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Abstract: Climate change is an important driver of soil erosion and sediment delivery to water bodies.
We use observation data from 193 locations in the Elbe River basin as well as spatially distributed
erosion rates and sediment delivery simulated in the WaTEM/SEDEM to identify current erosion
hotspots and to assess the impact of climate change on future erosion and sediment delivery. We
further quantified the uncertainty of the modelling approach by using an ensemble of 21 combinations
of global and regional climate models, different emission scenarios and stochastic erosion modelling.
Erosion rates are highest on hilly arable land in the central part of the basin as well as in the northeast
of Bohemia. Despite considerable differences between climate models and emission scenarios and
considerable uncertainties of the erosion model, a future increase in soil erosion and sediment delivery
is highly likely. Using the median of climate models and behavioral erosion models, this increase
can be up to 14% higher in the far future (2071–2100) than in the reference period (1971–2000) using
RCP 8.5. The increase is highest in the Czech part of the basin.

Keywords: soil erosion; sediment delivery; modelling; WaTEM/SEDEM; elbe; climate change

1. Introduction

Inland waterways serve various purposes. As navigable bodies of water they are an
important part of the transport infrastructure, habitat to many species and recreational
sites for water sports and leisure. All of these functions are impacted by climate change,
for example, via changes in discharge and water temperature. Another aspect is the im-
pact of climate change on soil erosion and delivery of fine-grained sediments into water
bodies. These natural processes involve the detachment of fine soil particles, the transport
to streams and rivers, transport in the river and finally the deposition in riparian zones or
deltas. At a global scale, this flux is estimated to be in the order of 15–20 × 109 t a−1 [1].
River systems are highly sensitive to sediment dynamics; thus, excess sediment delivery or
depletion can have detrimental effects. While a lack of sediment (caused, e.g., by extrac-
tion or upstream damming) can cause channel incision, river bank instability, and saline
intrusion in estuaries [2,3], an excess of sediment can cause sedimentation in channels and
siltation of reservoirs leading to a loss of reservoir capacity and a need for costly dredging
activities [4,5]. The deposition of fine sediments can also cause river bed clogging and a
degradation of aquatic ecosystems [6]. Moreover, fine sediments are a preferential transport
vector for nutrients and contaminants which can lead to eutrophication or contamination
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of water bodies [6–9]. On the other hand, land degradation due to soil erosion threatens
biodiversity and natural habitats in uplands [10,11].

Climate is an important driver of soil erosion. The detachment and transport of
mineral particles from hillslopes to streams are determined by total rainfall amounts, rain
intensity and overland flow. In many river systems, the vast majority of sediment transport
occurs during a few heavy precipitation events [12–15]. On a global scale, climate models
project an increase in precipitation in a warmer world, but of course, there is a strong spatial
and temporal variability [16]. For Germany and the adjacent river basins, total precipitation
is projected to increase in winter and decrease in summer with a net increase [17]. Extreme
precipitation, which is especially important as a driver of soil erosion, is expected to increase
in many parts of the world [16,18–20] and also in Germany and adjacent river basins [17].

Therefore, observations and modelling studies indicate an increase in rainfall erosivity
and hence soil erosion [21–27]. Being able to quantify and locate this increase is important
for river management and river conservation. Spatially distributed soil erosion models
are a valuable tool to assess the impact of climate change on soil erosion and sediment
delivery and are increasingly used for this purpose all over the world and at all scales [28].
However, their considerable uncertainty has to be kept in mind and it is crucial to evaluate
model output with observational data [29,30]. Several authors have stressed that model
evaluation with data from the outlet alone is not sufficient because models can produce
good predictions for the wrong reason [30–32]. Using models that consider sediment dy-
namics within river catchments can help to overcome this problem [33–35]. Several review
studies have shown that the predictive capacity of models to reproduce measurements of
soil erosion and sediment yield often remains poor [30,36–38]. On the other hand, mea-
surements of soil erosion and sediment delivery are labor intensive, expensive and also
subject to large uncertainties (e.g., [12,39]). This leads Alewell et al. [38] to the conclusion
that “in bidding farewell to the idea of accurately predicting absolute values with models
but rather concentrating on the prediction of relative differences, trends over times and
systems reactions to processes and management practices, we can use models as tools to
learn about the modelled systems and their reaction”. The Water and Tillage Erosion Model
and Sediment Delivery Model (WaTEM/SEDEM) [40–42] is a well-established model to
simulate the impact of land use change, climate change or soil conservation matters on
average annual soil erosion and sediment delivery to water bodies and to identify spatial
patterns of soil loss and deposition [28]. The model was chosen for this study because of
its suitability for large scale applications and its capability to simulate not only gross soil
erosion but also downhill sediment transport and delivery to streams. The Elbe is a major
European waterway and crucial for national and international shipping traffic. Historic
as well as present-day sediment contamination threaten its water quality and present a
challenge for river basin management. The aim of this study is (i) to identify current
erosion hotspots in the basin of the Elbe, i.e., a major European river and waterway, based
on measured data at 193 measurement sites as well as with distributed modeling with the
WaTEM/SEDEM and (ii) to assess the impact of climate change on future soil erosion and
sediment delivery to the Elbe. Novel points of this study compared to earlier work in the
Elbe basin are a detailed assessment of the uncertainties due to model parameterization
and choice of climate models as well as an extensive comparison of modeled results to
observed sediment loads at 193 measurement sites.

