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Abstract: Drought hinders economic and social growth in many areas of China, especially in livestock-
dominated Xilin Gol League in Inner Mongolia. Most studies exclusively utilize rainfall to measure
drought. To clarify the spatial and temporal distribution characteristics and evolution rules of
meteorological drought, monthly observation data from nine meteorological stations in Xilin Gol
were used to calculate the (effective drought index, EDI). We studied the spatiotemporal pattern
of drought and its influence on vegetation in Xilin Gol using the Mann–Kendall test, (empirical
orthogonal function, EOF) decomposition, and quantitative representation. (1) The annual average
EDI declined by 0.029/10a, and Xilin Gol experienced an average of 0.5 drought occurrences every
year. (2) A normal incidence in Xilin Gol is 67.17–72.65%, and that of severe drought is 0.02–0.99%.
(3) Xilin Gol’s drought intensity is mostly concentrated in the central, northeast, and southwest
regions, especially southwest and central. (4) The first two principal feature vectors in Xilin Gol
contributed 52.75% and 14.38% to the variance. (5) The average (normalized differential vegetation
index, NDVI )of desert, typical, and meadow steppe increased, especially in typical steppe (0.034/10a).
(6) In Xilin Gol, the NDVI–EDI correlation coefficient ranges from −0.642 to 0.888, with an average of
0.392. Only 1.7% of the areas are adversely linked.

Keywords: effective drought index; drought; vegetation index; grass; drought event

1. Introduction

Grassland is one of the most widely distributed vegetation types in the world, cover-
ing one-fifth of the Earth’s land surface. Due to climate change, population growth, and
socioeconomic development, more than half of the grassland in China has been degraded
to varying degrees [1,2]. Grassland degradation has reduced carbon sequestration and led
to serious environmental and social problems, such as reduced vegetation productivity
and soil quality, as well as dust storms [3,4]. Drought is a natural disaster that can occur in
any area [5,6]. Agriculture, animal husbandry, water resources, and society are impacted.
Drought is increasing due to global warming. It impacts Inner Mongolian agriculture and
livestock [7]. Drought evaluation and monitoring are necessary to limit damage and safe-
guard people’s safety. Even though drought is complex, it can be characterized by drought
indices, such as the standardized precipitation index (SPI) [8–11], standardized precipi-
tation evapotranspiration index (SPEI) [12–15], reconnaissance drought index (RDI) [16],
Palmer drought severity index (PDSI) [17–19], and effective drought index (EDI) [20]. The
drought index can be quantitatively described by basic attributes such as intensity, event,
and frequency [21]. The most popular approach is SPI. SPI is estimated using cumulative
rainfall probability, which has limits. SPEI considers rainfall and potential evapotran-
spiration to estimate drought severity [22]. Using different potential evapotranspiration
calculation methods leads to varied SPEI results [23]. EDI was created to circumvent these
restrictions, representing a milestone in drought research. EDI’s use of rainfall data makes
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it more representative of drought conditions than other indices and able to reflect the
genuine nature of drought in the research area. Some studies have shown the suitability of
EDI. In particular, ref. [24] demonstrated the advantages of EDI over SPI when monitoring
long-term and short-term droughts in Bangladesh.

One of many drought indices, SPEI is widely used to analyze the response of vegetation
to drought. At present, scholars across the world have carried out many studies on the
response of vegetation growth to drought. For example, Wang et al. [25] explored the
correlation between NDVI and drought index at the whole watershed scale in China and
found that the two showed strong positive correlation in arid and semi-arid areas. Similar
positive correlations were also found in other semi-arid areas around the world, and the
increase in NDVImax was accompanied by a significant increase in drought index in these
areas [26]. However, the response of different vegetation types to drought was also different,
and the larger drought index was not conducive to the growth of vegetation [27]. However,
EDI has not been used to analyze the vegetation response to drought when studying the
vegetation response to drought.

