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Abstract: Particulates from diesel generator operation are a known air pollutant with adverse health 

effects. In this study, we used low-cost particulate matter (PM) sensors to monitor PM2.5 in a diesel 

generator plant. We compared the measurement results from a PM sensor and a reference instru-

ment (DustTrak), and we found a high correlation between them. The data overestimation or un-

derestimation of PM sensors implied the need for data calibration. Hence, we proposed a data cali-

bration algorithm based on a nonlinear support vector machines (SVM) model, and we investigated 

the effect of three calibration factors on the model: humidity, temperature, and total volatile organic 

compounds (TVOC). It was found that the TVOC correction coefficient has great influence on the 

model, which should be considered when calibrating the low-cost PM sensor in diesel generator 

operation sites. A monitoring network with six low-cost sensors was installed in the diesel generator 

plant to monitor PM2.5 concentration. It was found that normal diesel generator work, diesel gen-

erator set handling work, and human activity are the most dominant ways of producing particulate 

matter at the site, and dispersion is the main cause of increased PM2.5 concentrations in nonworking 

areas. In this study, PM2.5 emissions from two different diesel generators were tested, and PM2.5 

concentrations at monitoring points reached 220 μg/m3 and 120 μg/m3, respectively. This further 

confirms that diesel generators produce many respirable particles when working. 
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1. Introduction 

In recent years, due to the shortage of electricity, an unstable supply of electricity, 

the growth of field power supply, and the demand for emergency power supply, the num-

ber of self-provided generator sets using gasoline, diesel, or kerosene as the power supply 

energy has increased significantly, especially in urban areas where demand is greater [1–

3]. At present, there exist mainly diesel generator sets, gasoline generator sets, and heavy 

oil generator sets. Among them, diesel gensets have the characteristics of larger capacity, 

parallel operation, independent operation, a lack of parallel operation with the regional 

power grid, not being affected by power grid failure, and high reliability. Moreover, diesel 

engines are more economical for generating electricity than other equipment in their size 

range, so diesel gensets occupy an important position in gensets [4,5]. Diesel engines, as 

the core components of diesel generator sets, produce a large amount of respirable partic-

ulate matter and nitrogen oxide emissions during the working process, and these pollu-

tants have a profound impact on human respiratory health. Studies have shown that the 

mass and the number of particles emitted by diesel engines are much greater than those 

emitted by gasoline engines [6–8]. Similarly, there are a large amount of epidemiological 

studies that show that asthma [9], lung dysfunction [10,11], lung cancer [12], and other 

related diseases [13] have a relationship with increased particulate matter exposure. 
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Diesel generator sets require lower emission standards, and higher levels of harmful sub-

stances in exhaust emissions, than diesel engines [14–16]. Workers in diesel generator 

plants are exposed to air pollutants generated by the operation of diesel generator sets for 

a long time, and the presence of high concentrations of fine particulate matter, as well as 

volatile organic compounds, can have certain effects on the health of workers. However, 

there are still few studies on the monitoring of particulate matter in diesel generator 

plants. 

In recent years, low-cost sensor technology for monitoring air pollutants, including 

PM2.5, has made rapid progress [17], thus providing a powerful tool for collecting high 

temporal resolution environmental monitoring data [18,19]. Low-cost sensors are typi-

cally based on optical methods, and they offer advantages over traditional air pollutant 

measurement devices in terms of affordability, ease of operation, simple maintenance, low 

cost, low noise, and high temporal resolution [20]. Low-cost sensors are more suitable for 

applications that monitor environmental quality within workplaces. Masri [21] used low-

cost sensors to measure PM2.5 concentrations during factory operating hours. Frederick-

son [22] used low-cost air pollution sensors to record drivers’ exposure to air pollution in 

central London. Ruiter [23] explored evaluation variables for low-cost particulate matter 

monitors to assess occupational exposure. However, Borghi’s study [24] showed that as 

the PM2.5 concentration increases, the monitoring bias of the low-cost sensors increases. 