2. Materials and Methods
2.1. Study Site

The Elbe is one of the largest rivers in Central Europe (Figure 1). Its basin has a size
of 148,300 km2 and is located in Germany (66.5% of the basin) and the Czech Republic
(33.7%) with minor parts (less than 1%) in Poland and Austria [43]. It rises at an elevation
of about 1400 m above sea level and then traverses Bohemia where the Vltava, which is the
main tributary, and the Ohře flow in. At the Czech-German border, it breaks through the
Elbe Sandstone Mountains in a narrow valley. About 90 km downstream, the river enters
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the North German Plain where the Black Elster, Mulde, Saale and Havel join. The Lower
Elbe between the Weir at Geesthacht close to Hamburg and the mouth in the North Sea is
influenced by the tides. Land cover in the basin is dominated by agricultural land (45.4%),
forests (29.1%) and grassland (11%) [44]).
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Figure 1. The Elbe basin. (a) Topography (source: EU-DEM, [45]), (b) land cover (reclassified from
Corine Land Cover 1990 [46]), (c) average annual precipitation (DWD reference ensemble) and
(d) location of the basin in Central Europe (source: Wikimedia Maps). Figure created by the authors.

The basin is located in the temperate climate zone. Annual average temperatures
range from 1–3 ◦C at the higher altitudes of the low mountain ranges to 8–9 ◦C in the
lowlands [43]. Average annual precipitation ranges from 450 mm in the rain shadow of the
mountain ranges to 1700 mm in the Giant Mountains and Jizera Mountains with a spatial
mean of 628 mm [43]. The runoff regime is mainly pluvio-nival with a maximum in March
and April. In the last decades, floods were also caused by heavy precipitation events in
summer such as the ones of August 2002 and June 2013. With an average runoff at Neu
Darchau of 861 m3s−1 (corresponding to 5.4 l s−1 km−2) the Elbe is one of the rivers with
the lowest runoff rates in Europe [43]. The river and its flow regime are subject to a strong
anthropogenic impact via the building of dams, weirs and dikes as well as via changes in
the river course. The Elbe is an important European waterway connecting the network of
European inland waterways to the port of Hamburg.

The average annual suspended sediment load at Hitzacker is about 600 kt a−1. Histor-
ically, the Elbe was a highly contaminated river receiving insufficiently treated wastewater
from urban centers, industry and agriculture [47,48]. Contaminated legacy sediments from
industry and mining are still present in low-flow zones and can be mobilized during floods.
These contaminants, as well as present-day sediment contamination from diffuse and point
sources, contribute to the fact that the goal of a good ecologic status as defined by the
European Water Framework Directive is not achieved [49]. In the Lower Elbe, the estuary
and the German Bight, high organic matter loads, eutrophication and oxygen depletion
further threaten water quality [50–53].

2.2. WaTEM/SEDEM Model

The Water and Tillage Erosion Model and Sediment Delivery Model (WaTEM/SEDEM) [40–42]
is a spatially distributed model that simulates average annual soil erosion and sediment de-
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livery to water bodies. It is based on the Revised Universal Soil Loss Equation (RUSLE) [54],
which calculates average annual soil erosion E [kg m−2 a−1] as:

E = R × K × LS × C × P (1)

where R is the rainfall erosivity factor [MJ mm m−2 h−1 a−1], K is the soil erodibility factor
[kg h MJ−1 mm−1], LS is the slope length factor [-], C is the crop factor [-] and P is the
erosion control practice factor [-]. All factors have to be provided as raster maps. E is an
estimate of gross or potential erosion. In a second step, the model calculates sediment
transport with a transport capacity (TC) approach. TC [kg m−1 a−1] is calculated as:

TC = kTC × R × K ×
(

LS − 4.08 s0.8
)

(2)

where kTC is a transport capacity coefficient [m] and s is the slope gradient [m m−1]. kTC has
to be calibrated. For each cell, soil erosion is added to sediment inputs from upslope cells.
It is entirely routed downslope if this sum is lower than the cells transport capacity (TC). If
this sum exceeds TC, downslope transport is limited to TC and the rest gets deposited.

2.3. Spatial Input Data

The spatial input data for the WaTEM/SEDEM include elevation data, land use data,
soil data and spatially distributed rainfall data. For elevation, the EU-DEM of the European
Environmental Agency [45] was used. It has a resolution of 25 m and was aggregated
to 100 m for this study to decrease calculation time. The digital elevation model was
hydrologically corrected to remove pits and subsequently used to calculate the slope length
factor with the equation of McCool et al. [55].

The Corine Land Cover (CLC) data for 1990 [46] was used to calculate the crop
factor map. The reclassification of CLC to crop factors was based on the values given by
Panagos et al. [56]. On arable land (CLC classes 211 and 212), the crop factor depends on
the type of planted crops. As detailed, spatially distributed information on crop types is
not available; the crop factor was calculated as the weighted mean of the values proposed
by Panagos et al. [56] for the different crop types. Data on crop type composition was
obtained from the Federal Statistical Office of Germany [57] and used for the entire basin
(including the Czech part). On arable land, the crop factor was further multiplied with a
tillage factor ctillage to account for conservation practices. Proposed values for ctillage are 1
for conventional tillage, 0.35 for conservation/ridge tillage and 0.25 for no tillage [56,58,59].
Here we use a value of 0.85 assuming mainly conventional tillage with some areas under
conservation tillage.

The soil erodibility factor K was taken from Panagos et al. [60], who provide a soil
erodibility map for the EU-25 member states at a resolution of 500 m. It is based on soil
survey data at around 20,000 points, the European soil data base and spatial interpolation
with location, terrain features and other remotely sensed data [60].

The rainfall erosivity factor R was calculated based on the linear regression of the
R-Factor with average annual precipitation [61]. R-Factor maps were calculated for the
reference period 1971–2000, the near future (2031–2060) and the far future (2071–2100) with
precipitation data obtained from the German Weather Service’s (DWD) reference ensemble
at a resolution of 0.11◦ (www.dwd.de/ref-ensemble (accessed on 20 September 2022)).
To get a best estimate on future precipitation as well as an estimate of the uncertainty of
climate projections, we used the median as well as the 15th and the 85th percentile of the
ensemble member projections. The ensemble further provides projections for the three
emission scenarios RCP 2.6, RCP 4.5 and RCP 8.5. The list of 21 combinations of global and
regional climate models included in the DWD reference ensemble can be found in Table S1
(supplementary material).