Grassland is a major form of vegetation in China, and it plays a vital role in maintain-
ing regional ecological balance and climatic management. Grassland is more vulnerable
to drought than other vegetation species, according to studies, and the resistance and
resilience stability of different grassland types to water scarcity and climate dryness are
extremely variable. Due to their shape and phenological patterns, grassland ecosystems,
for example, are exposed to drought and semi-arid settings for a long period and often
demonstrate significant drought resistance and stress tolerance after drought circumstances
end [28]. As a result, it is critical to investigate the drought response mechanisms of various
grassland types in order to conserve and care for grassland resources. Many researchers
have researched the drought characteristics of Xilin Gol using the SPI and SPEI [29,30];
however, the EDI has not been employed to define drought event characteristics. As a
result, this study used monthly rainfall data from the study area’s meteorological site from
1969 to 2018, and EDI was chosen as the evaluation index, along with drought and the nor-
malized difference vegetation index (NDVI), as the regional scale representation of green
vegetation and dynamic stability index, from the drought event, drought frequency, and
intensity of drought, according to the quantitative description of drought characteristics.
Second, in Xilin Gol, the empirical orthogonal function (EOF) was employed to investigate
the geographical and temporal distribution characteristics of drought. Finally, in order to
give a reference for ecological environment conservation and vegetation restoration in the
research region, the response connection of vegetation change to drought status during the
last 19 years was analyzed.

2. Study Area and Methods
2.1. Study Area

Xilin Gol League, which can be found in the middle of the Inner Mongolia Autonomous
Region and has a geographical position ranging from 111◦08′ to 120◦07′ east and 41◦35′ to
46◦40′ north, is not only one of China’s four natural pastures but also an example of a typical
temperate continental grassland found in the country. The topography is mostly composed
of high plains, and it varies in elevation from south to north. There are also alternating
patterns of different types of landforms. The area has an arid and semi-arid continental
monsoon climate, with annual precipitation ranging from 300 to 380 mm, increasing from
southwest to northeast, with rainfall primarily focused from June to August. The altitude
ranges from 700 to 2000 m (Figure 1b). Figure 1 illustrates both the overall distribution of
meteorological stations, as well as their individual locations.
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Figure 1. (a) Map of the study area of the Xilin Gol Region of China showing distribution of study 
area and meteorological stations. (b) Monthly rainfall changes at different stations from 1969 to 2018. 
(50915: Dong Ujimqin Banner, 53068: Erenhot, 53083: Naran-Bulag, 53192: Abag Banner, 53195: 
Sonid Left Banner, 53276: Zhurihe, 54012: Xi Ujimqin Banner, 54102: Xilin Hot, and 54208: Duolun). 

2.2. Data Sources 
The meteorological data were obtained from the China Meteorological Data Sharing 

Network http://data.cma.cn/ accessed on 1 June 2022), including monthly rainfall data of 
nine meteorological stations in Xilin Gol region from 1969 to 2018 (Figure 1a), mainly to 
calculate the drought index. 

2.3. Effective Drought Index 
EDI uses the precipitation of the current and antecedent months’ precipitation over 

time and assigns different weights to monthly precipitation to assess the cumulative level 
of precipitation needed to supplement the accumulated losses since the onset of drought 
[31]. The calculation procedure is as follows. 
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Here, EDI stands for the effective drought index, and (standard, ST )(DEP) is the standard 
deviation of the difference between the monthly cumulative effective precipitation and 
the average effective rainfall over the same period of 50 years. When the DEP number is 

50
91

5
53

06
8

53
08

3
53

19
2

53
19

5
53

27
6

54
01

2
54

10
2

54
20

8
1
2
3
4
5
6
7
8
9

10
11
12

M
on

th

Station

1.000 21.60 42.20 62.80 83.40 104.0
(mm) (b)

Figure 1. (a) Map of the study area of the Xilin Gol Region of China showing distribution of study
area and meteorological stations. (b) Monthly rainfall changes at different stations from 1969 to 2018.
(50,915: Dong Ujimqin Banner, 53,068: Erenhot, 53,083: Naran-Bulag, 53,192: Abag Banner, 53,195:
Sonid Left Banner, 53,276: Zhurihe, 54,012: Xi Ujimqin Banner, 54,102: Xilin Hot, and 54,208: Duolun).

2.2. Data Sources

The meteorological data were obtained from the China Meteorological Data Sharing
Network http://data.cma.cn/ (accessed on 1 June 2022), including monthly rainfall data of
nine meteorological stations in Xilin Gol region from 1969 to 2018 (Figure 1a), mainly to
calculate the drought index.

