint-rule method and two explicit high-order Runge–Kutta (RK) methods. In the second one, 
for interpolation, four new methods are presented, including 1) linear interpolation; 2) polynomial 
fitting based on the least square method; 3) global radial basis function stencils (RBFs), and 4) local 
RBFs. For the latter two interpolation methods, we find that it is crucial to select an optimal value 
for the shape parameter of the basis function. A Gauss hill advection case is used to compare and 
contrast the methods in terms of their accuracy, and conservation properties. In addition, the 
proposed method is applied to standard test cases, which include solid body rotation, shear 
deformation of twin slotted cylinders, and the evolution of a moving vortex. It demonstrates that 
the proposed method could simulate all test cases with reasonable accuracy and efficiency. 

Keywords: transport equation; semi-Lagrangian method; icosahedron sphere; Runge–Kutta 
methods; radial basis function 
 

1. Introduction 
Advection transport is a basic process in fluid dynamics, especially when it comes 

to the motion of various passive tracers in the atmosphere or ocean. It plays an important 
role in geographic modeling and simulation for kinds of geographical phenomena and 
processes [1–3]. The global advection transport model is also important in developing 
general circulation models (GCMs). The traditional latitude–longitude grid is easy for 
application but has singularities at the two poles [4]. Moreover, its non-uniform grid 
system would also seriously affect computational efficiency [5]. To address these issues, 
quasi-uniform grid systems without singularities or with weak singularities, such as 
Yin-Yang overset grids, block-structured quadrilateral meshes based on the cubed 
sphere, triangle or their dual meshes based on the regular icosahedron sphere, are 
becoming more and more popular in developing global transport models [6,7]. Each of 
these grids has its own merits and demerits. The Yin-Yang grids are composed of two 
patches of the latitude–longitude grid and belong to the chimera grid [8], which needs a 
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special method to handle the internal boundaries for data exchange. The cubed sphere is 
composed of six patches. The coordinate system is not continuous across boundaries 
shared by two neighboring patches [9]. The triangle mesh or its dual hexagon-pentagon 
mesh based on a regular icosahedron sphere has relatively more uniform space 
resolution and has been utilized as a basis in many applications, especially in global 
atmosphere or ocean modeling [10,11]. In this study, the triangle mesh based on the 
icosahedron sphere is adopted for our transport model. 

There are mainly two classes of numerical methods for the approximation of the 
advection equation on the sphere. The first class of methods belongs to the finite volume 
(FV) methods [12,13], which consider the fluid as a set of cells and then solve the 
cell-integrated flux-form advection equation. The solution is just the mean value of each 
cell, which is computed from the net flux into a cell over a time step. An FV method 
typically computes these fluxes by assuming subgrid reconstruction within the cell and 
then integrating it over the area of the cell flowing outward during a time step. It needs 
delicate techniques to construct stable, high-order numerical flux on the cell interface, 
and the time step is constrained by the CFL number if explicit time integration is used. 
The other one belongs to semi-Lagrangian (SL) methods [14,15], which form the 
advection equation in its “Lagrangian” or flow-following form. For a specific point, the 
SL methods use the winds (either prescribed or predicted) to trace along the trajectory 
backward to this point’s original location (called the departure point) on the previous 
time level. The value of the variable at that upwind point, usually interpolated from the 
surrounding grid points, is the advected value of the variable at the destination grid 
point. 

The SL methods are designed based on the fixed set of the computational mesh with 
information propagating along characteristic curves, taking advantage of high spatial 
resolution in an Eulerian approach and computational efficiency with large time 
stepping in a Lagrangian method for transport problems [16]. Over the past few decades, 
the SL methods have been under great development and are widely used in fluid and 
kinetic simulations, weather forecasting, interface tracking, etc.  

The SL method is also a popular choice for developing a global transport model 
since it allows a large time step without much loss of accuracy. In this paper, we consider 
the following horizontal transport equation on the spherical surface [17]: பథப௧ + ∇ ∙ (𝑉ሬ⃗ 𝜙)=0 (1) 

where 𝜙 is the fluid thickness or density of a specific tracer, 𝑉ሬ⃗  is the velocity vector 
tangent to the sphere for all t ≥ 0. The operator ∇ is assumed to be the horizontal 
divergence on the sphere. 

Equation (1) could be expanded as follows: பథப௧ + ∇ ∙ ൫𝑉ሬ⃗ ൯𝜙 + 𝑉ሬ⃗ ∙ ∇𝜙=0 (2) 

In the case of a divergence-free flow, the Lagrangian form of Equation (2) is as follows: பథப௧ + 𝑉ሬ⃗ ∙ ∇𝜙 = ௗథௗ௧ =0 (3) 

Where ∇ denotes the horizontal gradient operator on the sphere. The corresponding 
characteristic equation is as follows: 𝑑𝑥⃗𝑑𝑡 = 𝑉ሬ⃗  (4) 

where 𝑥⃗  denotes the position vector of a point on the sphere. 
In Section 2, based on the regular icosahedron, a triangle mesh for the generation of 

uniformly distributed node sets on the sphere surface would be described. 
In Section 3, the detailed steps for implementation of the SL method are presented. It 

contains mainly of the following two procedures: firstly, find the location for the 
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departure point by solving the trajectory equation; second, approximate the value at the 
departure point from its neighbor nodes by interpolation or fitting methods.  

In Section 4, three different methods for the location of departure points are 
reported, which include the mid-rule method, the explicit classical four-order and 
five-order Runge–Kutta method. Additionally, comparison results of the accuracy of 
departure points’ location for these methods are evaluated. Once the departure point is 
obtained, then four new methods are based on interpolation using (1) linear 
interpolation; (2) polynomial fitting based on the least square method; (3) global radial 
basis function stencils (RBFs); (4) local RBFs. A test case, that is, the passive advection of 
Gauss hill, is utilized to evaluate the accuracy of the location of departure points and the 
mass conservation of different methods. 

In Section 5, a series of numerical experiments that include the solid rotation of a 
cosine bell, the deformation of twin slotted cylinders, and the moving vortex test cases 
are utilized to evaluate the performance of the proposed global transport model. 
Additionally, the summary is given in Section 6. 

2. Triangle Mesh Generation on a Sphere 
Although the SL method belongs to the mesh-free method essentially, it needs a 

spatial discretization of the spherical surface. In this paper, a triangle mesh based on a 
regular icosahedron sphere is utilized [18]. As shown in Figure 1, first, a regular 
icosahedron was embedded in the sphere. To refine this grid, each geodesic edge is split 
into two equal halves by adding a new vertex at the midpoint, and each triangular face is 
consequently split into four sub-triangles. Figure 1 illustrates the mesh refinement 
procedure. The left panel shows a regular icosahedron mapped on the spherical surface, 
and the middle panel and right panel show the mesh with refinement levels equal to 1 
and 2, respectively. Statistically, a triangle mesh which is refined N times will have 10 × 
4N +2 vertices and 20 × 4N elements. It is clear that this triangle mesh is semi-structured; 
there are five triangle elements shared commonly by each of the original twelve vertices 
on the icosahedron, and each of the reminder grid vertices is shared by six triangles. 