A further model input is a map of dams in the basin giving estimates of their sediment
trapping efficiency (i.e., the long-term average of the proportion of retained sediment).

www.dwd.de/ref-ensemble
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Data on the locations of 308 dams in the catchment was taken from the global GOODD
data base [62], an inventory of dams in Germany [63], a list of reservoirs in the Czech
Republic [64], data provided by the International Commission for the Protection of the
River Elbe [44] and OpenStreetMap data (openstreetmap.org, accessed on 10 March 2021
via download.geofabrik.de). Because no data on trapping efficiency is available, it was
estimated to be 90% for most dams, which corresponds to the estimates by Junge [65] for
the Mulde reservoir. Krasa et al. [64] determined trapping efficiencies for 58 reservoirs in
the Czech Republic including many of the largest reservoirs in the Elbe basin. With a few
exceptions, the values range between 65% and 99%, the median is 89%. For the weirs in the
main channel where water usually flows over the top, this value was reduced to 50%.

2.4. Suspended Sediment Data
2.4.1. Measured Data Availability

Suspended sediment concentration (SSC) is monitored in the Czech Republic by the
Czech Hydrometeorological Institute (ČHMÚ) using daily water samples taken at 14 sites
in the Elbe River and its tributaries Orlice, Jizera, Vltava, Ohře, Ploučnice and Bílina. In
Germany, water samples are taken at workdays by the Federal Waterways and Shipping
Administration (WSV) at 17 measuring sites in the Federal waterways Elbe, Havel, Spree
and Saale [66]. Besides these daily measurements, suspended matter is monitored by many
of the German Federal States at the measurement sites for water quality assessment with
an irregular measurement frequency (weekly to monthly). This data was obtained for
>2500 measurement sites in the German part of the Elbe basin. It has to be noted that all
measurement networks determine SSC gravimetrically and include the mineral as well as
the organic material in suspended sediment. SSC was estimated indirectly from optical
measurements of turbidity at two sites in Bavaria.

A total of 193 measurement sites were selected for the calculation of suspended
sediment load and annual yields, based on the availability of discharge data and the length
and measurement frequency of the time series. Furthermore, sites that were at a distance of
5 km from another measurement site were excluded, as well as sites where the distribution
of discharge at measurement days was not representative for the distribution of discharge
in the entire discharge time series. This was tested with a Kolmogorow-Smirnow test.
Further information on suspended sediment data and data sources can be found in Table 1.

Table 1. Suspended sediment data in the Elbe basin. Sources: (1) International Commission for
the Protection of the Elbe River, https://www.ikse-mkol.org/en/themen/die-elbe/zahlentafeln
(accessed on 23 February 2021); (2) Czech Hydrometeorological Institute, via personal contact;
(3) Federal Institute of Hydrology, Schwebstoffdatenbank SchwebDB; (4) Bayerisches Landesamt
für Umwelt, https://www.gkd.bayern.de/de/fluesse/schwebstoff (accessed on 19 April 2021);
(5) Senatsverwaltung für Umwelt, Mobilität, Verbraucher-und Klimaschutz, via personal contact;
(6) Landesamt für Umwelt Brandenburg, via personal contact; (7) Landesamt für Umwelt, Land-
wirtschaft und Geologie, https://www.umwelt.sachsen.de/umwelt/infosysteme/ida/ (accessed
on 25 March 2021); (8) Landesbetrieb für Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt,
http://www.lhw.sachsen-anhalt.de/gld-portal (accessed on 8 April 2021); (9) Landesamt für Land-
wirtschaft, Umwelt und ländliche Räume, via personal contact. One measurement site was operated
by Brandenburg and Saxony-Anhalt. Further data was obtained from the Elbe Data Information
System of the River Basin Community Elbe (https://www.fgg-elbe.de/elbe-datenportal-en.html
(accessed on 11 March 2021)); it was combined with the data of the respective federal state.

Spatial Coverage Measurement Sites Selected Sites Measurement Frequency Start

Czech Republic 1 10 10 daily 1993
Czech Republic 2 4 4 daily 2001
Germany 3 17 14 on workdays 1963
Bavaria 4 2 2 sub-daily 2011
Berlin 5 6 1 bimonthly-monthly 1973

openstreetmap.org
https://www.ikse-mkol.org/en/themen/die-elbe/zahlentafeln
https://www.gkd.bayern.de/de/fluesse/schwebstoff
https://www.umwelt.sachsen.de/umwelt/infosysteme/ida/
http://www.lhw.sachsen-anhalt.de/gld-portal
https://www.fgg-elbe.de/elbe-datenportal-en.html
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Table 1. Cont.

Spatial Coverage Measurement Sites Selected Sites Measurement Frequency Start

Brandenburg 6 444 45 usually monthly 1989
Saxony 7 >1000 88 weekly-monthly 1977
Saxony-Anhalt 8 >1000 26 Bimonthly-monthly 2007
Schleswig-Holstein 9 4 3 usually monthly 1991

2.4.2. Calculation of Average Annual Suspended Sediment Loads

For stations with daily data of suspended sediment concentration (SSC) and discharge
(Q), daily suspended sediment load (SSLd, i.e., the mass of sediment passing a river cross
section per day) can be calculated directly:

SSLd

[
t d−1

]
= 0.0864 × SSC

[
mg l−1

]
× Q

[
m3s−1

]
(3)

Daily loads are summed up over a year to obtain annual suspended sediment load SSLa
[t a−1] and averaged over all available years to obtain average annual loads SSLa

[
t a−1].