2.3. Effective Drought Index

EDI uses the precipitation of the current and antecedent months’ precipitation over
time and assigns different weights to monthly precipitation to assess the cumulative level of
precipitation needed to supplement the accumulated losses since the onset of drought [31].
The calculation procedure is as follows.

First, water stored due to precipitation accumulates over a year, while losses due to
evaporation are also taken into account:

EPi =
i

∑
n=1

[(
n

∑
m

Pm

)
/n

]
(1)

where Pm is the precipitation before month m, and 12 is taken as the preset value of i, which
is the most used water cycle. Therefore, is the cumulative value of available precipitation
on the time scale of December.

Secondly, the difference between the monthly cumulative effective precipitation and
the average effective rainfall is calculated using the following formula:

DEP = EP−MEP (2)

where (mean effective precipitation, MEP) is the average effective precipitation of each
month, (effective precipitation, EP) is the monthly cumulative effective precipitation, and
(deviation of EP, DEP) is the difference between the monthly cumulative effective precipi-
tation and the average effective rainfall in the same period of 50 years.

EDI = DEP/ST(DEP) (3)

Here, EDI stands for the effective drought index, and (standard, ST) (DEP) is the
standard deviation of the difference between the monthly cumulative effective precipitation

http://data.cma.cn/
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and the average effective rainfall over the same period of 50 years. When the DEP number
is negative, it indicates that the climate is drier than normal. Equations (1) and (3) are
recalculated, and the drought grade is categorized according to the EDI classification
technique suggested by Byun et al. (2010), as can be seen in Table 1, if the number of
consecutive months with a negative DEP is more than 12 months. In addition, drought
episodes, drought frequency, and drought severity were computed in order to provide a
quantitative description of the drought that has been affecting Xilin Gol.

Table 1. Drought classes of meteorological drought indices.

Drought Grade Drought Definition EDI Value

1 Normal −1 < EDI ≤ 1
2 Mild drought −1.5 < EDI ≤ −1
3 Moderate drought −2 < EDI ≤ −1.5
4 Severe drought EDI ≤ −2

2.4. Quantitative Characterization of Drought

The quantitative representation of drought is expressed by its attributes, which mainly
include drought frequency and drought intensity.

(1) Drought frequency

Drought frequency is the proportion of the number of months with drought in the
total number of months in the study period, and the larger the value, the more frequently
the drought occurs.

P = (m/M)× 100% (4)

Here, m is the number of months in which drought occurs, and M is the total number
of months.

(2) Drought intensity

Drought intensity was used to evaluate the severity of drought in the study area. In the
process of drought, the EDI value of drought to light drought is recorded as the cumulative
value of 1.5; the larger the value, the stronger the drought.

Q = ∑ EDIEDI≤−1.5 (5)

Here, EDIEDI≤−1.5 is an EDI value less than −1.5.

2.5. Mann–Kendall Test

For the time series X = {x1, x2, · · · , xn} with sample size n, a statistical variable Sk is
constructed [32]. Sk is the cumulative number of values at time i of the sample greater than
that at time j:

Sk =
k

∑
t=1

ri, k = 2, 3, · · · , n (6)

ri =

{
+1, when xi > xj
0, when xi ≤ xj

(j = 1, 2, · · · , i) (7)

Assuming that the time series X is random and independent and approximately
follows a normal distribution, the statistic UFk is defined as:

UFk =
Sk − E(Sk)√

Var(Sk)
k = 1, 2, · · · , n (8)

Var(Sk) =
k(k− 1)(2k + 5)

72
(9)
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E(Sk) =
k(k− 1)

4
(10)

where E (Sk) and Var (Sk) are the mean and variance of the cumulative number, respectively,
and the mean and variance of the cumulative number Sk. UFk is a standard normal
distribution; given a significance level α, if |UFk| > Uα/2, it indicates a clear trend in
the series.

2.6. Empirical Orthogonal Function Decomposition

From complicated drought variable fields, several spatial and temporal modes may be
extracted using empirical orthogonal function decomposition [33,34].

(1) Select the data to be analyzed and preprocess the data.

Generally, the original data matrix X is processed by an anomaly to obtain the data
matrix Xm×n. The product of the matrix Xm×n and its transpose matrix is calculated
to obtain:

Cm×n =
1
n

(
Xm×nXm×n

T
)

(11)

where Cm×m is the covariance matrix, Xm×n is the data matrix, m is the weather station, and
n is the year.