Therefore, pre-calibration of the low-cost sensors is necessary to ensure the quality of data 

recorded by the low-cost sensors. Algorithms for calibrating low-cost sensors are devel-

oping rapidly [25–28]. Previous studies have mostly used multiple linear regression mod-

els for data calibration, which assume a linear relationship between low-cost sensor read-

ings and their impact factors; but Liu’s study [29] suggested that more sophisticated meth-

ods should be used to predict the complex nonlinear relationship between the two. There 

is little research on the calibration model of low-cost sensors in diesel power plants with 

a high particulate matter concentration and high TVOC content. 

In this study, we proposed a data calibration algorithm to improve the performance 

of low-cost sensors by using a nonlinear support vector machines (SVM) algorithm [30] to 

calibrate low-cost sensors. Some effects of three calibration factors, including humidity, 

temperature, and TVOC on the model, were also investigated. Then, the calibrated low-

cost sensors were used to set up a monitoring network in the diesel generator plant so as 

to monitor the variation of PM2.5 concentrations in real time. 

2. Materials and Methods 

2.1. Selection of Diesel Generator Plant 

A diesel power plant rental company was selected as the site for this study. The site 

can be divided into a diesel generator storage area, a diesel generator test area, a mainte-

nance shop, an office, and a personnel activity area. There are about 20 diesel generators 

in the factory, most of which are located in the storage area and the test area. There are 

two ventilation units (FAV600, UIQING, Chongqing, China) at the entrance and in the 

diesel generator testing area, but the ventilation units are turned off after working hours. 

The office has a ventilation window and is equipped with fresh air purifiers, while the 

office door is permanently closed and only opens when people pass through it. There is a 

rail-suspended crane in the factory to move the diesel generator equipment, mainly be-

tween the diesel generator storage area and the diesel generator test area. The personnel 

activity area provides a space for employees during their lunch break and after work in 

the afternoon. The maintenance shop was not in operation during the measurement pe-

riod. 
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2.2. Selection of Low-Cost Sensors 

In this study, we chose the PMSA003 low-cost sensor for PM2.5 concentration meas-

urement. Han [31] used three low-cost PM sensors (Plantower PMSA003, Shinyei 

PPD42NS, and NOVA SDS011) to evaluate the performance of individual PM sensors. 

Han’s results showed that PMSA003 had the best fitting effect. Bulot [32] et al. evaluated 

four PM sensors: Alphasense OPC-N2, Plantower PMS5003, Plantower PMSA003, and 

Honeywell HPMA115S0. A comparison of these sensors with a nearby background station 

showed a correlation of 0.61 < R < 0.88. The sensors contain a built-in fan that draws PM2.5 

from the surrounding environment into the light-sensing chamber. The sensor converts 

the light signal into particle concentration based on the proportional relation between the 

light signal and the mass of incoming particles. According to the manufacturer, this sensor 

can achieve a measurement of 0–999 μg/m3 particle concentration and maintain an accu-

racy of ±15%. We connected the sensor to the Arduino development board, recorded real-

time data into the local memory chip, and uploaded the data to the experimental platform 

via WIFI to achieve real-time reading and recording of PM2.5 concentration. 

2.3. Construction of Correction Test Platform 

We performed side-by-side calibration tests on PM sensor units using reference 

equipment (DustTrak (Aerosol Monitor 8530,TSI, Shoreview,USA)) near the gate in the 

diesel generator equipment rental. Six low-cost sensors were placed equidistantly around 

DustTrak, and the test unit was one meter off the ground. DustTrak was equipped with a 

PM2.5 impactor. We conducted an eight-hour PM2.5 concentration test using DustTrak 

and low-cost sensors, and the data collection interval was 30 s. Temperature and humidity 

sensors, and total volatile organic compounds (TVOC, BME680,BOSCH, Stuttgart, Ger-

many) sensors, were placed near DustTrak. The BME680 sensor mainly detects com-

pounds such as ethane, ethanol, acetone, and isoprene with an accuracy of 5% [33]. The 

temperature, humidity and TVOC levels at the test sites were recorded with a data acqui-

sition interval of 30 s. 