   
(a) (b) (c) 

Figure 1. The triangle mesh based on a regular icosahedron sphere. (a)The initial triangle mesh 
generated by regular icosahedron embedded in the sphere, with edges projected to the surface; (b) 
icosahedron triangle mesh with refinement level 1, with newly added edges denoted via thinner 
red lines; (c) icosahedron triangle mesh after two stages of refinement, newly added edges are 
shown in blue lines. 

3. High-Order Semi-Lagrangian Method 
For solving the transport equation, the main idea behind the semi-Lagrangian 

method is to find the location of the departure point for a grid point and then interpolate 
to the departure point from the values of its surrounding grid points. As shown in 
Figure 2, the implementation of the SL method can be divided into the following two 
procedures: 
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(1) For each grid point 𝑥⃗ , integrate the characteristic Equation (4) backward for the 
location of the departure point Dx


. Usually the departure point does not coincide with 

the original node. 

( , )dx V x t
dt

=
    

( ) ( ) ( , )
t

t t
x t x t t V x t dt

−Δ
− − Δ = 
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( ) ( ) ( , )
t

D t t
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= − Δ = − 
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(5) 

(2) Then some interpolation method is utilized to interpolate or fit the value on the 
departure point from those on the original nodes. 

( , ) ( , ) ( , )
t

Dt t
x t x Vdt t t x t tφ φ φ

−Δ
= − − Δ = − Δ

  
 

( ) ( ) I[ ( )]t t t t t
Dx x xφ φ φ−Δ −Δ= =  

 
(6) 

where tΔ  denotes the discrete time step, I denotes a specific interpolation or fitting 
operator. 

 
Figure 2. The main idea of a SL method. For a specific vertex P0, its departure point is denoted by 

Dx


, the red curve denotes a characteristic curve. The value at arrival point P0 at current time level 
just originates from the value at its departure point at the previous time level. 

In the following subsections, the above two main procedures would be illustrated, 
respectively. 

3.1. Approximation for Departure Point 
In this subsection, two main kinds of methods are utilized to integrate the 

characteristic Equation (4) for the location of the departure point; those are the Ritchie’s 
midpoint method and high-order explicit Runge–Kutta methods.  

3.1.1. Ritchie’s Method 
There are many ways of computing the right-hand integral in Equation (5) 

approximately, but the most commonly used form has been the midpoint rule, which 
was first proposed by Ritchie [19] and is iterative and interpolating. Giraldo [20] proved 
its simplification to the midpoint integration rule on the surface of a sphere. Additionally, 
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the midpoint method was used widespread for the approximation of the characteristic 
equation in the semi-Lagrangian method [21–23]. It is implemented mainly as follows: 

Integrate the trajectory equation half of a time step backward, yielding the 
following: 𝑥⃗ெ = 𝑥⃗ெ − 𝑑𝑡2 𝑉ሬ⃗ (𝑥⃗ெ, 𝑡 − 𝑑𝑡/2) (7) 

where 𝑥⃗ெ enotes the midpoint of the characteristic curve and 𝑥⃗஺ denotes the arrival 
point. Usually, it was just the mesh vertex. The equation defines a recursive scheme 
because 𝑥⃗ெ is given implicitly in the relation. Usually, several iterations (4 or 5 iteration 
loops) are enough to obtain a convergent solution, and then the departure point 𝑥⃗஽ is 
calculated by the following: 𝑥⃗஽ = 𝑥⃗஺ − 𝑑𝑡𝑉ሬ⃗ (𝑥⃗ெ, 𝑡 − 𝑑𝑡/2) (8) 

However, we have said nothing about the order of the interpolations, but obviously, 
the higher the order of the quadrature formulas, the better the trajectory accuracy, but 
more computational cost as well. The midpoint rule yields second-order accuracy and 
has been used quite successfully in 2D planar space. On the sphere, the midpoint rule has 
to be modified such that the new departure points computed by Equation (8) remain on 
the surface of the sphere. In other words, after each iteration we must apply the following 
projection:  𝑥⃗஽ = 𝑅|𝑥⃗஽| 𝑥⃗஽ (9) 

where 𝑅 denotes the radius of the sphere. 

3.1.2. High-Order Runge–Kutta Methods 
Although the Ritchie’s midpoint method could be implemented easily, it gives only 

second-order accuracy. Even higher order methods, such as the classical explicit 
four-order Runge–Kutta method (RK4), could also be used to solve the characteristic 
equation; it yields the following: 𝑑𝑥⃗௞ଵ = −𝑑𝑡𝑉ሬ⃗ (𝑥⃗஺, 𝑡) 𝑑𝑥⃗௞ଶ = −𝑑𝑡𝑉ሬ⃗ ቆ𝑥⃗஺ + 𝑑𝑥⃗௞ଵ2 , 𝑡 − 𝑑𝑡2 ቇ 

𝑑𝑥⃗௞ଷ = −𝑑𝑡𝑉ሬ⃗ ቆ𝑥⃗஺ + 𝑑𝑥⃗௞ଶ2 , 𝑡 − 𝑑𝑡2 ቇ 𝑑𝑥⃗௞ସ = −𝑑𝑡𝑉ሬ⃗ (𝑥⃗஺ + 𝑑𝑥⃗௞ଷ, 𝑡 − 𝑑𝑡) 𝑥⃗஽ = 𝑥⃗஺ + 𝑑𝑥⃗௞ଵ+2𝑑𝑥⃗௞ଶ + 2𝑑𝑥⃗௞ଷ+𝑑𝑥⃗௞ସ6  

(10) 

Additionally, classical Butcher’s Runge–Kutta method of order five (RK5) as follows [24]: 𝑑𝑥⃗௞ଵ = −𝑑𝑡𝑉ሬ⃗ (𝑥⃗஺, 𝑡) 𝑑𝑥⃗௞ଶ = −𝑑𝑡𝑉ሬ⃗ ቆ𝑥⃗஺ + 𝑑𝑥⃗௞ଵ4 , 𝑡 − 𝑑𝑡4 ቇ 

𝑑𝑥⃗௞ଷ = −𝑑𝑡𝑉ሬ⃗ ቆ𝑥⃗஺ + 𝑑𝑥⃗௞ଵ + 𝑑𝑥⃗௞ଶ8 , 𝑡 − 𝑑𝑡4 ቇ 

𝑑𝑥⃗௞ସ = −𝑑𝑡𝑉ሬ⃗ ቆ𝑥⃗஺ − 𝑑𝑥⃗௞ଶ − 2𝑑𝑥⃗௞ଷ2 , 𝑡 − 𝑑𝑡2 ቇ 

(11) 
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𝑑𝑥⃗௞ହ = −𝑑𝑡𝑉ሬ⃗ ቆ𝑥⃗஺ + 3𝑑𝑥⃗௞ଵ + 9𝑑𝑥⃗௞ସ16 , 𝑡 − 3𝑑𝑡4 ቇ 