(2) Calculate the eigenvalues and eigenvectors of the matrix Cm×m.

The following must be met:

Cm×m ×Vm×m = Vm×m × Em×m (12)

where Vm×m is the eigenvector of matrix Cm×m, and Em×m is the diagonal matrix of m×m, namely:

Em×m =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 0 · · · λm

 (13)

where λ1, λ2 . . . λm is the eigenvalue of matrix Cm×m. The eigenvalues are arranged from
largest to smallest, and a column of eigenvectors corresponding to each nonzero eigenvalue
is regarded as a spatially distributed mode corresponding to EOF.

(3) Calculate the time coefficient matrix.

The time coefficient matrix can be calculated from the eigenvectors in the matrix Cm×m.
After Vm×m, the time coefficient matrix can be obtained as follows:

Tm×n = Vm×m
T × Xm×n (14)

where Tm×n is the time coefficient matrix.
In this study, the Mann–Kendall test and empirical orthogonal function decomposition

were performed with MATLAB (2020b, MathWorks, Torrance, CA, USA), and the spatial
distribution map was drawn using the inverse distance weight method in ArcGIS (10.6,
ESRI, RedLands, CA, USA).

3. Results
3.1. Variation Characteristics of Meteorological Drought in Xilin Gol
3.1.1. Interannual Variation and Mutation Detection of Drought

The annual average EDI value of Xilin Gol is the average value of nine meteorological
stations, and all stations are evenly distributed in each area of Xilin Gol, providing good
representation. It can be seen from Figure 2a that, from 1969 to 2018, the annual average
EDI in Xilin Gol decreased at a rate of 0.029/(10 a), and the drought trend was significantly
enhanced. During 1980–2000, the EDI value was generally greater than 0, indicating a
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stable period, while, during 1970–1980, the change was very drastic, indicating that the
altercation between dry and wet was quite obvious during this period. On the whole, the
EDI changed between −1.5 and 1.5. From 1969 to 2018, there were 0.5 drought events in
Xilin Gol every year on average. Among them, the year 2000 was the most prominent, with
moderate drought, severe drought, and the total number of drought events being 2.3 times
in total.
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Figure 2. (a) Interannual variation characteristics of 1969–2018 EDI. (b) EDI interannual Mann–
Kendall Test.

Figure 2b shows the M–K test results of the Xilin Gol effective drought index. As can
be seen from the figure, there were six intersections between the positive sequence curve
UF and the negative sequence curve UB during 1969–2000, namely 1972, 1974, 1978, 1980,
1990, and 1995. However, none of these intersections exceeded the 0.05 significance line.
Only 1995 was found to be a significant mutation year according to the sliding t-test. The
EDI value in 1995 was 0.78. The period after 2000 was mainly dry.

3.1.2. Spatial Distribution Characteristics of Drought

The geographical distribution of the occurrence frequency of the various drought
classes is depicted in Figure 3, which can be seen here. In Xilin Gol, the frequency of
normal occurrence spans from 67.17% to 72.65%, while the frequency of severe drought
ranges from 0.02% to 0.99%, as shown in the figure. There is a significant disparity in the
frequency of the various droughts. It is more likely for there to be a drought in the west,
northwest, and southeast regions of Xilin Gol, especially a mild drought, than in the center
and northeast regions. In general, the frequency of drought in the northwest of Xilin Gol is
higher than that in the west and southeast of Xilin Gol, which has clear zone characteristics.
This is because the northwest of Xilin Gol is more exposed to the elements. The regions
that have a high incidence of brief droughts are primarily located in close proximity to
Nalemblige and Zhurihe. The highest concentration of locations is found near Duolun,
with a high incidence of severe drought. The regions of Duolun and Erenhot mostly have a
high incidence of severe droughts. Since the temperature and amount of precipitation in
Xilin Gol are not consistently distributed in space from one location to the next, different
degrees of drought can occur with varying regularity.
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It can be seen from Figure 4 that the southwest and middle of Xilin Gol are areas
with high drought intensity. It is mainly the high latitude circulation anomaly that leads
to the increase in atmospheric pressure, the interdecadal weakening of the East Asian
monsoon, and the decrease in northward water vapor, which is represented by the decrease
in continuous precipitation days and precipitation intensity [35,36], and finally, the pre-
cipitation in Xilin Gol further tends to decline. From March to May, due to scarce rainfall
and high soil evaporation, the spatial distribution of drought was large. Among them, the
average drought intensity of each meteorological station in April was 8.51, and the number
of stations with the drought intensity above the average was five, accounting for about
55.56%, mainly distributed in East Wuzhumuqin Banner in the northeast, Narenbolige in
the middle, Erenhot in the southwest, and Zhurihe. The drought intensity of Complerog
reached 13.09. There is a large amount of precipitation from June to August, and the nature
of precipitation is mainly convective [37], which leads to the drought showing a high
distribution in the south and low in the north. From September to December, the spatial
distribution of the drought intensity gradually decreased from southwest to northeast,
and the high value of the drought intensity appeared in the southwest. In December, the
average drought intensity of each meteorological station was 13.65, and the number of
stations with drought intensity above the average was four, accounting for about 44.44%.
The drought intensity reached 17.24 in Nalemblige, Abaga Banner, and Sunite Left Banner
in the central region and Zhurihe in the south.
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3.1.3. Variation of Drought Trend

