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Abstract: In the China VI regulations for light-duty vehicles, the (RDE) test is introduced as a sup-
plementary test procedure. In the actual test process, the RDE results are more significantly influ-
enced by driving behavior and vehicle type. To reduce the test cost, the NOx and PN prediction 
models are established based on the GA-BP method. The results showed that the coefficients of 
determination of the GA-BP model for NOx and PN predictions are all greater than 0.9 and are 
linearly highly correlated at the instantaneous emission level. At the overall emission level, the over-
all error of the GA-BP model is less than 7% for NOx prediction and less than 6% for PN prediction. 
The model has high accuracy for both instantaneous and overall emissions of light-duty vehicles. 
This provides practical engineering value for guiding the RDE test. 
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1. Introduction 
With the development of the economy and society and the improvement in living 

standards, the number of motor vehicles in China has increased dramatically. In 2020, the 
total number of motor vehicles in China reached 372 million [1]. The pollution problem 
caused by motor vehicles is a growing concern [2]. Previously, national regulations 
around the world required emission tests for light-duty vehicles to be conducted on la-
boratory drums in specific cycles [3]. However, numerous studies [4–9] have shown that 
a single test cycle cannot fully cover the actual driving conditions. The results of labora-
tory and actual driving emission (RDE) tests may differ significantly. In 2022, China will 
fully implement the China VI emission standard for light-duty vehicles [10]. Compared 
with the previous emissions standard, the new standard reflects the RDE concerning the 
Euro 6 standard [11] and combines with China’s national conditions. It requires using 
Portable Emission Measure System (PEMS) equipment to evaluate the actual vehicle emis-
sions on the road. 

In the RDE test, the on-road emissions results are affected by road traffic conditions, 
vehicle type, and driver driving behavior [12]. The test should cover all road conditions, 
including urban, suburban, and high-speed [13]. In addition, the test vehicle should be in 
a normal driving style, normal driving conditions, and load on paved roads. The influ-
encing factors include terrain, quality of the road surface, road width, traffic flow, number 
of traffic lights, traffic management, weather, wind speed, temperature and humidity, and 
the degree of aggressive driving behavior [14]. According to the research data sheet de-
veloped by the Ministry of Ecology and Environment for China VI emission standard for 
light-duty vehicles, the acceleration process of vehicles in China is much more moderate 
than that in the United States and most European countries, and the average load of ve-
hicles while driving is lower [15]. The actual road traffic conditions and driving behavior 
in China significantly impact the RDE test process and data processing [16]. However, 
there are significant traffic risks in conducting RDE tests with regard to Chinese road 
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conditions and poor test stability, especially for PN tests [17,18], which often cause RDE 
tests to exceed the limit due to driving behavior, vehicle type, road conditions, etc. [19,20]. 
Therefore, more ways are needed to assist in the running of the RDE test. 

The machine learning model is expected to assist in RDE testing as a method that 
does not require physical knowledge [21–23]. Zhang et al. [24] developed a CO2 emission 
model based on a long and short-term memory neural network (NN) with data measured 
using PEMS. The results showed that vehicle speed, acceleration, vehicle specific power 
(VSP), and road slope significantly affect the instantaneous CO2 emission rate. Jaikumar 
et al. [25] developed  real-time exhaust emissions of passenger cars based on NN. The 
vehicle characteristics, such as revolutions per minute, speed, acceleration, and VSP were 
used as input to the model. Hien et al. [26] developed a prediction model to analyze the 
fuel consumption and CO2 emission of light-duty vehicles based on convolutional NN. 
Seo et al. [27] combined a vehicle dynamics model with an NN model, to calculate CO2, 
NOx, and THC emissions. They also used RDE test data to develop cold-start emission 
prediction models to predict the CO2, Nox, CO, and total hydrocarbon emissions. [28]. 
Cornec et al. [29] established an NN-based transient Nox prediction model with a large 
RDE dataset. The model can accurately predict Nox emissions using a relatively limited 
set of inputs (instantaneous velocity and acceleration of the vehicle). Zhou et al. [30] in-
troduced NN to the study of emissions from internal combustion engines. The results 
showed that the prediction accuracy of NN does not depend on the actual mathematics 
model, proving the approach’s feasibility. Zuo et al. [31] established a back propagation 
(BP) NN-based emission prediction model for gasoline engines. The model has high ac-
curacy for prediction in three modes: normal condition, abnormal fuel pressure, and ab-
normal intake pressure sensor. To improve the predictive power, the NN is usually opti-
mized using heuristic algorithms. Yap et al. [32] used genetic algorithm (GA) to optimize 
the BP NN weights and established a diesel engine Nox transient emission research model 
with better generalization and higher accuracy. Wen et al. [33] used GA to optimize BP 
NN weights and established a diesel engine Nox instantaneous emission prediction model 
with better generalization capability and higher accuracy. Wang et al. [34] introduced the 
improved particle swarm optimization algorithm based on BP NN to optimize the initial 
thresholds and weights. The model predicted CO and Nox emission factors for the RDE 
test with errors of 4.81% and 6.4%, respectively. 