𝑑𝑥⃗௞଺ = −𝑑𝑡𝑉ሬ⃗ ቆ𝑥⃗஺ + −3𝑑𝑥⃗௞ଵ+2𝑑𝑥⃗௞ଶ+12𝑑𝑥⃗௞ଷ−12𝑑𝑥⃗௞ସ + 8𝑑𝑥⃗௞ହ7 , 𝑡 − 𝑑𝑡ቇ 𝑥⃗஽ = 𝑥⃗஺ + (7𝑑𝑥⃗௞ଵ+32𝑑𝑥⃗௞ଷ+12𝑑𝑥⃗௞ସ + 32𝑑𝑥⃗௞ହ + 7𝑑𝑥⃗௞଺)/90 

When the departure point 𝑥⃗஽ is obtained, then it should be mapped onto the sphere 
surface by Equation (9). In theory, the high-order Runge–Kutta methods could generate 
more accurate locations of departure points than the midpoint method. In Section 4, a 
numerical experiment would be used to validate the results. 

3.2. Interpolation 
Once the departure point is calculated, then the value at the departure point could 

be obtained by interpolation or fitting methods. In this section, four methods would be 
utilized, which include linear interpolation, polynomial fitting based on the least square 
method, global radial basis function stencil (RBFs), and local RBFs interpolation; the 
main ideas of these methods would be illustrated, respectively. 

3.2.1. Linear Interpolation 
The main idea for linear interpolation is as follows. First find the triangle element 

that the arrival point traced back into, then interpolate its value by those on the triangle’s 
vertex [25]. For instance, in Figure 3, assuming the red point 𝑥⃗஽ denotes the departure 
point for a specific vertex and it is located in the triangle element P0P1P2, then its value 
could be approximated by the values of the three vertexes of the triangle as follows: 𝜙(𝑥⃗஽) = 𝛼଴𝜙(𝑃଴) + 𝛼ଵ𝜙(𝑃ଵ) + 𝛼ଶ𝜙(𝑃ଶ)𝛼଴ + 𝛼ଵ + 𝛼ଶ (12) 

where 𝛼௜, 𝑖 = 0,1,2  denotes the spherical area of the sub-triangle formed by the 
departure point and the edges of the triangle opposite to vertex 𝑃௜. 

 
Figure 3. Linear interpolation at the departure point, its value is approximated by the values on 
three vertexes of the triangle. 

This method could be implemented with little effort, and it can be seen that the 
interpolated value is just an area-weighted average of the values on three vertexes of the 
triangle. 

3.2.2. Local Polynomial Fitting by Least-Square Method (Poly-LSQ) 
The linear interpolation method above-mentioned has two-order accuracy. In order 

to attain more accurate interpolation results, high-order polynomial fitting was utilized. 
It needs a local grid stencil in 3D Cartesian spaces, and then the grid points in this local 
stencil would be mapped onto a local two-dimensional (2D) coordinate system by a 
general stereography projection [26,27], and then a bivariate polynomial was utilized to 
fit the values at grid points on the stencil. In order to obtain an approximate value at the 
departure point, first, find the nearest vertex for each departure point, and then a 
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polynomial least-squares fit is calculated using values at the vertex and its nearest 
first-layer neighbor points. 

The transformation between the spherical latitude–longitude coordinates and 
two-dimensional general stereographic coordinates (GSTC) is given by the following: 𝑥 = 𝑚𝑅cos(𝜃)sin(𝜆 − 𝜆଴) 𝑦 = 𝑚𝑅[sin(𝜃) cos(𝜃଴) − cos(𝜃) sin(𝜃଴) cos(𝜆 − 𝜆଴)] 𝑚 = 21 + sin(𝜃) sin(𝜃଴) + cos (𝜃)cos (𝜃଴)cos(𝜆 − 𝜆଴) 

(13) 

Where m is the map factor and R is the radius of the earth, ( 𝜃, 𝜆) and (x,y) denote the 
latitude–longitude coordinates and GSTC respectively. The center of the GSTC is at the 
tangent point where (x,y) = (0,0). In the transformed system, the positive x-axis is directed 
toward the east of the origin along the latitudinal circle of 𝜃 = 𝜃଴ and the y-axis is 
defined as positive poleward of the origin along the meridian 𝜆 = 𝜆଴. 

In Figure 4a, an icosahedron sphere triangle mesh with refinement level 1 is shown. 
The north pole and its five nearest neighbor points shown in red dots are projected on 
the 2D tangent plane, and the blue lines denote projection lines. As shown in Figure 4b, 
for a specific vertex, its departure point is denoted by the red point  𝑥⃗஽. Firstly, find the 
vertex that is closest to this departure point, and then the value at 𝑥⃗஽  could be 
approximated by the values at the vertex and its first-order neighbor points, which leads 
to a full bivariate quadratic polynomial as follows: 𝜙෠(𝑥, 𝑦) = 𝑎଴ + 𝑎ଵ𝑥 + 𝑎ଶ𝑦 + 𝑎ଷ𝑥ଶ + 𝑎ସ𝑥𝑦 + 𝑎ହ𝑦ଶ (14) 

In order to minimize the interpolation error, the fitted polynomial should be constrained 
by the following condition: 

Min ෍[𝜙෠(𝑝௜) − 𝜙(𝑝௜)]ଶே஻௉
௜ୀଵ  (15) 

where the NBP =6 or 7, is the number of first-order neighbor points for a specific vertex, 
including the vertex itself. 𝑝௜ denotes the projected point on the local 2D tangent plane. 

For Equation (15), there are seven or six values on each stencil but only six 
polynomial terms. In order to determine the coefficient 𝑎௜, 𝑖 = 0,1, ⋯ ,5, a Least-squares 
approach is needed because the system of equations is over-constrained. For a specific 
vertex, the stencil geometry is expressed in a local coordinate system with the vertex that 
is nearest the departure point as the origin so that the value at the vertex is equal to the 
constant coefficient 𝑎଴. Once the coefficients are obtained, an approximate value at the 
departure point could be obtained by inserting its mapped coordinates into the 
quadratic polynomial (14). 

  
(a) (b) 
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Figure 4. General stereography projection on a local stencil on the icosahedron sphere (a) 
icosahedron spherical triangle mesh with refinement level 1, the stereographic projection of north 
pole, and its nearest five neighbor points are shown in red dot, the mapped points are shown in 
blue dot on the local 2D tangent plane shown in pink; (b) the first-order neighbor points for a 
specific vertex. The number of first-order neighbor points around each vertex is 6 (except for the 12 
original major points, the number of first-order neighbor points around is 5). 