Figure 5 shows the spatial distribution of trend change of effective drought index in
Xilin Gol from 1969 to 2018, with negative values indicating drought trend and positive
values indicating wet trend. The effective drought index has some differences in different
months. From January to March, and from September to December, all the nine stations
showed a trend of drought. The probability of drought in September–November was
higher than that in March–May, showing a very obvious aggravation trend in the whole
historical period, and the trend in October was the largest, with a linear rate of −0.127/10a.
The drought trend was the lowest in February, with a linear rate of −0.091/10a. In the
4–9 August precipitation sites, the trend of drought and a moist and humid trend was
observed for May and June, respectively, for eight sites, including East Wuzhumuqin, East
Wuzhumuqin, Zhurihe, and West Ujimqin, with a maximum linear rate trend of 0.047/10.
Duolun was the wet site in July, and Dongwuzhumuqin Banner and Erenhot were the wet
sites in August.
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According to the analysis of the M–K trend test results of an effective drought index,
the proportion of stations with increasing drought trend in different months in Xilin Gol
was 12.03%. Among them, the proportion of stations with increasing drought trend in
different months was 5.55%, and the proportion of stations with increasing drought trend
that passed the significance test was 4%. Most of the stations with decreasing trend of
drought did not pass the 0.05 significance level test; only Zhurihe and Duolun in June were
the exceptions, indicating that most of the stations in Xilin Gol had insignificant changes in
the increasing and decreasing trends of drought.

3.1.4. Analysis of Temporal and Spatial Modes of Drought

Table 2 shows the EOF decomposition findings in Xilin Gol. The cumulative variance
contribution rate of the first five eigenvalues was 88.81%, but only the first two did not over-
lap, and the rate was close to 70%. These two eigenvectors can describe the geographical
distribution of drought in Xilin Gol from 1969 to 2018.
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Table 2. The contribution rate of the first five eigenvectors of EOF decomposition of Xilin Gol annual
effective drought index.

Modal Eigenvalue Variance Contribution
Rate/%

Cumulative Variance
Contribution Rate/% Characteristic Root Error Range

1 1.76 52.75 52.75 0.93 2.59
2 0.48 14.38 67.13 0.25 0.70
3 0.32 9.60 76.73 0.16 0.47
4 0.22 6.76 83.49 0.11 0.33
5 0.17 5.32 88.81 0.09 0.26

As can be seen from Table 2, the variance contribution rate of the eigenvector in mode 1
is 52.75%, much higher than that of other modes. Therefore, it is considered that the spatial
distribution of each component of the eigenvector in Mode 1 is the main spatial distribution
type of the meteorological drought field in Xilin Gol. In mode 2, the variance contribution
rate of the eigenvector is 14.38%, which is also a typical spatial distribution type of the
meteorological drought field in Xilin Gol. According to the above analysis, it is clear that
there are two main types of meteorological drought fields in Xilin Gol, namely the uniform
type and southeast–northwest inverse-phase type.