From the above literature survey, it is clear that NN has made great achievements in 
emission prediction. However, emission prediction studies for light-duty vehicle RDE 
tests are still limited. Therefore, in this paper, the pollutant emissions requirements of the 
China VI emission standard for light-duty vehicles are summarized. A prediction model 
for light-duty gasoline vehicles is established to predict NOx and PN emissions. In order 
to improve the prediction ability, the sub-model is developed for different working con-
ditions. The method proposed in this paper can save experimental time and reduce exper-
imental costs, which has specific theoretical significance and engineering value. 

2. RDE test method 
2.1. Test Equipment and Process 

The measurement principle, measurement accuracy, linearity, response, and drift of 
PEMS are specified in the appendix of the China VI emission standards for light-duty 
vehicles [10]. 

The measurement methods and accuracy of the above three PEMS devices meet the 
requirements of RDE regulations. All the devices are certified by the US EPA and EU-
related agencies. This research adopted the Horiba OBS-ONE for the RDE test. 

OBS-ONE consists of three main components: a gas analysis module, a particle num-
ber (PN) analysis module, and an exhaust flow meter. There are also accessories such as a 
global positioning system (GPS), weather station (temperature and humidity), and OBD 
communication equipment. The gas analysis module can measure the concentration of 
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pollutant emissions such as CO, CO2, and NOx. The particle quantity analysis module 
measures the quantity concentration of particulate matter. The exhaust flow meter 
measures the real-time flow rate of the exhaust. The GPS and weather station provide 
information on the speed and altitude of the test vehicle, air temperature, and humidity. 
The installation of the PEMS equipment on the vehicle under test is shown in Figure 1. 

 
Figure 1. Schematic diagram of PEMS installation. ① Gas analysis module, ② PN counting module, ③ exhaust gas flow meter, ④ control computer, ⑤ emergency stop switch, ⑥ OBD communica-
tion connection, ⑦ GPS, ⑧ weather station, and ⑨ external battery. 

The OBS-ONE system requires a DC power supply of 22–28 V. Non-Dispersive Infra-
Red (NDIR) is used to determine CO and CO2 concentrations. Chemiluminescence Detec-
tion (CLD) is used to determine NOx concentration. A condensation particle counter 
(CPC) is used to measure PN. Table 1 summarizes the measurement principle, analyzer 
range and specifications of zero gas and range gas, and measurement error. 

Table 1. OBS-ONE measurement system technical specifications. 

Gaseous 
Pollu-
tants 

Measure-
ment Prin-

ciple 

Measure-
ment Range 

Zero 
Gas 

Measuring Distance 
Gas 

Zero Gas/Measure-
ment Distance Gas 

Pressure 

Zero Gas/Meas-
urement Distance 

Gas Flow 

Measure-
ment Error 

CO NDIR 10 vol% Syn-
thetic air 

Gas mixture (CO + 
CO2 + C3H8 +  

NO/N2) and NO2 
100 kPa ± 10 kPa 2.5~4.0 L/min ≤0.1 ppm CO2 NDIR 20 vol% 

NOx CLD 1600 ppm 
PN CPC      ≤1% F.S 

Table 2 shows the environmental conditions for the use of the OBS-ONE system. Use 
under the specified environmental conditions is required to ensure stable operation of the 
measurement equipment and measurement accuracy. 
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Table 2. Environmental conditions for the use of OBS-ONE. 

Projects Conditions 
Temperature 0~40 °C 

Humidity Relative humidity below 80% 
Ambient NOx concentration Ambient NOX concentration less than 1 ppm 

Power Use a dedicated power supply without any voltage/swing oscillations 
Ventilation The exhaust of the system should be safely discharged to the outside environment 

Maintenance space Ample maintenance space outside the system 
Wind and Rain The device should be located in a waterproof space 

Electromagnetic field The system must not be placed in a strong magnetic field 

Maximum payload 
Test vehicle load must be greater than the test system mass (including batteries and gas 

cylinders) 

Figure 2 shows the schematic diagram of the OBS-ONE installation of the test vehicle 
before the start of the test. The specific parameters and atmospheric conditions of the ve-
hicle are shown in Table 3. 