3.2.3. Global RBFs 
In recent two decades, the mesh-free methods have achieved rapid development, 

among which the radial basis function (RBF) method is one of the most popular 
numerical methods, and it has been vastly applied to solve various kinds of physical 
problems with theoretical proofs on solvability and convergence presented in [28]. 
Increasingly, the global RBF collocation method is applied to some problems in the 
sphere [29,30].  

Given a set of nodes 𝑋 = ሼ𝑥⃗௞ሽ, 𝑘 = 1, ⋯ , 𝑁 on the sphere surface, the standard global 
RBF (GRBF) interpolant 𝜙෠(𝑥⃗) to the data has the following form: 

𝜙෠(𝑥⃗) = ෍ 𝜔௞ே
௞ୀଵ 𝐵(‖𝑥⃗ − 𝑥⃗௞‖) (16) 

where B denotes the kernel function of RBF, the notation 𝑥⃗ = (𝑥, 𝑦, 𝑧)  and 𝑥⃗௞ =(𝑥௞, 𝑦௞, 𝑧௞), the Equation (16) is the linear combination of the kernel function of RBF. In 
this paper, we will limit our attention to the kernel functions B(r) listed in Table 1. All 
these four kernel functions are global supported and strictly positive definite. Other 
types of kernel functions that are local-compactly supported could be found in [31]. Note 
that there is a parameter c in each kernel function, it is known as the shape parameter. 

Table 1. Definitions of some infinitely differentiable radial functions, the shape parameter c 
controls their flatness. 

Name of RBF Abbreviation Definition 
Gaussian GA 𝑒ି(௖௥)మ 

Multiquadric MQ ඥ1 + (𝑐𝑟)ଶ 

Inverse multiquadric IMQ 
1ඥ1 + (𝑐𝑟)ଶ 

Inverse quadratic IQ 
11 + (𝑐𝑟)ଶ 

If the interpolant 𝜙෠(𝑥⃗) can be utilized to approximate the true solution, then the 
expansion coefficients are determine  𝜔௞, 𝑘 = 1, ⋯ , 𝑁 by enforcing 𝜙෠(𝑥⃗௞) = 𝜙(𝑥⃗௞), 𝑘 =1, ⋯ , 𝑁, which can be expressed by the following linear system: 
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(17)

If the Gauss type or IMQ type basis function was used for RBF interpolation, the 
coefficient matrix in equation (17) is positive-definite and invertible, and then the linear 
equations admit a unique solution. If the MQ type basis equation was utilized, the 
resulting matrix for interpolation may not be positive-definite. Linear-independent 
polynomial functions can be added to make the matrix positive-definite and invertible. 
In this case, the RBF interpolant is expressed as follows:  
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𝜙෠(𝑥⃗) = ෍ 𝜔௞ே
௞ୀଵ 𝐵(‖𝑥⃗ − 𝑥⃗௞‖) + 𝛾଴ + 𝛾ଵ𝑥 + 𝛾ଶ𝑦 + 𝛾ଷ𝑧 (18) 

with the following constraints: 

෍ 𝜔௞ே
௞ୀଵ = ෍ 𝜔௞𝑥௞ே

௞ୀଵ = ෍ 𝜔௞𝑦௞ே
௞ୀଵ = ෍ 𝜔௞𝑧௞ே

௞ୀଵ = 0 (19) 

The resulting linear system: 

1 1 1 2 1 1 1 1 1 1

2 1 2 2 2 1 2 2 2 2

1 1 1 2 1 1 1 1 1 1

1 2

( ) ( ) ( ) ( ) 1
( ) ( ) ( ) ( ) 1

( ) ( ) ( ) ( ) 1
( ) ( ) (

N N

N N

N N N N N N N N N

N N N

B x x B x x B x x B x x x y z
B x x B x x B x x B x x x y z

B x x B x x B x x B x x x y z
B x x B x x B x

−

−

− − − − − − − −

− − − −
− − − −

− − − −
− − −

       
       
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(20) 

The choice of basis function and shape parameter has a significant impact on the 
accuracy of RBF interpolation. Decreasing c or increasing the number of data points has a 
severe effect on the stability of the linear system (17) or (20). For a fixed shape parameter 
c, the condition number of the matrix in the linear system grows exponentially as the 
number of data points is increased. For a fixed number of data points, as the shape 
parameter c→0, the basis function becomes increasingly flat; meanwhile, the condition 
number of the linear system grows exponentially [32]. Figure 5 shows the order of 
magnitude for the condition number Log10(cond(A)) as a function of shape parameter c 
under three different mesh refinement levels, where A denotes the coefficient matrix in 
Equations (17) or (20). 

  
(a) (b) 
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(c) (d) 

Figure 5. Log10cond(A) as a function of shape parameter c (a) when global RBF based on Gauss 
basis function is utilized for interpolation; (b) when global RBF based on MQ basis function is 
utilized for interpolation; (c) when global RBF based on IMQ basis function is utilized for 
interpolation; (d) when global RBF based on IQ basis function is utilized for interpolation. 

It can be seen that the condition number of the coefficient matrix becomes very 
large when the value of the shape parameter is close to zero for all four types of basis 
functions. In general, the condition number of the coefficient matrix grows exponentially 
as the mesh refinement level increases; the numerical computation tends to become 
unstable. Meanwhile, the condition number of the coefficient matrix decreased 
drastically as the value of the shape parameter increased. This is particularly significant 
because the highest accuracy is often found at some “small” shape parameter, which may 
result in a large condition number of interpolation matrices and even cause numerical 
instability. This conflict between accuracy and stability is sometimes referred to as the 
“trade-off principle”. However, there is no exact analytical formula to obtain the optimal 
value of the shape parameter. In most cases, it mainly relies on statistical methods [33–
36], such as leave one out cross validation (LOOCV), maximum likelihood estimator 
(MLE), etc. 

One issue with global RBF interpolation is that the coefficient matrix in the linear 
system is dense, thereby leading to considerable computational costs to solve it directly. 
Another issue is that the matrices can become ill-conditioned. There are a series of 
methods to tackle the problem, such as the Contour-Padé, RBF-RA, and RBF-QR 
algorithms [37]; however, they are not pursued and developed here. 

3.2.4. Local RBFs 
In order to relieve the problems of ill-conditioning and shape parameter sensitivity 

of the global RBF, the local RBF method has evolved, and the main idea of the local RBF 
(LRBF) method applied to the sphere is detailedly presented by [38]. Subsequently, some 
researchers use LRBF to deal with different complicated problems [39–44], etc. Similar to 
GRBF, LRBF is meshless in character and it needs no polygonization. In contrast to the 
GRBF, the LRBF is made on the overlapping sub-domains. For approximating the 
objective function at a given node, only its influence nodes are used. The overlapping 
sub-domains significantly reduce the size of the linear system at the cost of solving lots of 
small matrices. In addition, the local RBF method is comparatively less sensitive to the 
shape parameter. In many cases, the local RBF method can be as accurate as the global 
RBF method. 