2.4. Construction of the Calibration Model 

We built a low-cost PM sensor data correction method based on a nonlinear SVM 

algorithm, which has been applied to several fields with good stability and predictive 

power [34–37]. The SVM algorithm mainly mapped data to a high-dimensional feature 

space through a nonlinear mapping and performed predictive analysis in that space. Con-

sidering the accessibility of the predictors, temperature, humidity, and TVOC content 

were set as predictors. The independent variable and dependent variable were the PM2.5 

concentration values measured by low-cost sensors and the DustTrak measurements, re-

spectively. In this study, the data from the calibration unit were divided into a training set 

and a test set at ratios of 70% and 30%. The model was first trained on the training set 

data, and the test set was input into the trained model to calibrate PM2.5 concentration of 

the low-cost sensor and to compare the results with values measured by DustTrak. 

2.5. Evaluation of the Calibration Model 

This study evaluated the sensor by calculating the relative error, which is the ratio of 

difference between the readings recorded by PM sensors and the reference method during 

the same period. In this study, R2 and RMSE were chosen to evaluate the performance of 

the SVM model on the entire data set. The calculation equations are as follows. 

relative error =  
P − R

R
× 100% (1)

where P refers to the PM sensors measurements and R refers to the reference measure-

ments. 
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2.6. Plant Monitoring Locations 

The calibrated low-cost PM2.5 sensors were placed in different areas of the plant, 

including the entrance, the diesel generator storage area, the office, the personnel activity 

area, the diesel generator testing area, and the maintenance area. The low-cost sensor in 

the diesel generator test area was placed at a distance of 0.5 m from the diesel generator 

exhaust port. At each monitoring point, the low-cost sensor was kept at a height of 1 m 

above the ground, and temperature and humidity sensors and TVOC sensors were also 

arranged in the monitoring points to measure the temperature, humidity, and TVOC con-

tent changes simultaneously. 

3. Results 

3.1. Comparison of PM Sensors and Reference Instruments 

Figure 1 shows the measured values of PM2.5 concentration by the six low-cost sen-

sors and the DustTrak in the calibration measurement experiment. From Figure 1, it can 

be seen that all six low-cost sensors have the same measurement trend as DustTrak. Table 

1 shows the average PM2.5 concentration values, PM2.5 concentration range, and the av-

erage relative error between the different PM sensors and the reference instrument Dust-

Trak in the calibration measurement experiment. 

 

Figure 1. PM2.5 concentration–time histories recorded by low-cost PM sensors and DustTrak. 
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Table 1. Comparison of the test performance of different sensors. 

Instrument 
Average PM2.5  

Concentration (μg/m3) 

PM2.5 Concentra-

tion Range (μg/m3) 

Average Relative  

Error 

DustTrak 31.7 20–49 \ 

Sensor1 34.1 24–54 12.43% 

Sensor2 30.8 18–51 11.18% 

Sensor3 35.6 21–56 14.79% 

Sensor4 31.5 15–54 14.81% 

Sensor5 29.1 14–48 14.91% 

Sensor6 34.1 19–57 11.51% 

As shown in Table 1, the average PM2.5 concentration measured by the DustTrak in 

the calibration measurement experiment is 31.7 μg/m3, and the PM2.5 concentration range 

is 20–49 μg/m3. Among the six PM sensors, the PM sensor 2 is the closest to the data of the 

DustTrak, with an average relative error of only 11.18%. But the PM2.5 concentration 

range of PM sensor 2 is 18–51 μg/m3, which exceeds the PM2.5 concentration range of the 

DustTrak, indicating an overestimation or underestimation between the PM sensors and 

the reference instrument DustTrak. The average relative errors between the six PM sen-

sors and the DustTrak are all kept within 15%, which are consistent with the errors 

claimed by the manufacturer; but the average relative errors of 3, 4 and 5 are all over 14%. 