For stations with a weekly or lower measurement frequency, the fact that infrequent
measurements may not reproduce the temporal variability of suspended sediment concen-
trations has to be accounted for. We tested the applicability of sediment rating curves that
are used to generate daily time series of SSC from daily time series of Q based on the SSC
vs. Q relationship in the form of linear, power law and loess regression models. However,
the use of sediment rating curves was rejected because of the high scatter in the SSC vs. Q
relationship and the fact that for only 27% of the stations with infrequent measurements
any of the models performed substantially better than the base model (i.e., multiplying the
time series of Q with the mean of SSC measurements; criterion: Nash-Sutcliffe efficiency
NSE > 0.2). Thus, the discharge-weighted mean concentration method (M18 described by
Phillips et al. [67]; ref [12]) was used to calculate annual loads from the daily time series of
discharge and infrequent measurements of SSC:

SSLa = 0.0864
∑n

i=1 SSCiQi

∑n
i=1 Qi

Qa (4)

where n is the number of SSC samples in a given year, SSCi and Qi are the suspended
sediment concentration and discharge at days of sampling and Qa is the mean discharge in
the respective year. The standard error of the mean (SEM) was calculated as a measure of
uncertainty of the average annual load.

2.5. Model Calibration and Validation

WaTEM/SEDEM is mainly calibrated based on the parameter kTC in Equation (2),
which governs the calculation of the transport capacity. Other authors have stressed that
kTC is highly scale-dependent and has to be calibrated separately for each study site or
when input data is changed [41]. Most studies use at least two values for kTC; usually a
higher value is applied on arable land, vineyards and bare surfaces while a lower value
is applied on forests, grassland, shrubland and other natural vegetation classes [41,68–72].
Van Rompaey et al. [73] further suggest to classify kTC based on topography (slope) in catch-
ments with diverse landscapes where they found that a global calibration is not suitable.

Here, we classified kTC based on slope and land use. Thus, four parameters were
calibrated, i.e., kTC1, kTC2 and kTC3 for arable land on low, medium and high slopes, re-
spectively, and a factor fkTC,low that is multiplied with kTC1, kTC2 and kTC3 to obtain kTC on
non-arable land use for the three slope classes. We generated 1500 random parameter sets
of the four parameters with Latin hypercube sampling using the R package lhs [74]. In this
way, it was ensured that the entire parameter space is covered equally. kTC1, kTC2 and kTC3
were varied in the range 0–120 m and fkTC,low was varied between 0.05 and 1 to ensure that
the entire range of values reported in the literature was included.
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The model was run with all 1500 parameter sets, and simulated sediment loads at
the 193 measurement sites were compared to loads estimated from measurements. The
following objective functions were calculated from simulated and observed values: Nash-
Sutcliffe efficiency (NSE), ratio of performance to interquartile distance (RPIQ), mean
absolute error (MAE) and the percentage of measurement sites where simulated values
of SSLa are within the range of observed SSLa ± SEM (Puncb). While calculating the ob-
jective functions, measurement sites with a daily or sub-daily measurement frequency were
weighted with a factor ten. This was done to account for the fact that estimates of SSLa
obtained from infrequent measurements of SSC are prone to considerable uncertainties
while estimates calculated from daily measurements can be considered reliable in catch-
ments of >1000 km2 [12]. Optimal parameter sets were selected based on a multi-objective
optimization that seeks to optimize all four objective functions. We used the R package
rPref [75], which identifies the set of Pareto optimal solutions, i.e., the parameter sets where
no objective function can be made better off without making at least one other objective
function worse off. For the subsequent analyses (climate change scenario testing), all Pareto
optimal solutions were retained as behavioral parameter sets as proposed in the generalized
likelihood uncertainty estimation (GLUE) [76,77]. In this way, a distribution of plausible
outputs was obtained instead of deterministic outputs and the uncertainty due to model
parameterization could be estimated.

A five-fold cross validation was conducted with the observational data at the 193 measurement
sites. The sites were randomly divided into five groups and then iteratively one fifth of the
sites was excluded from the calibration, the Pareto optimal parameter sets were identified
and the model was evaluated with the remaining fifth of measurement sites. In this way, it
could be assessed how the model performs at sites where it was not calibrated.

3. Results and Discussion
3.1. Observed Avarage Annual Suspended Sediment Loads

The average annual suspended loads in the Elbe catchment are strongly conditioned
by the contributing catchment size of the monitoring station and vary between 0.005 and
601 kt a−1 (SSLa shown as circles in Figure 2a, supplementary material Figure S2). The
average specific load in the entire basin is 4.76 t km−2 a−1 (Table 2) but specific loads are
highly variable (color of subbasins in Figure 2a). Longitudinal changes of SSLa along
the Elbe are shown in Figure 2b. The Upper Elbe (13.24 t km−2 a−1) and the upstream
tributaries Orlice (12.77 t km−2 a−1) and Jizera (12.87 t km−2 a−1) carry high loads of
suspended material (Table 2). At the confluence of the Vltava and the Elbe between the
measurement sites Obříství and Dolní Beřkovice, the Elbe and Vltava carry about 110 kt a−1

(corresponding to a specific load of 8.05 t km−2 a−1) and 93 kt a−1 (i.e., 3.40 t km−2 a−1),
respectively. The relatively low specific load of the Vltava is due to the large dams of
the Vltava cascade that retain large quantities of sediment [64]. Unfortunately, no data
is available from the Vltava upstream of the dams or its tributaries. The Ohře river is
also dammed and has a relatively low specific load of 3.40 t km−2 a−1. The specific loads
of the tributaries between the mouths of the Ohře and the Mulde, i.e., the Bílina, the
Ploučnice, several smaller Saxonian tributaries and the Black Elster range between 5.60 and
7.36 t km−2 a−1; thus, they are considerably higher than the basin mean at Hitzacker
(Table 2). In this part of the Elbe, the high loads at Torgau are remarkable (Figure 2b). As
there are no major tributaries in this section, the strong increase between Meissen and
Torgau as well as the decrease between Torgau and Wittenberg is not plausible. Thus, we
assume that loads at Torgau are overestimated. As the measurement frequency is daily at
all measurement sites shown in Figure 2b, we can rule out that this strong overestimation
of >100 kt a−1 is due to temporal variability of sediment loads. The reasons for this
overestimation remain unknown and show the need for a dense network of measurement
sites to identify such inconsistencies in the data. The Mulde and Saale rivers contribute
19.93 and 107.66 kt a−1, respectively. This corresponds to specific loads below the basin
average, but data from upstream measurement sites shows that specific loads can be
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much higher there. E.g., at Wurzen it is 24.33 t km−2 a−1 but much of this sediment is
retained in the Mulde reservoir shortly upstream of its confluence with the Elbe river.
In the catchment of the Saale, there are also many reservoirs that retain sediment. The
northernmost major tributary, the Havel, is a typical lowland river, which has a low specific
load of only 0.99 t km−2 a−1. Furthermore, it can be assumed that a considerable fraction
of this load is actually phytoplankton, i.e., algae biomass. Phytoplankton also plays a
role in the downstream measurement sites of the Elbe River [78,79]. Hillebrand et al. [80]
estimated the share of phytoplankton to total suspended sediment load at Hitzacker to
be on average 17.3% with a strong seasonal variability (higher share in summer). Using
the same methodology, this fraction is estimated to be approximately 14–40% in the Havel
River (unpublished).
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Shipping Administration (WSV) where zero corresponds to the Czech-German border.