For a specific vertex 𝑥⃗௜, assuming the node set ሼ𝑥⃗௜௞ሽ, 𝑘 = 1, ⋯ , 𝑛
 

is its n nearest 

neighbor points including the 𝑥⃗௜ itself (𝑛 ≪ 𝑁). The local RBF interpolant 𝜙෠௜(𝑥⃗) for the 
vertex 𝑥⃗௜ takes the form: 
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𝜙෠௜(𝑥⃗) = ෍ 𝜔௜௞௡
௞ୀଵ 𝐵(‖𝑥⃗ − 𝑥⃗௜௞‖) (21)

In the local region influenced by 𝑥⃗௜, in order to approximate the true solution by 
the above Equation (21), we could obtain a linear system written in matrix form as 
follows: 

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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i i i i i i i in

in i in i in i in in

B x x B x x B x x B x x
B x x B x x B x x B x x
B x x B x x B x x B x x
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− − − −

       
       
       
    
       
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φ
φ
φ

φ

     
     
     
     =
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 


 
(22) 

In the above equation 𝑖1, 𝑖2, ⋯ , 𝑖𝑛, is a vector associated with the center point 𝑥⃗௜ that 
contains the index of itself and the indices of its 𝑛 − 1 nearest neighboring vertexes, 𝜔௜௞, 𝑘 = 1, ⋯ , 𝑛 is a vector of expansion coefficients. 

For a specific departure point, firstly, find the nearest vertex close to it, and then 
search for the n nearest neighboring vertexes (including the vertex itself) around this 
vertex. The procedure could be implemented efficiently by the KDtree search method, at 
last, a corresponding linear system (20) is formed, when the expansion coefficients are 
obtained, then Equation (19) could be utilized to interpolate the value at the departure 
point. 

The local RBF method suffers from the same problem as the global RBF, yet less 
severe. Another issue is that there is no exact theory for the optimal size of the local 
stencil for a specific vertex. Several values are commonly used, such as 31, 50, 74, and 
101 are very popular, when the shape parameter of kernel function is fixed, the 
condition number of the matrix in the linear system grows quickly as the size of local 
stencil is increased. Therefore, the local stencil size is chosen as 31 in the following 
numerical test cases if the local RBF method is involved. In Figure 6, a local stencil of size 
31 on the icosahedron spherical triangle mesh with refinement level 4 was shown, the 
center vertex is shown in blue asterisk, and its nearest neighbor points are shown in the 
red dot. 

 
Figure 6. A local stencil of size 31 on the icosahedron spherical triangle mesh with refinement level 
4. The center vertex is shown in blue asterisk and its nearest neighbor points are shown in red dot. 

For the above-mentioned four interpolation methods, the linear interpolation 
method and the Poly-LSQ method could be implemented without much effort; however, 
we need to take extra care in selecting the value of the shape parameter in the basis 
function if the RBF methods are utilized. If no specific explanations, for all the numerical 
experiments in Section 4 and Section 5, the density of tracer or height fields are placed at 
the nodes of triangle elements. 

4. Trajectory Accuracy and Mass Conservation Evaluation 
4.1. Trajectory Accuracy 
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In a similar manner described in McGregor [45], the accuracy of the trajectories is 
defined by the following normalized L2 norm: 

𝜙෠௜(𝑥⃗) = ඩ∯ (𝑥⃗஽ − 𝑥⃗஽௘௫௔௖௧)ଶ𝑑𝑠ௌ∯ (𝑥⃗஽ − 𝑥⃗஺)ଶ𝑑𝑠ௌ  (23) 

where 𝑥⃗஺denotes the arrival point, and 𝑥⃗஽,  𝑥⃗஽௘௫௔௖௧denote the calculated departure point 
and the exact one respectively. ∯ 𝑑𝑠ௌ  denotes the surface integral on the sphere. 

This test case is advection of a Gaussian hill around the sphere [46]. The Gaussian 
hill is prescribed as follows: 𝜙෠௜ = ℎ଴𝑒ି௕௥మ (24) 

where 𝑟 = ‖𝑥⃗ − 𝑥⃗଴‖ denotes the Euclidean distance between the two points 𝑥⃗, 𝑥⃗଴, ℎ଴ =0.95  and 𝑏 = 5  respectively. The 3D Cartesian coordinates 𝑥⃗ = (𝑥, 𝑦, 𝑧)  and the 
latitude–longitude coordinates (𝜃, 𝜆) on spherical surface are related through (𝑥, 𝑦, 𝑧) = (𝑅 cos 𝜃 cos 𝜆 , 𝑅 cos 𝜃 sin 𝜆 , 𝑅 sin 𝜃) (25) 

where R is the radius of the sphere. The coordinates for the center of the Gaussian 
distribution 𝑥⃗଴ are computed by inserting the tracer center (𝜃଴, 𝜆଴) into Equation (25) 
and evaluating the right-hand side. 

The initial wind fields are as follows: 𝑢 = 𝑢଴(cos(𝜃) cos(𝛼) + sin(𝜃) cos ቀ𝜆 − 𝜋2ቁ sin (𝛼)) 𝑣 = −𝑢଴ sin ቀ𝜆 − 𝜋2ቁ sin (𝛼) 
(26) 

where the flow constant 𝑢଴ = 2𝜋𝑅/(64 ℎ𝑜𝑢𝑟𝑠), 𝛼 is the rotation angular between the 
wind flow direction and the equatorial plane, the prescribed velocity field is that of 
solid-body rotation, such that the tracer moves around the earth once with a rotational 
period of 64 hours. 

The tracer center was set as (𝜃଴, 𝜆଴) = (0,0), the rotation angle of flow-vectors 𝛼 =0. Then the mid-rule method and high-order Runge–Kutta methods were utilized to 
solve the trajectory equation for the departure points’ location respectively. The exact 
location of the test case is given, and comparison of calculated departure points’ location 
for the midpoint rule method, RK4 and RK5 methods under different time steps are 
given in Table 2. 

Table 2. The comparison for departure points’ location error between exact solution and these of 
three different methods. 