 
Figure 2. PEMS equipment installation diagram. 

Table 3. Experimental conditions. 

Projects Parameters Numerical Value 

Vehicle parameters 

Fuel Gasoline 
Oil supply method GDI 

Displacement/L 2.0 
Power Rating/kW 180 

Post-processing systems TWC 
Driveline 6AT 

Overall mass/kg 1925 

Atmospheric conditions 
Temperature/°C 22 

Atmospheric pressure/kPa 101.2 
Humidity/% 55 

Before the RDE test, the PEMS should be warmed up. Then, the leaks should be 
checked and calibrated. The zero and span gas are used to calibrate the gas analyzer. 

The test equipment records data before the engine starts for the first time, and the 
whole process records the pollutant concentration, vehicle position, environmental con-
ditions, etc., without interruption. 

The vehicle should be driven under the specified test conditions. When the test meets 
the requirements of Table 4 is possible to stop the experiment. To ensure data accuracy, 
the gas analyzer should be checked after stopping recording data. 
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Table 4. RDE test conditions parameters. 

Projects Speed/(km·h−1) Mileage/km Other Requirements 
Urban ≤60 ≥16 The actual speed of less than 1 km/h time accounted for 6–30% 

Suburban 60~90 ≥16 Suburban driving is allowed to be interrupted by urban driving 
Highway 90~120 ≥16 Vehicle speed above 100 km/h should reach at least 5 min or more 

2.2. Experimental Data Processing 
Due to the influence of exhaust flow rate, exhaust temperature, and pressure, length 

of sampling pipeline, the time sequence of sample gas entering different analyzers, and 
different response times of analyzers, there are timing inconsistencies between various 
pollutant concentration parameters recorded in the test and engine speed and vehicle 
speed values (which can be read by GPS or OBD interface), so it is necessary to perform 
time alignment of transient data to obtain various parameters generated at the exact mo-
ment, and perform pollutant mass emission calculations based on the aligned flow and 
concentration data. In addition, it is necessary to perform pollutant mass emission calcu-
lations based on the aligned flow and concentration data. In this study, the PEMS equip-
ment has an automatic time series correction function, and the raw data of transient mass 
emission of each pollutant is the result of the correction, which can be directly used for 
further analysis and processing. 

After the time sequence calibration, the invalid data should be eliminated, including 
the data during the PEMS equipment inspection and zero-point drift verification; the data 
during the cold engine start, i.e., when the coolant reaches 70 °C after the engine ignition 
or when the coolant temperature changes less than 2 °C within 5 min. 

Figures 3 and 4 show the NOx and PN at the vehicle speed and the corresponding 
vehicle speed, respectively. It can be seen that the data correspond to the worse PN and 
NOx emissions of the test vehicle. Among them, 2454 and 3720 correspond to the switch-
ing between urban, suburban, and high-speed conditions. It can be seen that the NOx and 
PN emissions are significantly different under different working conditions. 

 
Figure 3. Vehicle speed and corresponding NOx. 

 
Figure 4. Vehicle speed and corresponding PN. 

3. Neural Network Prediction Model Building 
3.1. Selection of Model Parameters 

The prediction model uses a total of 5000 sets with an interval of 1 s between each 
data set. To prevent overfitting and to improve the generalization ability [35], all sample 
data are randomly divided into three parts: 80% of the training set, 10% of the validation 
set, and 10% of the prediction set. 
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RDE experiments have more influencing factors, and too many inputs lead to long 
prediction times and low prediction accuracy [36]. 

The engine speed affects the vehicle speed and acceleration; the vehicle speed, accel-
eration, and specific power have pronounced effects on emissions; the fuel consumption 
value, exhaust temperature, and exhaust flow can reflect the combustion situation, all of 
which will have an impact on emissions. Therefore, the above inputs must be considered 
when building NOx and PN prediction models. 

In this study, principal component analysis is used to extract features from the input 
parameters to eliminate the correlation of the original data and reduce the dimensionality 
of the data [37]. 

3.2. Structure of Neural Network 
As an important branch of intelligent algorithms, NN are widely used in the fields of 

information processing, pattern recognition, and system control. NN models can better 
solve complex problems such as non-linearity and multiaxiality in actual road emissions. 