Spatial distribution maps of modes 1 and 2 were drawn based on inverse distance
weighting (Figure 6). As can be seen from Figure 6a,b, the coefficient of the first eigenvector
has a consistent positive distribution with a small difference, indicating that precipitation at
each station makes a balanced contribution to drought. The larger values are mainly located
in the north of Xilinhot City and Abaga Flag, as well as the south of Zhengxiangbai Flag and
Taipishi Flag, with an overall decrease in the east and west directions. The first principal
component mainly indicates that the precipitation of Xilinhot City and Abaga Banner in
the central part and Zhengxiangbai Banner and Taipu Banner in the south have a greater
impact on drought. The spatial variation characteristics represented by the first eigenvector
can be regarded as the main form of drought spatial distribution in Xilin Gol League. The
spatial distribution of the second eigenvector is generally characterized by the decreasing
trend of drought from Sunite Right Banner, Xianghuang Banner, Zhengxiangwhite Banner,
Zhenglan Banner, Duolun County, and Taipiliqi in the southwest to the north and northeast
counties, and the most arid area is located in Sunite Right Banner. It corresponds to the
minimum negative value of −0.44, and the maximum value is Wulagai area in Eastern
Uzhumuqin Banner.
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As can be seen from the time series of the first mode (Figure 7a), the overall trend is
decreasing, especially from 2000 to the end of 2010, with a standard deviation of ±1.34.
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Since this mode has a large weight, it can basically reflect the drought situation of the whole
region in each year. From the perspective of individual years, 1970, 1992, and 1998 were
much higher than 1.34, indicating that these years were wetter, while the time series of 2001,
2005, 2006, 2007, and 2011 were lower than −1.34, indicating that the drought was more
severe. The time series of the second mode showed an upward trend (Figure 7b), with a
standard deviation of ±0.70. In terms of individual years, the time series of 1989, 1990, and
2001 were far greater than 0.84 and relatively wet. However, the time series of 1973, 1975,
1976, 1979, 1996, 2009, and 2010 were less than −0.70 and relatively dry. According to the
records of Meteorological Disaster Dictionary, 1975, 1976, 1979, 2009, and 2010 were the
years of severe drought in Xilin Gol, consistent with the present study and also reflect that
the EDI has good adaptability in this region.
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3.2. Characteristics of Vegetation Change in Xilin Gol

Figure 8 shows grassland NDVI fluctuation and distribution in Xilin Gol from 2000
to 2018. Figure 8a shows that the average NDVI of the desert steppe, typical steppe,
and meadow steppe has increased over the past 19 years, notably in the typical steppe
(0.034/10a). On the whole, the average annual NDVI also fluctuated with a growth rate of
0.021/10a. The minimum (0.358) and maximum (0.508) NDVI values occurred in 2000 and
2018, respectively. Therefore, the vegetation cover of Xilin Gol grassland was improved.
As shown in Figure 8b, the mean NDVI of the vegetation in this area ranged from 0
to 1. Affected by grassland types, the NDVI of Xilin Gol showed an increasing spatial
distribution pattern from southwest to northeast, with obvious spatial heterogeneity. The
low NDVI areas were mainly distributed in desert steppe areas such as Sunite Left Banner,
Sunite Right Banner, Erenhot Banner, and Xianghuang Banner. NDVI high values are
mainly distributed in meadow steppe and typical steppe areas in East Uzhimuqin Banner
and West Ujimqin Banner. It can be seen from Figure 8c that grassland NDVI in Xilin Gol
showed an obvious decreasing trend from 2000 to 2018, mainly distributed in typical steppe
areas but also in desert areas and meadow steppe areas, with the maximum decreasing rate
reaching −0.042/10a. The NDVI in the center part of East Uzhumuqin Banner, north of
Xilinhot and south of Duolun, increased by 0.031/10a.
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Figure 8. Changes in Xilin Gol’s NDVI in space and time from 2000 to 2018: (a) the trend of NDVI
change between years in different types of grasslands, (b) the spatial distribution pattern of annual
NDVI, and (c) the spatial distribution pattern of the rate of NDVI change.