The high number of measurement sites also allowed us to identify river reaches with
negative sediment budgets (i.e., higher inflow of sediment than outflow, Figure 2a). This
can indicate deposition, e.g., in reservoirs such as the Mulde reservoir and in floodplains
and wetlands such as the Spree Forest, but there are also several reaches where deposition is
unlikely and negative sediment budgets rather hint at errors in the data. It can be assumed
that the insufficient measurement frequency of many of the measurement sites is a major
reason for this error. Moatar et al. [12] estimated that in basins of less than 10,000 km2,
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sampling intervals of 3–5 days are required to obtain estimates of SSLa with an error of
less than ±20%, while a bi-monthly sampling frequency can lead to errors in the order of
±100%. Consequently, sediment fluxes are underestimated, because the extreme events
that carry the majority of sediment loads are likely to be missed [12,39]. This shows the
need for a higher measurement frequency to obtain reliable estimates of SSLa .

Table 2. Average annual suspended sediment loads (SSLa ) and specific loads of the Elbe and
its tributaries.

River Location SSLa
[
kt a−1] SpecificSSLa

[
t km−2a−1]

Upper Elbe Němčice n. Labem 55.42 13.24
Orlice Týniště n. Orlicí 19.05 12.77
Jizera Tuřice 26.97 12.87
Vltava Zelčín 93.43 3.40
Ohře Terezín 16.85 3.00
Bílina Ústí nad Labem 7.26 6.78

Ploučnice Benešov n. Ploučnicí 6.49 5.60
Saxonian tributaries - 16.19 7.36

Black Elster Gorsdorf 6.07 6.07
Mulde Dessau 19.93 2.78
Saale Calbe 107.66 4.60
Havel Rathenow 34.64 0.99

Northern tributaries - 4.62 1.45
Elbe Hitzacker 600.89 4.76

The comparability of SSLa for various stations may be limited due to the different
monitoring periods over which SSLa is averaged. While sediment monitoring at Hitzacker
started as early as 1963, data from most other sites were established in the early 1990s or later.
Especially, in the presence of trends in SSC [81], average annual loads and comparisons
between sites depend on the length and period of suspended sediment monitoring.

However, we argue that SSLa vary spatially and in scale over several orders of
magnitude and that uncertainties caused by variable monitoring periods and infrequent
measurements are of secondary order. Thus, the high density of measurement sites allows
an estimate of the spatial distribution of suspended sediment fluxes.

3.2. WaTEM/SEDEM Model Calibration and Evaluation

The Pareto optimization based on the objective functions NSE, RPIQ, MAE and Puncb
returned 23 optimal parameter sets for the calibrated parameters kTC1, kTC2, kTC3 and fkTC,low.
Figure 3a shows spatially distributed simulated soil erosion and deposition rates in the
Elbe basin in the reference period 1971–2000, and Figure 3c shows averaged rates in the
subcatchments. Erosion rates shown here correspond to net erosion, i.e., the difference
between on-site erosion and deposition. Figure 3a,c show the 50th percentile, i.e., the
median, of the 23 optimal simulations, and Figure 3b,d show quantile maps of the 15th
and 85th percentile. The median corresponds to the best estimate, while the quantile maps
show the upper and lower boundary of the probable range of values.

The results of the simulations show a clear spatial pattern. In the northern part of
Elbe basin, erosion rates are low (subcatchment means of less than 0.009 mm a−1 in the
Lower Elbe, Middle Elbe, Stepenitz, Havel and Black Elster catchments). In the central parts
stretching from the Saale and Mulde catchments via the German part of the Upper Elbe, the
Ploučnice and Jizera to the Orlice catchment, erosion rates are highest (subcatchment means
of up to 0.029 mm a−1). Locally, this rate can exceed 1 cm a−1. In the Vltava, Ohře and
Czech Upper Elbe catchment, medium erosion rates are found (0.009–0.017 mm a−1). This
pattern corresponds well to the topography (Figure 1), i.e., erosion rates are highest in hilly
terrain. It has to be noted, however, that in altitudes of above approx. 600 m, erosion rates
are lower again, because these zones are mainly forested (notably in the Ore Mountains,
Harz and Bohemian Forest).
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Figure 3. (a) Spatial distribution of erosion and deposition rates in the Elbe basin modeled with
WaTEM/SEDEM. The map shows the 50th percentile of the 23 Pareto optimal simulations. Zones
with the highest erosion rates are highlighted in blue and purple; find more information in Section 3.3.
(b–d) Erosion rates averaged for the subcatchments. The maps show the 15th, the 50th and the 85th
percentile of all optimal simulations.