BP NN is a multilayer feed-forward NN with a wide range of applications in the 
engineering field [38]. 

The NN structure used in this paper consists of an input layer, a hidden layer, and 
an output layer, as shown in Figure 5. 

 
Figure 5. BP architecture diagram. 

The input layer is ( )1 2, , ,
T

jX x x x=  , which uses exhaust flow, exhaust temperature, 
engine speed, and vehicle speed, which have a significant impact on emissions. 

( )1 2, , , T
kF F F F=   is the principal component score obtained after processing. 

( )1 2, , , T
mθ θ θΘ =   is the hidden layer, the number of hidden layers can be adjusted ac-

cording to the research problem. ( )1 2, , , T
nY y y y=   is the output layer that characterizes 

emissions such as NOx, and PN. V and W are the weight of each layer, respectively. 
The tansig function is used from the input layer to the hidden layer, and the purelin 

function is used from the hidden layer to the output layer. The number of nodes in the 
hidden layer needs to be selected according to the error. 
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Usually, increasing the number of hidden layer nodes can improve prediction accu-
racy. However, too many nodes in the hidden layer increase the complexity of the model 
and even lead to overfitting. 

To balance the prediction accuracy and the complexity of the model, the model uses 
random initial weights by comparing the effects of different numbers of nodes on the pre-
diction ability of the model, as shown in Figure 6. The number of nodes in the hidden 
layer corresponding to the minimum training error is finally chosen to build the predic-
tion model. 

 
Figure 6. Training error of the different number of nodes in the hidden layer. 

3.3. BP Neural Networks Optimizing with GA 
GA is a heuristic algorithm widely used in various engineering optimization prob-

lems [39]. 
GA-BP means that the weights of the BP NN are optimized using GA, and the opti-

mal result is used to train the BP model. The flowcharts of the GA-BP NN model are 
shown in Figure 7. 

 
Figure 7. Flow chart of GA-BP NN model. 

The specific steps are as follows [40]. 
(1) Encoding: Encoding converts the solution of the problem to be optimized into a spa-

tial search that can be solved by the GA. 
(2) Initialize the population. 
(3) Adaptation function: The fitness function is set as the absolute value of the error be-

tween the output predicted value and the output expected value, and the calculation 
formula is: 
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1
( )
n

i i
i

F h y o
=

= −  (1)

where, F is the fitness value, h is the dimensionless coefficient, n is the number of 
nodes, and yi, oi is the output expectation and output prediction of the i node, respec-
tively. 

(4) Selection: The selection operation is to simulate the process of completing the natural 
elimination of individuals of biological populations in the process of genetic evolu-
tion. In this paper, the roulette wheel method is used as the selection operator, and 
the optimal individuals are retained after screening, then the selection probability for 
each individual is calculated by the formula 

i
i Q

i
i

fp
u f

=


 

(2)

where, Pi is the selection probability, fi is the inverse of the individual fitness value, u is 
the dimensionless coefficient, and Q is the total number of individuals in the population. 

The optimized weights and thresholds are obtained by the GA after completing the 
above steps and brought into the BP NN to start the prediction. 

3.4. Analysis of Model Prediction Results 
The prediction set is divided according to the percentage of different working condi-

tions in the whole test. There are 500 sets of data in the prediction set, including 245 sets 
for urban areas, 127 sets for suburban areas, and 128 sets for highways. The BP and GA-
BP NN prediction results for the three operating conditions are compared with the meas-
ured values, as shown in Figures 8–10. 

  
(a) (b) 

Figure 8. Comparison of the predicted results of BP and GA-BP for NOx and PN in urban areas with 
the measured values. (a) Urban NOx; (b) urban PN. 

  
(a) (b) 

Figure 9. Comparison of the predicted results of BP and GA-BP for NOx and PN in suburban areas 
with the measured values. (a) Suburban NOx; (b) suburban PN. 
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(a) (b) 

Figure 10. Comparison of the predicted results of BP and GA-BP for NOx and PN in highway areas 
with the measured values. (a) Highway NOx; (b) highway PN. 

Figures 8–10 show that the BP NN model fails to correspond well at the more prom-
inent peaks and has significant errors with the measured values. Its prediction at smaller 
values is substantially and significantly higher than the measured values. 

Observing the prediction results of the GA-BP NN model for pollutants shows a sig-
nificant improvement in its fit with the measured values at the peak. Although there are 
still large individual deviations, the number is sparse. At the same time, small values can 
be predicted to fit the measured values better. 