Refinement Level Node Number Time-Step Midpoint Rule RK4 RK5 

Level 3 642 
2 h 0.0012 5.4257 ൈ 10ି଺ 2.3382 ൈ 10ି଼ 
4 h 0.0049 8.6429 ൈ 10ିହ 8.1214 ൈ 10ି଻ 
8 h 0.0205 1.4ൈ 10ିଷ 3.2846 ൈ 10ିହ 

Level 4 2562 
2 h 0.0012 5.4263 ൈ 10ି଺ 2.3368 ൈ 10ି଼ 
4 h 0.0049 8.6440 ൈ 10ିହ 8.1174 ൈ 10ି଻ 
8 h 0.0205 1.4ൈ 10ିଷ 3.2840 ൈ 10ିହ 

Level 5 10,242 
2 h 0.0012 5.4264 ൈ 10ି଺ 2.3364 ൈ 10ି଼ 
4 h 0.0049 8.6442 ൈ 10ିହ 8.1164ൈ 10ି଻ 
8 h 0.0205 1.4ൈ 10ିଷ 3.2838 ൈ 10ିହ 

It can be seen from Table 2 that when the number of nodes is fixed, as the time step 
decreased to half of the precedent one, the error of departure points’ location decreased 
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to about 1/4 of the last one; therefore, the midpoint rule method has two-order accuracy. 
Similarly, it can be seen that the RK4 method achieved four-order accuracy while the 
RK5 method has at least a five-order convergence rate. Obviously, the RK5 method owns 
the most accurate results. Therefore, the RK5 method is utilized for computing the 
location of the departure point in all the following numerical experiments. We also note 
that an increase in the spatial resolution has little impact on the location errors of 
departure points when the time step is fixed.  

4.2. Mass Conservations 
In order to check the conservation of the presented scheme, the mass conservations 

is commonly used, that is, the total mass should be kept as a constant as follows: 

Mass: 𝐼1(𝑡) = ∬ 𝜙(𝑥⃗, 𝑡)𝑑𝑠𝑆2  𝑑𝐼ଵ(𝑡)𝑑𝑡 = 0 
(27) 

where ∬ 𝜙(𝑥⃗, 𝑡)𝑑𝑠ௌమ  denotes the integral of 𝜙  on the spherical surface S2. The 
numerical relative error for 𝐼ଵ(𝑡) is reported using the following: (𝐼ଵ(𝑡) − 𝐼ଵ(0))/𝐼ଵ(𝑡) (28) 

In order to facilitate comparison between different methods for the following test 
case simulations, the L1, L2 and 𝐿ஶ norms of mass error are specified as follows [47]: 
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 (29) 

The function 𝜙௡(𝑗) denotes the numerical solution defined at the 𝑥⃗௝ positions on 
the numerical mesh. The index j represents the specific cell on the pentagon–hexagon 
mesh dual to the icosahedron spherical triangle mesh, and 𝐴௝ denotes the spherical area 
associated with the Voronoi cell controlled by vertex 𝑥⃗𝑗 . The function 𝜙௥(𝑗) is the 
reference solution that has been calculated at or interpolated to the same 𝑥⃗௝ positions. 
The reference solution represents a high-resolution solution that is sufficiently accurate 
for the computation of the error norms if an analytic solution is not available. The 
function max௝ |𝜙| finds the global maximum of the |𝜙| evaluated at the 𝑥⃗௝ positions of 

the numerical mesh. 
In order to test the interpolation accuracy of four different methods and check the 

mass conservation, the above-mentioned Gauss hill advection is utilized as the 
benchmark again, and the mesh refinement level is equal to 4. The relative error norm of 
the tracer calculated by four different methods for interpolation is shown in Figure 7. It 
can be seen that when the time step is too large, the error norm increases. Obviously, the 
linear interpolation method gives results with relatively large errors in Figure 7a. If the 
time step is more than 4 h, the method would generate large errors. In comparison, the 
polynomial fitting by the least-square method could generate more accurate results, as 
shown in Figure 7b. With an appropriate value of shape parameter, the global RBF and 
local RBF could also give more accurate results in Figure 7c,d, for the global RBF 
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method, the Gauss basis function is utilized, and the shape parameter c =1.5; for the local 
RBF method, the Gauss basis function is utilized, the size of the local stencil is 31, and 
the shape parameter c =1.5. It is obvious the last three methods generate results that are 
in the same order of magnitude. We also note that the global RBF and local RBF methods 
give much like results. 

  

(a) (b) 

  
(c) (d) 

Figure 7. The history of mass relative error on icosahedron sphere grids with refinement level 4. 
Advection of the height field is eastward along the equator by SL method for different 
interpolation methods (a) Linear interpolation; (b) Poly-LSQ; (c) global RBFs; (d) local RBFs. 

5. Numerical Experiments 
In this section, the semi-Lagrangian method will be utilized to model the evolution 

process of the advection of a passive tracer; three test cases are considered. They are 
referred to as the solid body rotation, the shear deformation of twin slotted cylinders, 
and the moving vortex. In the first case, the mass conservation properties of our scheme 
would be numerically evaluated. Additionally, the modeling results would be presented 
in the other two cases. 

Test case 1: solid body rotation 
This test case describes the advection of a cosine bell once around the sphere [48–50]. 

The initial shape of the bell is formulated as follows:  

𝜙 = ቐℎ଴2 ൬1 + cos 𝜋𝑟𝑅௕൰ ,                                          𝑖𝑓 𝑟 ൏ 𝑅௕               0,                                                         𝑖𝑓 𝑟 ൒ 𝑅௕               (30) 

Where ℎ଴ = 1000𝑚 denotes the initial bell maximize height. 𝑅௕ = 𝑅/3 is the radius of 
the cosine bell,  𝑟 denotes the great circle distance between (𝜆, 𝜃) and the center of the 
cosine bell (𝜆଴, 𝜃଴) = (0,0), given by the following: 
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𝑟 = 𝑅 cosିଵ(sin(𝜃) sin(𝜃଴) + cos(𝜃) cos(𝜃଴) cos(𝜆 − 𝜆଴)) (31) 

The numerical results of the SL scheme are implemented on Tri_Icosa_L5 mesh with 
the time step equal to 12 hours (h). The initial wind fields are the same as Equation (26), 
while the parameter 𝑢଴ = 2π𝑅/(12 𝑑𝑎𝑦𝑠), days = 24 h. 

To check the influence of the wind flow direction 𝛼 upon the icosahedron sphere 
gird, this test is conducted with 𝛼 = 0 (eastward along the equator) and 𝛼 = π/2(across 
the north and south poles) respectively. In Figure 8a, it shows L1, L2, and 𝐿∞ norm error 
for the cosine bell test case by the global RBF method with Gauss kernel function; the 
shape parameter is 16, and the wind direction angle 𝛼 = 0; Figure 8b shows the same 
content but the wind direction angle 𝛼 = π/2. In Figure 8c, it shows L1, L2 and 𝐿∞  norm 
error for the cosine bell test case by the local RBF method with Gauss kernel function; 
the shape parameter is 20, the wind direction angle 𝛼 = 0; Figure 8d shows the same 
content but the wind direction angle  𝛼 = π/2 . It can be seen that the history of 
normalized errors of mass by the local RBF method with different flow angles is almost 
the same; four panels show the L1, L2 error norms are in the same order of magnitude, 
which means that the wind direction angle has little effect on the total mass. This 
accords with the facts. We also note that the normalized errors by the global RBF method 
are slightly more accurate than those by the local RBF method. 