3.3. Effects of Drought on Vegetation

According to the findings (Figure 9), the geographical distribution of the correlation
coefficient between the NDVI and EDI in Xilin Gol varied from −0.642 to 0.888, and the
average correlation coefficient was 0.392. The correlation coefficient ranged from −0.642 to
0.888. Only 1.77% of the regions had a negative correlation, while the remaining 98.23%
of the regions had a positive correlation. The regions that had a negative connection were
primarily dispersed among different kinds, with some typical steppe regions also included.
As a whole, the major area included 37.72% of the whole area, while the unimportant area
was responsible for 62.28% of the entire area. The correlation coefficient between the NDVI
and EDI was 0.386 in the typical steppe, which was the lowest of the three types of steppes
studied. The correlation value between the NDVI and EDI was 0.448 in the desert steppe
and 0.394 in the meadow steppe. It is clear that the flora that grows in the various types
of grasslands has varying degrees of sensitivity to the effects of drought, with the desert
steppe being the most vulnerable. The lack of precipitation is the primary reason that
inhibits the expansion of vegetation in Xilin Gol, which is located in semi-arid and desert
areas. The overall rate of plant development in Xilin Gol was quite sensitive to the level
of dryness that was present. The regions of Sunite Left Banner, Sunite Right Banner, and
Erenhot were the ones that generally had the highest correlation coefficient between the
vegetation index and the EDI. The region known as Duolun has the correlation coefficient
with the lowest value.
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4. Discussion

The weak decrease in precipitation in Xilin Gol in recent years is believed to be the
main cause of the increase in meteorological drought, but the overall trend is similar
to the results of [38] in their study on the spatiotemporal distribution characteristics of
drought using standardized precipitation evapotranspiration index. Xilin Gol’s droughts
are regular, long-lasting, and evenly distributed. Severe droughts occur throughout winter,
spring, and early summer. Autumn drought has increased in recent years [39]. Due to
Westerly circulation and altitude, the dry season after September is characterized by low
temperatures, fierce winds, and minimal rain. Through geographical and temporal drought
analysis, this research acquired the uniform drought distribution pattern of the whole
Xilin Gol and the southeast-northwest antiphase, which was largely compatible with the
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constant trend of Xilin Gol League [40]. The number of modes and variance contribution
rate function differently due to the drought index and size. The EDI can reflect Xilin Gol’s
spatial and temporal variety, but it has flaws. The temperature, evaporation, sunlight hours,
and wind speed also impact drought. The EDI is based on monthly precipitation, which
cannot represent drought length and alleviation mechanisms. With the spatial variability
of climatic factors and the area natural environment, further study is needed to understand
the spatial and temporal distribution of drought and its internal mechanism in Xilin Gol.

The NDVI of Xilin Gol was improved overall but deteriorated locally. This is consistent
with the research conclusions of [41,42]. Since 2000, Xilin Gol has gradually implemented
the policy of returning farmland to forest or grassland. In the past 19 years, have achieved
remarkable results, and the vegetation coverage rate has been improved. In the eastern
part of Xilin Gol, the vegetation is relatively stable, but there is some attenuation in parts.
The overall growth of vegetation in the central region is gentle, and the vegetation in some
areas (Duolun County, Taiwusi Banner) is improved. The reason for this is that Taifusi Qi
and Duolun County are the key implementation areas of ecological construction projects.
The projects are comprehensive, and the implementation effect is good, not only improving
the local ecology but also optimizing the industrial structure and promoting economic
development [43–46]. The study area is divided into meadow steppe, typical steppe, and
desert steppe from east to west. Reference [47] showed that the utilization efficiency of the
three types of grassland vegetation to precipitation decreased successively. The authors
of [48] believed that different types of grassland resulted in different resilience, stability,
and ecological fragility of the ecological environment. the NDVI of meadow steppe, typical
steppe, and desert steppe showed an upward trend, especially the improvement trend of
typical steppe vegetation. However, the improvement trend of desert steppe vegetation
was low, mainly distributed in Sunite Left Banner and Sunite Right Banner. Due to the
difference of grassland types, the ecosystem structure was different, so the vegetation
coverage was different. Desert steppe is more susceptible to climate change because of its
low ability to adapt to climate change.