To further assess the accuracy of the model for transient prediction. The analysis is 
performed using the coefficient of determination R2, expressing the correlation between 
the two data variables. The coefficient of determination R2 is calculated as follows: 

( )( )
( ) ( )

2

2
2 2

i i
R

i i

X X Y Y

X X Y Y
=

− −

− − 
 

where, Xi is the measured value; Yi is the predicted value. 
The correlation between the two sets of variables in the formula is generally consid-

ered significant when the coefficient of determination R2 is higher than 0.7. The closer the 
R2 is to 1, the stronger the correlation is. 

Table 5 shows the coefficients of determination R2 between the results of the two 
models for NOx and PN predictions and the measured values under different operating 
conditions. The BP model has high accuracy for the transient prediction of PN, but the 
transient prediction of NOx is very unsatisfactory, with the lowest R2 of 0.4832. 

Table 5.  Comparison of R2 of pollutant prediction results under BP and GA-BP NN. 

Projects NOx PN 
R2 BP GA-BP BP GA-BP 

Urban 0.4832 0.9593 0.6872 0.9006 
Suburban 0.5784 0.9309 0.8743 0.9559 
Highway 0.6025 0.9062 0.8816 0.9692 
Full range 0.5756 0.9296 0.8567 0.9569 

Compared with the prediction results of the BP model, the GA-BP model has signif-
icantly improved the coefficients of determination for NOx and PN predictions. The low-
est R2 of GA-BP for NOx prediction is 0.9062. It can be considered that the established GA-
BP model has high accuracy in predicting the instantaneous emissions of light-duty vehi-
cles. 

Tables 6 and 7 compare the predicted results of the BP and GA-BP models for NOx 
and PN with the measured values, respectively. The prediction accuracy of NOx is 
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improved from the maximum error of 15.83% in the BP model to 6.84% in the GA-BP 
model. The prediction accuracy of PN is improved from the maximum error of 9.88% for 
the BP model to 5.38% for the GA-BP model. 

The main reason for the error may be that the model is poorly fitted overall for the 
small value part in response to the sudden peak. Environmental factors ignored by the 
model and post-processing devices may also make the error larger. 

However, observing the results, it can be found that the error sizes are within ac-
ceptable limits, and the established GA-BP model can be considered to have a high accu-
racy in predicting the overall emissions of light-duty vehicles. 

Table 6. Comparison of NOx prediction results under BP and GA-BP NN. 

Projects 
NOx BP GA-BP 

Measured Value/(mg/km) Predicted Value/(mg/km) Error/% Predicted Value/(mg/km) Error/% 
Urban 18.2730 19.8064 8.39 18.7263 2.48 

Suburban 20.1640 21.3243 5.75 21.0887 4.59 
Highway 9.6317 11.1566 15.83 8.9729 6.84 
Full range 15.3969 16.7970 9.09 15.5595 1.06 

Table 7. Comparison of PN prediction results under BP and GA-BP NN. 

Projects 
PN BP GA-BP 

Measured Value/(105/cm3) Predicted Value/(105/cm3) Error/% Predicted Value/(105/cm3) Error/% 
Urban 5.5627 6.1121 9.88 5.8621 5.38 

Suburban 34.1163 37.0163 8.50 35.7606 4.82 
Highway 25.8158 27.2006 5.36 27.1835 5.30 
Full range 18.0001 19.3594 7.55 18.9106 5.06 

4. Conclusions 
In this paper, GA-BP is developed to predict the actual road emissions of light-duty 

vehicles and verified with measured data. The main conclusions are as follows: 
(1) The coefficient of determination R2 of the GA-BP model for NOx prediction was not 

less than 0.9062. The coefficient of determination R2 for NOx prediction is not less 
than 0.9006. This indicates that the GA-BP model is more accurate in predicting in-
stantaneous emissions of light-duty vehicles. 

(2) The maximum overall error of the GA-BP model for NOx prediction results does not 
exceed 6.84%. The maximum overall error for PN PN prediction results does not ex-
ceed 5.38%. This indicates that the GA-BP model can accurately predict the overall 
emissions of light-duty vehicles. 

(3) The model proposed in this paper has limitations. The presence of aftertreatment de-
vices can significantly change the raw engine emissions, and the model does not con-
sider the effect of aftertreatment on the prediction results. In addition, the sample 
data come from a single source. These factors should be taken into account in future 
studies. 
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