A high range of plausible values indicates model imprecision. This is the case, e.g.,
in the Jizera catchment where the difference between the 85th and the 15th percentile is
60% of the subcatchment median. This percentage is also above 30% for the Stepenitz, the
Havel, the Black Elster and the Lower and Middle Elbe subcatchments, while it is low
(below 20%) for the Ploučnice, the Orlice, the Vltava, the Ohře, the Upper Elbe and the
Saale subcatchments. Thus, with the exception of the Jizera, the imprecision is high in areas
of low erosion rates and low in areas of high erosion rates. This is reassuring, as the aim of
this modeling study is to identify erosion hotspots and we are less interested in the parts of
the catchment where erosion rates are low. Within the optimal parameter sets identified
with Pareto optimization, the parameter kTC1 is in the range 2–104 m, kTC2 is 13–78 m, kTC3
is 3–11 m and fkTC,low is 0.35–1. Thus, for the parameter kTC3 a clear tendency of good
simulations obtained with values in the lower end of the calibration range (1–120 m) can
be noted. For the other parameters, optimal parameter sets span a large range within
the calibration range, i.e., optimal parameter sets are dispersed within the parameter
space and no clear optimum can be identified. The finding that many parameter sets
can produce acceptable simulations that reproduce observations equally well is described
with the concept of equifinality [82–84] and supports the need of stochastic instead of
deterministic modeling [30].

Table 3 shows the minimum, maximum and mean values of the objective functions for
simulations run during the calibration and validation steps of the 5-fold cross validation. In
general, during validation, the range of the objective function is higher and the mean values
are slightly worse than during calibration. The mean objective function values during
validation are within the range of values obtained during calibration; thus, the model
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does not perform substantially worse during validation and is suitable for application at
locations where it was not calibrated.

Table 3. Statistics of objective functions obtained during 5-fold cross validation: Nash-Sutcliffe
efficiency (NSE), ratio of performance to interquartile distance (RPIQ), mean absolute error (MAE)
and the percentage of measurement sites where simulated values of SSLa are within the uncertainty
bounds of observed values (Puncb).

NSE [-] RPIQ [-] MAE [kt a−1] Puncb [%]

Calibration
Min 0.51 0.78 50.329 28.788
Max 0.79 2.268 85.209 42.636
Mean 0.68 1.539 63.431 35.294
Validation
Min 0.10 0.60 16.87 14.71
Max 0.96 4.07 123.40 48.39
Mean 0.59 2.10 73.07 31.93

Nonetheless, the values show that the uncertainties are considerable. For example,
for none of the simulations, the value of Puncb is above 50%, i.e., at more than half of
the measurement sites, the simulated average annual sediment load is outside of the
uncertainty bounds of average loads estimated from measurements. Given the inherent
uncertainty in soil erosion modeling, the maximum NSE values reported in Table 3 can be
considered “good” [85] but absolute errors remain high. The MAE is given in the unit of
the simulated variable (here kt a−1) and even the minimum during calibration is larger
than the mean value of all measurement sites (approx. 41 kt a−1). This shows the need to
consider more than one objective function.

A direct comparison of observed and simulated values shows that there is a general
correlation but also substantial scatter (Figure 4). Furthermore, for some tributaries, there is
a systematic error. With a few exceptions, the northern tributaries and the Havel and Spree
rivers are systematically underestimated by the model. This can be due to phytoplankton
growth, which can be considerable in these lowland rivers and is included in the measure-
ment but not considered by the model. On the other hand, the measurement sites in the
Saale catchment, the Saxonian tributaries and some Czech tributaries are overestimated. A
possible explanation for the overestimation of these sites with high erosion rates might be
that erosion control measures are not sufficiently represented in the model due to a lack
of data.
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In general, the results of the model calibration and evaluation show that the model
can reproduce spatial patterns of soil erosion and sediment inputs in the river system but
that uncertainties in the absolute loads remain high. Differences between observed and
simulated values can well be in the order of 100%. Thus, the model does not succeed
in reproducing absolute values but rather gives an estimate of the spatial pattern in the
catchment and the order of magnitude of soil erosion and suspended sediment loads in the
river system.

3.3. Todays Erosion Hotspots

Erosion rates identified with the model are highest in a large zone in the central part of
the Elbe basin that stretches over almost the entire Saale catchment, the foothills of the Ore
Mountains to the southernmost parts of the Black Elster and Havel catchment in Upper
Lusatia (Figure 3a). Within this large zone an erosion hotspot, i.e., a larger, congruent
zone of high erosion rates, is located in the Thuringian Basin (marked “1” in Figure 3a). It
stretches from the south of the Harz Mountains to the city of Erfurt. On arable land, erosion
rates are higher than 0.2 mm a−1 in a zone of approx. 3000 km2. The silty loess soils are
prone to erosion. A second erosion hotspot is located in the east of the Saale catchment
around the Altenburg-Zeitz Loess Hills. A third erosion hotspot comprises the catchments
of the left tributaries of the German Upper Elbe between Dresden and Riesa. In the Czech
part of the basin, erosion patterns are more scattered over the entire basin and erosion
hotspots are less pronounced. Nonetheless, averaged erosion rates are much higher than in
the northern part of the basin. Erosion rates are high in the agricultural areas located east
of Prague (marked “4” in Figure 3a) and in the foothills of the Sudetes (“5”).

Identifying erosion hotspots from the measurement data is challenging because data is
available only at distinct points which are not distributed evenly in the basin. Specific loads
in units of mass per units of area and time can give valuable information, but they are highly
scale dependent. For example, in the erosion hotspot in the Thuringian basin (1), measured
data is available only at the outlet of the Unstrut river, where the spatial variability between
the erosion hotspot and the low erodible forested mountain ranges is not represented. Here
the model can give spatially distributed information where the measured data can only
give an integrated signal of the entire subcatchment.