The PM2.5 concentration range for PM sensor 3 is 21–56 μg/m3, which is higher than the 

DustTrak, indicating a more serious overestimation. Although these sensors are of the 

same brand, their PM2.5 measurement results may still show differences. Therefore, it is 

necessary to calibrate the PM sensors. To further quantify the discrepancies between the 

six PM sensors and the DustTrak, a comparison between the PM2.5 concentrations from 

the six low-cost sensors and the DustTrak were given in Figure 2. 
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Figure 2. Comparisons of PM 2.5 concentration measured by sensors 1–6 and DustTrak. (Relation-

ship between DustTrak PM2.5 concentration and PM2.5 concentration of PM sensor 1, PM sensor 2, 

PM sensor 3, PM sensor 4, PM sensor 5, PM sensor 6. The red line is a linear fitting line of DustTrak 

PM2.5 concentration and PM2.5 concentration of PM sensor). 

From Figure 2, it can be seen that PM sensor 2 has the smallest RMSE value of 4.5 

μg/m3, which also confirms that PM sensor 2 has the smallest mean relative error, as 

shown in Table 1. From Figure 2, we know that the data points of PM sensor 1 at low 

PM2.5 concentration all fall on the left side of the Y = X line, which implies data overesti-

mation of PM sensor 1 at a low concentration. The R2 of PM sensor 3 is 0.71, which indi-

cates that the data of PM sensor 3 have good convergence, but the trend line of PM sensor 

3 is completely on the left side of the Y = X line, which shows that there is a serious data 

overestimation. The R2 of PM sensor 4 is only 0.64, and the data points fall on the right 

side of the Y = X line, which indicates that PM sensor 4 has a poor convergence and there 

is an underestimation of the data. PM sensor 5 has the same phenomenon as PM sensor 4, 

but the trend line of PM sensor 5 is on the right side of the Y = X line. From this, we know 

that PM sensor 5 has more serious data underestimation in the calibration measurement 

experiment. The data points of PM sensor 6 fall on the left side of the Y = X line, which 

shows that PM sensor 6 has a data overestimation problem. 

3.2. PM Sensor Data Calibration 

We developed a data correction method based on a nonlinear SVM model. Seventy 

percent of the PM sensor data, temperature, humidity, TVOC, and DustTrak data in the 

dataset were used as the training set, and were inputted into the SVM model for training. 

The remaining 30% of the data were inputted into the already-trained model for data cal-

ibration. To further quantify the effect of different calibration factors on data correction, 

this study added a regression model to the trained SVM model using the PM2.5 data 

measured by the DustTrak as the Y-value and the PM sensor data as the X-axis. The RH 

correction factor was added to the basic model for the second regression. The temperature 

correction factor was added to the second regression model for the third regression. The 

TVOC correction factor was added to the third regression model for the final regression 

test. Adjusted R2 was used to indicate the degree of fit of different models. The results of 

the models with different correction factors for PM sensor 1 are shown in Table 2. 
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Table 2. Model results of different correction factors for PM sensor 1. 

Model 
Coefficient Adjusted 

R2 
p Value * 

PM Sensor RH T TVOC 

Basic model 0.84 \ \ \ 0.65 <0.001 

Basic model + RH 0.86 0.13 \ \ 0.67 <0.001 

Basic model + RH + T 0.89 −0.07 −0.52 \ 0.72 <0.001 

Basic model + RH + T + 

TVOC 
0.91 −0.05 −0.93 0.07 0.75 <0.001 

* p value for coefficients of PM sensor in the regression models. 