  
(a) (b) 

    
(c) (d) 

Figure 8. The L1, L2, and 𝐿ஶ norm error for the cosine bell test case as a function of time on the 
icosahedron sphere triangle mesh with refinement level 5, Advection of the height field around 
the sphere once. Results are for the global RBF method and local RBF method with dt = 12 h. Gauss 
kernel function was used. (a) Global RBF and the wind direction angle 𝛼 = 0; (b) global RBF and 
the wind direction angle 𝛼 = π/2; (c) local RBF and the wind direction angle 𝛼 = 0; (d) local RBF 
and the wind direction angle 𝛼 = π/2. 

In order to evaluate the efficiency of the proposed SL method, another three 
methods for the approximation of the transport equation on the sphere were utilized for 
comparison, those are, the RBF method, pseudo-spectral method (PS), and two-order 
finite difference (FD2) method [51]. The SL method and RBF method are implemented 
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on an icosahedron sphere triangle mesh and the Gauss basis function is used. The PS 
method and FD2 method are on latitude–longitude grids. The explicit four-order 
classical Runge–Kutta method was used in all methods for time integration except the 
SL method. Table 3 shows the comparison results of mass error between the proposed 
SL method, the PS method, the FD2 method, and the RBF method under different spatial 
resolutions. 

Table 3. Comparison results between the proposed SL method, the PS method, FD2 method, and 
RBF method under different space resolutions. 

Method Basis Function and c Node Number Time-Step L2 Norm 𝐿∞  Norm 

SL method (Global RBFs) 
 GA, c = 1.5 642 4 h 0.0443 0.0371 
 GA, c = 6.0 2562 2 h 0.0046 0.0030 

  GA, c = 16.0 10242 1 h 0.0011 0.0011 

PS method 
- 32 ൈ 16 9/40 h 0.2243 0.1874 
- 64 ൈ 32 9/80 h 0.0558 0.0460 
- 128 ൈ 64 9/160 h 0.0556 0.0483 

FD2 method 
- 32 ൈ 16 9/40 h 1.0790 0.6150 
- 64 ൈ 32 9/80 h 1.0211 0.6056 
- 128 ൈ 64 9/160 h 0.7574 0.5983 

RBF method 
GA, c = 3.2 642 1/20 h 0.0987 0.0471 
GA, c = 6.0 2562 1/80 h 0.0242 0.0061 
GA, c = 16.0 10242 1/320 h 0.0043 0.0021 

From the L2 and 𝐿∞  norm of mass error shown in Table 3, it can be seen that the 
results obtained by the SL method based on global RBF interpolation own the most 
accuracy, and then the RBF method follows; at last, the PS method and FD2 method give 
least accurate results. It could also be noted that the SL method admits a relatively larger 
time step than other methods. 

Test case 2: Deformation of twin slotted cylinders 
In this test case, the tracer’s shape is not smooth, and it is more challenging and 

designed to assess the shape-preserving properties of the proposed method, the tracer 
has a distribution shape of twin slotted cylinders defined as follows [52–54]: 

𝜙(𝜆, 𝜃, 𝑡)|௧ୀ଴ =
⎩⎪⎪⎨
⎪⎪⎧1,                     𝑖𝑓 𝑟௜ ൑ 𝑅௕  𝑎𝑛𝑑  |𝜆 − 𝜆௜| ൒ 𝑅௕6     𝑓𝑜𝑟 𝑖 = 0,11,     𝑖𝑓 𝑟଴ ൑ 𝑅௕  𝑎𝑛𝑑 |𝜆 − 𝜆଴| ൏ 𝑅௕6   𝑎𝑛𝑑 𝜃 − 𝜃଴ ൏ − 5𝑅௕121, 𝑖𝑓 𝑟ଵ ൑ 𝑅௕  𝑎𝑛𝑑 |𝜆 − 𝜆ଵ| ൏ 𝑅௕6   𝑎𝑛𝑑 𝜃 − 𝜃ଵ ൐  5𝑅௕120,                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

                      (32) 

where 𝑅௕  denotes the radius of the cylinder, 𝑅௕ = 0.5. 𝑟௜ = 𝑟௜(𝜆, 𝜃) is the great-circle 
distance from the center of the cylinder located at (𝜆௜, 𝜃௜), 𝑖 = 0,1. The initial positions of 
the centers of two cylinders are at (𝜆଴, 𝜃଴) = ቀ− గ଺ , 0ቁ and (𝜆ଵ, 𝜃ଵ) = ቀగ଺ , 0ቁ respectively. 
The slots are oriented in opposite directions for the two cylinders so that they are 
symmetric with respect to the flow. 

The wind field is non-divergent but highly deformational. The initial distributions 
are deformed into thin filaments halfway through the simulation while they are being 
transported along the zonal direction by the solid-body component of the flow. Note that 
an exact solution for this test is only available at the final time t = T, and it is just the same 
as the initial distributions. The time-dependent non-divergent wind field is defined as 
follows: 𝑢(𝜆, 𝜃, 𝑡) = 𝜅 sinଶ൫𝜆መ൯ sin(2𝜃) cos(𝜋𝑡/𝑇) + 2𝜋 cos(𝜃) /𝑇 (33) 



Atmosphere 2022, 13, 1807 17 of 23 
 

 

𝑣(𝜆, 𝜃, 𝑡) = 𝜅 sin൫2𝜆መ൯ cos(𝜃) cos(𝜋𝑡/𝑇) 
where𝜆መ = 𝜆 − ଶగ௧் , 𝜅 = 2.0, and the final time T = 5 in non-dimensional time units. 

An icosahedron sphere triangle mesh with refinement level 5 is used. The initial 
distribution of the tracer is shown in Figure 9a, and Figure 9b shows the tracer’s 
restoration to the original shape at the final time by the Poly-LSQ method with Δ𝑡 = 0.1. 
Figure 9c shows the tracer’s shape at the final time by the global RBF interpolation based 
on the Gauss kernel function with shape parameter c = 18.0, time step Δ𝑡 = 0.1; Figure 9d 
shows the tracer’s shape at the final time by the local RBF method based on the Gauss 
kernel function with shape parameter c = 19.0, time step Δ𝑡 = 0.1. 