Concerning the erosion hotspot at the Saxonian tributaries (3), the model systematically
overestimated measured loads of these rivers (Figure 4). However, it has to be noted, that
all these estimates of annual loads are derived from infrequent measurements that lead to a
systematic underestimation [12,39]. Thus, it is possible that the model detected an erosion
hotspot that could not be identified with the infrequent measurements of suspended
sediment concentrations, which are prone to missing the extreme events when a large
fraction of annual loads is transported. For the erosion hotspot in the foothills of the
Sudetes (5), the model agrees well with the measured data as specific loads estimated from
daily SSC data are high in the Orlice, Jizera and Upper Elbe catchment at Němčice (Table 2).

The spatial pattern of soil erosion in the Elbe basin was also simulated by Pohlert [86]
with the PESERA model. The main erosion hotspot identified in that study stretches from
the foothills of the Sudetes to the Orlice catchment. Secondary hotspots were identified
in the range of hills in the central part of the basin, stretching from the foothills of the
Ore Mountains to Upper Lusatia, in the south of Plzen and in the Saale catchment [86].
Borelli et al. [87] estimated soil erosion with the WaTEM/SEDEM for the European Union.
Within the Elbe basin, soil erosion rates are highest in the non-forested Czech part of the
basin. High erosion rates are also found in the central part of the basin, in a zone that
corresponds well to the zone highlighted in blue in Figure 3a, and even in smaller patches
in the northern part of the basin. Thus, the location of erosion hotspots identified here
agree fairly well with other studies. However, the magnitude and ranking of erosion rates
differ between different studies.
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3.4. Simulated Future Soil Erosion and Sediment Loads
3.4.1. Changes in Rainfall Erosivity

The median of the climate simulations included in the DWD reference ensemble
projects an increase in annual rainfall in the Elbe basin between the reference period
(1971–2000) and the near (2031–2060) and far future (2071–2100) for all emission scenarios.
This is reflected in an increase in rainfall erosivity of up to 16.7% (Figure 5). However, this
increase is not observed in all members of the reference ensemble. In the 15th percentile
of all simulations, a decrease in annual rainfall is observed for scenario RCP 2.6 while
for the scenarios RCP 4.5 and 8.5 a decrease in the mountain ranges and an increase at
the coast in the North German Plain and the Bohemian Basin is observed (Figure S1,
Supplementary Material). In the 85th percentile, the increase of rainfall erosivity is locally
as high as 26% (Figure S2). Such differences between ensemble members were also reported
by other authors [88,89]. While most ensemble members and scenarios are indicative of
increased rainfall erosivity, considerable uncertainty in the magnitude of the increase in
precipitation in the climate projections remain [17]. To become aware of this uncertainty,
it is important to use climate model ensembles, because the results of single models can
be biased.
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Figure 5. Projected changes in rainfall erosivity for the near future (2031–2060) and the far future
(2071–2100) with respect to the reference period 1971–2000. The figures show the median of all
simulations in the German Weather Service’s reference ensemble for the emission scenarios RCP
2.6, 4.5 and 8.5. Maps of the 15th and 85th percentile of the ensemble simulations are shown in
Figures S1 and S2 in the supplementary material.

Nonetheless, an increase in rainfall erosivity in the Elbe basin is likely and coherent
with the findings of other authors [22,88,90]. For RCP 8.5 and the near future, this increase is
most pronounced in the Upper Elbe and the Czech part of the catchment with the exception
of the Ohře catchment. In the far future it is most pronounced in the Czech Upper Elbe and
its tributaries Orlice, Jizera and Ploučnice, in the Lower Elbe and the Havel catchment.

Here, we calculated rainfall erosivity from average annual precipitation, due to the lack
of high-resolution precipitation data for the future. However, rainfall erosivity is closely
linked to kinetic energy and thus to rainfall intensity [91,92]. Hence, it varies strongly in
space and between different rain events and high spatio-temporal resolution data is needed
for a detailed representation of rainfall erosivity [24,93].

We compared the R-Factor used here for the reference period (1971–2000) with (i) the
R-Factor map for Germany derived from high spatio-temporal resolution radar data from
2001–2017 by Auerswald et al. [24], (ii) the map for the Czech Republic by Hanel et al. [94]
(temporal coverage: 1989–2003) and (iii) the map for the EU by Panagos et al. [95] (covering
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1970–2017 with a predominance of the last decade) (Figure 6). The two latter products are
derived from high temporal resolution station data and spatial interpolation with covariates
of climate, elevation and latitude/longitude. The R-Factor used here correlates well with
the R-Factor map by Auerswald et al. [24] (R2 = 0.98), but the values in the latter map
are nearly two times higher. This difference might be partially explained by the different
time periods, for which both maps are derived, as rain fall erosivity significantly increased
between 1970 and 2009 by 60% [21]. Differences between our estimates and those of
Hanel et al. [94] and Panagos et al. [95] are much smaller. The slope of the linear regression
model between the data used here and the one of Panagos et al. [95] is 1.01 (R2 = 0.95),
which is in line with the similar time period used in this study and by Panagos et al. [95]
and Hanel et al. [94].
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dashed lines show the linear models that were forced to pass through the origin. Figure created by
the authors.

In the future, the hydrological cycle is expected to intensify due to warming [96]. This
will lead to an increase in frequency and magnitude of heavy precipitation events [18,97–101].
Thus, it is likely that changes in future rainfall erosivity cannot be explained by changes in
average annual precipitation alone [102]. The relationship between rainfall erosivity and
annual precipitation sum derived from DIN 19708 [61] that we used here is strictly only
valid for the period for which the empirical relationship between R and annual precipitation
was derived. It is unlikely that this relationship will remain stationary [103]. An increase in
frequency and magnitude of intense rainfall events might cause higher rainfall erosivity
without a shift of the annual rainfall. Thus, the increases estimated here are conservative
and likely underestimate the trend [88].

For future research, we intend to calculate rainfall erosivity from convection-permitting
climate simulations. The DWD convection-permitting simulations [104–106] provide pre-
cipitation data at hourly temporal and 3 km spatial resolution for the reference period, the
near and far future. However, the downside of using convection-permitting simulations is
that to date no model ensembles are available.