As shown in Table 2, when no correction factor is added, the R2 of the base calibration 

model for PM sensor 1 is 0.65. When the humidity correction factor is added to the base 

calibration model, the R2 of the regression model is 0.67, which shows a 3.1% increase 

compared to the base model. When the temperature correction factor is added to the quad-

ratic regression model, the adjusted R2 of the model grows to 0.72, which is an increase of 

7.5%. When TVOC is added to the model as a correction factor, the adjusted R2 of the 

model increases to 0.75, which is an increase of 4.1% when compared to the cubic regres-

sion model with temperature and humidity correction, and an increase of 15.4% when 

compared to the original base model. This indicates that temperature and TVOC have a 

large effect on the calibration model. The effect of TVOC on the calibration model is due 

to the presence of diesel generators at the measurement site. The operation of diesel gen-

erators is the dominant reason for dust production in this region, which will not only pro-

duce many fine particles, but will also exhaust a large number of TVOC. Therefore, TVOC 

should be considered when calibrating the low-cost PM sensor at the operation site of 

diesel generators. 

Table 3 shows the performance of the calibration models for different PM sensor data. 

As shown in Table 3, the R2 of the data—corrected with the calibration model—is im-

proved, and its increase is more than 12%. The largest increase in R2 is 15.4% for PM sensor 

4 data. This indicates that the model possesses good results for different PM sensors. 

Table 3. Calibration model results for different PM sensor data. 

PM Sensor  R2 RMSE (μg/m3) 

1 0.75 4.1 

2 0.77 3.8 

3 0.81 4.6 

4 0.75 4.9 

5 0.77 4.6  

6 0.80 4.1 

3.3. Diesel Generator Plant PM2.5 Measurement 

According to the division of the internal space of the diesel generator set, six different 

areas were selected, and a calibrated PM sensor was placed in each area to measure the 

concentration of PM 2.5. The positions of each measurement point are shown in Figure 3. 
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Figure 3. Schematic diagram of diesel generator plant. 

As shown in Figure 3, six monitoring points were arranged at the entrance, the diesel 

generator storage area, the office, the personnel activity area, the diesel generator testing 

area, and the maintenance area. The PM2.5 concentrations in the six areas were monitored 

from 8:00 to 20:00, and the recorded data were uploaded to the experimental platform 

every 30 s. The monitoring points were 1 m above the ground and placed on the experi-

mental platform without contact with other objects. Among them, the PM sensor in the 

diesel generator testing area was kept at a distance of 0.5 m away from the diesel generator 

exhaust port during the diesel generator test. The diesel generator emission test experi-

ments were conducted twice at 14:30 and 15:30, and the total length of each emission test 

experiment was about 30 min, which is basically consistent with the daily diesel generator 

test frequency and time of the company. The data of six monitoring points are shown in 

Figure 4. 
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Figure 4. Variation of PM2.5 concentration at different monitoring points in the diesel generator 

plant. 

As shown in Figure 4, PM2.5 concentration at monitoring point 1 was low during the 

period between 8:00 and 9:00. The PM2.5 concentration is 25–32 μg/m3. It is because mon-

itoring point 1 was located at the entrance with ventilation equipment, which improved 

the ventilation condition of monitoring point 1. The concentration fluctuates slightly, and 

the overall change is not significant. This is because during this time, people’s activities 

were rare and scattered, and the ventilation conditions were also considerable. During 

this period, monitoring points 2, 4 and 6 maintained the same trend as monitoring point 

1, and the overall trend tended to be flat. However, the ventilation conditions at monitor-

ing points 2, 4 and 6 were not as good as those at monitoring point 1, which led to slightly 

higher PM2.5 monitoring concentrations at monitoring points 2, 4 and 6. PM2.5 concen-

trations at monitoring point 1 increased between 10:30 and 12:00 due to increased human 
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activities. During this period, PM2.5 monitoring concentrations were elevated at monitor-

ing sites 2, 4 and 6. Among them, the diesel generator storage area had the least personnel 

activity, so the PM2.5 monitoring concentration at monitoring point 2 has the least signif-

icant increase. Monitoring point 4 had two small peaks during this time. This is because 

the personnel activities were relatively concentrated in the personnel activity area, and 

the activities were less prevalent in the rest of monitoring area, which further confirms 

the positive correlation between personnel activity and PM2.5 monitoring concentration. 