 
(a) 

 
(b) 
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Figure 9. Shear deformation of twin slotted cylinders simulated on icosahedron sphere with 
refinement level 5. (a) Initial distributions of tracer and (b) The SL numerical solution of the scalar 
field obtained by Poly-LSQ method at final time t = T, time stepΔ𝑡 = 0.1; (c) The SL numerical 
solution of the scalar field obtained by global RBF method at final time, time stepΔ𝑡 = 0.1; (d) The 
SL numerical solution of the scalar field obtained by local RBF method at final time, time step Δ𝑡 =0.1. 

It can be seen that the above three interpolation methods could reproduce this 
complicated deformational flow correctly, while the shape edges of the twin cylinders 
are smeared, and small overshoots or undershoots are observed near the sharp edges of 
the twin cylinders. For the Poly-LSQ method and the local RBF method, the oscillations 
are more obvious in the upwind direction near the edge of the twin cylinders than in the 
global RBF method. In general, the global RBF method performs the best. 

Test case 3: moving vortex 
In order to further test the advection scheme representing tracer evolution in a 

non-divergent but deforming flow, this test case is about the evolution of idealized 
cyclogenesis on the sphere, which was first described by Nair et al. [55], and then was 
used as a benchmark for transport processes on a spherical surface. The initial condition 
was spun up by an angular velocity field, resulting in two diametrically opposed 
vortices. Let (𝜆ሖ , 𝜃ሖ ) be the rotated coordinate system with the north pole at (𝜆௣, 𝜃௣) with 
respect to the regular spherical coordinates (𝜆, 𝜃). It follows: 
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𝜆ሖ = tan2ିଵ൫sin൫𝜆 − 𝜆௣൯, sin(𝜃௣) cos൫𝜆 − 𝜆௣൯ − cos(𝜃௣) tan(𝜃)൯ 𝜃ሖ = sinିଵ(sin(𝜃) sin(𝜃௣) + cos(𝜃) cos(𝜃௣) cos(𝜆 − 𝜆௣)) 
(34) 

The wind fields are a combination of wind vectors of the solid rotation and that of 
the deformational flow, which are specified as follows: 𝑢 = 𝑢଴(cos(𝜃)cos (𝛼) + cos(𝜆) sin(𝜃) sin(𝛼)) +ω൫𝜃ሖ ൯[sin൫𝜃௖(𝑡)൯ cos(𝜃) − cos൫𝜃௖(𝑡)൯ cos൫𝜆 − 𝜆௖(𝑡)൯ sin (𝜃)] 𝑣 = − 𝑢଴sin(𝜆) sin(𝛼) + ω൫𝜃ሖ ൯[cos (𝜃௖(𝑡))sin (𝜆 − 𝜆௖(𝑡))] (35) 

Where (𝜆௖(𝑡), 𝜃௖(𝑡)) denotes the center of the vortex, which is free to move anywhere on 
the sphere. The scaled tangential velocity is as follows: 

ω൫𝜃ሖ ൯ = ൞𝑢଴ 3√32𝜌൫𝜃ሖ ൯ sechଶ(𝜌൫𝜃ሖ ൯) tanh(𝜌൫𝜃ሖ ൯)              𝑖𝑓 𝜌൫𝜃ሖ ൯ ് 00                                                                         𝑖𝑓 𝜌൫𝜃ሖ ൯ = 0               (36) 

Where 𝜌൫𝜃ሖ ൯ = 𝜌଴ cos(𝜃ሖ )  is the radial distance of the vortex. The background flow 
constant 𝑢଴ = 2π𝑅/(12 𝑑𝑎𝑦𝑠). The exact solution in non- dimensional units at time t is 
given by the following:  𝜙൫𝜆ሖ , 𝜃ሖ , 0൯ = 1 − tanh (𝜌൫𝜃ሖ ൯𝛾 sin(𝜆ሖ − 𝜔൫𝜃ሖ ൯𝑡)) (37) 

where 𝛾 is a parameter defining the characteristic width of the frontal zone. We set 𝜌଴ =3 and 𝛾 = 5.With these parameters, the initial condition 𝜙൫𝜆ሖ , 𝜃ሖ , 0൯ is displayed in Figure 
10a. 

In this case, an icosahedron sphere triangle mesh with refinement level 5 is used, 
global RBF interpolation based on the Gauss kernel function was implemented and shape 
parameter c = 16, time step Δ𝑡 = 0.5 hour. Initially a vortex center is located at the 
following: (𝜆௖(𝑡), 𝜃௖(𝑡))|௧ୀ଴ = (𝜋2 , 0) (38) 

with this setup the other vortex center will be placed at the diametrically opposite point (− గଶ , 0) . Thus the vortices have the initial and final positions (after one complete 
revolution) geographically located at 90° E and 90° W on the equator, as shown in Figure 
10b,c. 
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(a) 

 
(b) 

 
(c) 

Figure 10. Moving vortex (a) initial scalar field and (b) analytic solution after 12 days for the 
moving vortex problem. The centers of the vortices are located on the equator at 90° E initially and 
at 90° W after 12 days. (c) The SL numerical solution of the scalar field after one full revolution (12 
days). The SL advection scheme employs global RBF method on the icosahedron sphere mesh with 
refinement level 5 and the wind direction angle 𝛼 = 0, Δ𝑡 = 0.5, hour. 

In Figure 10c, it can be seen that a couple of vortices with correct rotation structures 
are evolving and there are no obvious oscillations around large gradients. The proposed 
scheme can simulate this complicated procedure successfully. 

6. Conclusions 
A computationally efficient and high-order backward trajectory semi-Lagrangian 

approach has been proposed for the solution of the transport equation on the sphere. We 
test several kinds of interpolation methods for the values at departure points. 

The main conclusions are as follows: 
(1) Although the semi-Lagrangian method is not constrained by the CFL number, the 

time step for backward integration could not be too large arbitrarily, especially for 
flows of complex structures; 

(2) A high-order explicit integration method could be utilized to solve the characteristic 
equation in order to obtain more accurate locations of departure points. The SL 
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method does not guarantee mass conservation; however, the mass is conserved well 
in test cases for numerical experiments when the solution is smooth; 

(3) Among different interpolation methods, results obtained by the linear interpolation 
method show too much diffusion, especially in the great gradient region of the 
solution. Compared to linear interpolation, more accurate results could be obtained 
by the Poly-LSQ method and the global or local RBF interpolation method. 
However, the value of the shape parameter for the basic function is key to the RBF 
interpolation. AN inappropriate value would cause a great loss of accuracy in the 
interpolation results, even numerical instability. It costs a lot of effort to select an 
optimal value. While this problem does not occur for the linear and Poly-LSQ 
methods. When the solution is not smooth, it tends to generate small ripples in the 
steep gradient region of the solution if the Poly-LSQ method, global RBFs, or local 
RBFs would be utilized. Therefore, the techniques to suppress numerical 
oscillations should be developed in further research; 

(4) Essentially, the proposed SL method is meshless and implemented in 3D Cartesian 
coordinates; it could be extended to other kinds of grids on the sphere directly. 
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