3.4.2. Changes in Soil Erosion and Sediment Loads

Here, we analyze future changes in soil erosion and sediment loads due to climate
change only. We do not consider changes in land use. Increases in soil erosion are relatively
low in scenario RCP 2.6 but can be up to 14% in scenario RCP 8.5 for the 50th percentile of
climate simulations and the 50th percentile of Pareto optimal erosion models (Figure 7). In
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general, changes are lowest in the Lower Elbe and high in the Czech part of the basin. An
exception is scenario RCP 8.5 where the catchments of the Havel and Black Elster are also
strongly affected.
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Figure 7. Projected changes in erosion rates for the near future (2031–2060) and the far future
(2071–2100) with respect to the reference period (1971–2000). The map shows the 50th percentile
of the 23 Pareto optimal simulations run with rainfall erosivity derived from the 50th percentile of
average annual precipitation obtained from the DWD reference ensemble of climate simulations.

The uncertainty of emission scenarios and climate projections is propagated and
amplified with the uncertainty of soil erosion modeling. Thus, the ranges of values obtained
with the entire range of 23 Pareto optimal simulations run each with the 15th, 50th and
85th percentile of future rainfall erosivity and the emission scenarios RCP 2.6, RCP 4.5
and RCP 8.5 are very large (Figure 8). For example, at the Elbe at Hitzacker, simulated
loads in the far future range between 558 and 759 kt a−1. For all sites, some simulations
show a decrease while others show an increase with respect to the median of simulated
values for the reference period (Figure 8). Nonetheless, the median is increasing at all sites,
indicating that an increase in future sediment yields is likely. Ambiguous results in the
trend of future sediment loads due to different projections by different climate models
were also obtained by Pohlert [86], who simulated erosion and sediment yields in the Elbe
catchment with the PESERA model and climate data from five coupled runs of global and
regional climate models.

Even though many studies found an increase in precipitation extremes and rainfall
erosivity in the last decades in Central Europe [20,23,24,98,107–109], observed suspended
sediment concentrations and loads throughout Germany show a decreasing trend between
1990 and 2010 [81]. This unexpected observation cannot be explained by increasing retention
because the construction of large reservoirs and dams ceased in the 1980s, while the most
pronounced decrease in sediment concentrations occurred between 1995 and 2005 [81].
Hence, Hoffmann et al. [81] assume that the introduction of conservation agriculture and
reduced sediment connectivity due to the construction of local features such as rainwater
retention basins are the most likely reason for the observed trend. Because such local
measures are difficult to quantify at larger scales, there is a need for further research to
investigate the reasons for this decreasing trend despite an increase in rainfall erosivity.
Between 2010 and 2020, sediment concentrations remained more or less stable, and it is
entirely possible that the observed decreasing trend will shift towards an increasing trend in
suspended sediment concentrations in an intensified hydrological regime. While an increase
in suspended sediment concentrations does not hinder navigability of the waterway, it
can lead to increased costs for dredging in zones of low flow velocity, a decrease in water
quality and impairments for renaturation measures due to siltation. Thus, continued
efforts in erosion control and conservation farming are very important to reduce the impact
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of climate change on soil erosion and associated deliveries of suspended sediment as
well as particle bound nutrients and contaminants to water bodies. While our study
indicated a first approximation of likely changes due to rainfall erosivity, future modelling
exercises including extreme precipitation events, land use scenarios and scenarios for the
management of stormwater are urgently required.
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Figure 8. Boxplot of simulated average annual loads at different measurement sites along the Elbe
and its tributaries. For the reference period, the range of values obtained with the 23 Pareto optimal
erosion models is given, for the near and far future; all realizations of the 23 Pareto optimal solutions
run with the 15th, 50th, and 85th percentile of climate models for RCP 2.6, RCP 4.5 and RCP 8.5 are
represented. Note that for a better visualization, the y-axis is log scaled up to 200 kt a−1 only.

4. Conclusions

We used measured data as well as distributed numerical modeling to identify erosion
hotspots in the Elbe basin and to assess the impact of climate change on future soil erosion
and sediment delivery to water bodies. From this work, we can draw several conclusions:

• Even though they are prone to substantial errors, infrequent measurement of sus-
pended sediment concentrations at numerous water quality assessment sites can give
an estimate of spatial patterns of soil erosion and sediment delivery.

• Distributed modeling of soil erosion and sediment delivery with the WaTEM/SEDEM
is very helpful to identify spatial patterns of erosion rates within large basins. Nonethe-
less, it is subject to considerable uncertainties.

• Uncertainties in simulated erosion rates and sediment loads associated to model
parameterization are inevitable. For simulated mean erosion rates of single subbasins
it was up to 60%. This uncertainty can be assessed with stochastic modeling.

• Further uncertainties about future changes in rainfall erosivity are due to differences
between single members of the climate model ensemble used here and between the
emission scenarios. To assess this uncertainty, it is important to use climate model
ensembles instead of the output of a single model.
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• Major erosion hotspots are located in the central part of the basin, in a zone stretching
from the Saale catchment via the foothills of the Ore Mountains to Upper Lusatia, as
well as in the foothills of the Sudetes in the northeast of the Czech part of the basin.

• Despite the uncertainties in erosion modeling, it is very likely that future erosion and
sediment delivery will increase (mainly in the southeastern part of the basin) but the
absolute values are highly uncertain and depend strongly on future emissions.

• Further research is needed to assess the role of erosion control practices and sediment
retention measures as well as the impact of the likely future increase in extreme
precipitation on future soil erosion rates.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13111752/s1, Figure S1: Changes in rainfall erosivity for
the 15th percentile of climate models; Figure S2: Changes in rainfall erosivity for the 85th percentile of
climate models; Table S1: List of ensemble members included in the German Weather Service (DWD)
reference ensemble. Average_annual_loads.xlsx: File providing metadata of SSC measurement sites
and average annual loads.
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