In indoor areas without major dust producing points, human activity can be an important 

factor in PM2.5 increase. A steep decrease in PM2.5 monitoring concentrations occurred 

at monitoring point 4 at around 13:30, which was due to the operation of ventilation equip-

ment at the diesel generator test area. This proves that good ventilation conditions can 

reduce the PM2.5 monitoring concentrations with clean outdoor ambient air. High PM2.5 

concentrations were observed at monitoring point 2 during the diesel generator test pe-

riod because the lifting of diesel generators, using a rail-suspended crane, would re-re-

lease deposited particles accumulated by equipment into the air. 

In this study, the release of particles from two different models of diesel generators 

was investigated. The first one is the L25M, which was made to operate at a standard 

speed of 2200 r/min without load. The data from the monitoring point showed that, alt-

hough the ventilation equipment was used, the PM2.5 concentration reached 220 μg/m3 

when the diesel generator started, and then gradually stabilized at around 177 μg/m3. The 

second small diesel generator equipment is the T31L. The PM2.5 monitoring concentration 

was about 120 μg/m3 when it was operated at the standard speed of 1200 r/min without 

load. During the experiment, it was found that the concentration of monitoring points 1 

and 6 increased, which indicates that indoor diffusion is also the main factor in PM2.5 

concentration increase. After 18:00, the concentration in monitoring point 4 increased due 

to the personnel activities and the closure of ventilation equipment after work. Monitoring 

area 3 is an isolated area and there is a fresh air purifier in the room, which makes the 

PM2.5 concentration in monitoring point 3 lower, and the increase in dust concentration 

in this area is mainly caused by personnel activities. 

4. Discussion 

In this study, the performance of the low-cost PM sensor was evaluated. We com-

pared the PM sensor measurement results with the data of the reference device DustTrak 

and found a good correlation between them. But the data overestimation and underesti-

mation problems of the PM sensors also appeared in the comparisons, which confirms the 

importance of data calibration for low-cost sensors. In this study, we proposed a PM sen-

sor reading calibration method based on a SVM algorithm, using temperature, humidity, 

and TVOC content as calibration factors, which can effectively improve the quality of PM 

sensor monitoring data. The R2 of the data, corrected with the calibration model, is im-

proved, and the increase is more than 12%. Our study showed that after calibration, the 

R2 could be 0.75~0.81, the RMSE of the sensor could be lower than 4.9 μg/m3, and the 

relative error could be less than 15%. Meanwhile, it was found that the TVOC correction 

factor has a large influence on the model and should be considered when calibrating the 

low-cost PM sensor in the diesel generator workplace. Therefore, the TVOC sensor should 

be added when arranging the PM2.5 monitoring network in future scenes with high 

TVOC content. After calibration, the indoor PM2.5 concentration in the diesel generator 

plant was monitored using the PM sensors. The plant is well ventilated, and the PM2.5 

concentration is around 30 μg/m3 when the diesel generator is not working. However, the 

PM2.5 concentration at each monitoring point in the plant increases when the diesel gen-

erator is started, which indicates that indoor diffusion is an important factor in the in-

crease in PM2.5 concentration. The PM2.5 concentration peak at monitoring point 2 is 

caused by the working of the rail suspension crane. The increase in PM2.5 concentrations 

at monitoring point 4 indicates that human activity is a huge reason for the indoor PM2.5 

enhancement. In this study, PM2.5 emissions from two different models of diesel 
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generators were tested at monitoring point 5, and PM2.5 concentrations reached 220 

μg/m3 and 120 μg/m3, respectively. This further confirms that diesel generators produce 

large amounts of respirable particles when operating, leading to air pollution in the work-

shop. 
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