As a means of coping with the effects of drought, plants are able to slow their rates of
photosynthesis, respiration, and overall growth when dry conditions prevail [49]. Since
the structure and function of the many forms of vegetation are not identical, these plants
have varying degrees of adaptation to the temperature and surroundings [50]. From the
point of view of spatial distribution, the correlation between the NDVI and EDI was high
and significant in the western part of the study area, whereas in the central and southern
parts of the study area, the correlation between the NDVI and EDI was weak and mostly
insignificant. This could be because of the distribution characteristics of precipitation and
vegetation types in the study area. Water deficit events were more likely to occur in the
western part of the study area than in the eastern part of the study area, and the closer
to the western part of the study area, the higher the frequency and intensity of drought.
The distribution of precipitation in the study area showed a decreasing trend from east
to west, and water deficit events were more likely to occur in the western part of the
study area than in the eastern part [51]. Second, when looking at the study area from the
perspective of the distribution of the different types of vegetation, the northeastern part of
the study area is dominated by typical grassland and meadow grassland, and the growth of
vegetation in these areas is more likely to be restricted because of the water conditions [52].
As a result, there is a significant relationship between the NDVI and EDI in this region.
However, because human activities such as irrigation and fertilization generated favorable
circumstances for crop development in the agricultural-dominated regions of Taipusi Qi,
Duolun, Zhenglan Qi, and Zhengxiangbai Qi, the association between the NDVI and EDI
was low in these parts of the region. In general, the NDVI and EDI values of the various
grassland types in the study area showed a high correlation. This was primarily because the
vegetation plants of the various grassland types were small, the roots of herbaceous plants
were shallow, and they were sensitive to external environmental disturbance. The accessible
water content of the soil decreases during droughts, and the soil normally takes water from
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the top and middle layers. Droughts also react very quickly to changes in rainfall. The
rapid response of the plant in this area to drought is due to the minimal amount of water
that it is able to store; this is the main reason for the rapid response. It is consistent with the
conclusion that the vegetation status in the majority of areas in Inner Mongolia is strongly
positively connected with drought degree because there is a significant positive correlation
between the growth of vegetation and the degree of drought [53]. Due to this, dryness has
a dampening impact on the development of plants with shallow root systems.

Despite this, there are still several limitations to the methodology of the research. For
instance, after interpolation, the spatial resolution of the EDI dataset that was utilized in
this work had a lower resolution, and there is a possibility that resampling to the same
resolution as the NDVI would result in some uncertainties. Additionally, although the
distribution of plant types during the time of the research is considered to be constant
by default, in reality, the distribution of vegetation shifts as a result of climate change
and human activity [54,55]. Previous research demonstrates that the closer the area to the
city, the earlier the growing season begins and finishes [56]. Moisture and climate also
affect plant development [57,58]. This research solely addresses the EDI’s influence on
vegetation, and disregarding other factors skews the results. With worsening drought, the
lag impact on vegetation lasts longer, whereas the cumulative effect is shorter, and the lag
effect intensity on the NDVI is significantly smaller than the cumulative effect [59]. Future
study must address the aforesaid issues.

5. Conclusions

Using the EDI, we looked at how drought changed over time and space in Xilin
Gol from 1969 to 2018 and explored the patterns we saw in the drought’s temporal and
geographical distribution. The following inferences were made:

This study comprehensively describes the severity, frequency, intensity, and geographi-
cal extent of drought in Xilin Gol, Inner Mongolia, during the study period (1969–2018). The
results showed that the drought degree of the study area increased on the whole, and the
EDI changed greatly during 1970–1980, indicating that the dry and wet transition occurred
in the region. The drought frequency was higher in the west, northwest, and southeast
of the study area but lower in the middle and northeast of the study area. The drought
frequency in the northwest was higher than that in the west and southeast of the study area.
However, the intensity of drought was mainly concentrated in the central, northeastern,
and southwestern regions, and the intensity of drought in the southwest and central regions
was the highest. In addition, according to the spatial distribution map of the drought index
trend variation, the development trend of drought in 12 months of the year was different,
showing a trend of aggravating the uneven distribution of the precipitation season, with
the largest trend in October at a linear rate of−0.127/10a. The trend of drought in February
was the smallest at a linear rate of −0.091/10a. According to the results of the spatial and
temporal mode analysis of drought, there are two main types of meteorological drought
fields in Xilin Gol, namely the uniform type and southeast–northwest inverse-phase type.
Finally, this study analyzed the spatiotemporal dynamic trend of the NDVI of different
grassland types and its response to drought from 2000 to 2018 and found that the annual
NDVI increased by 0.021/10a. The NDVI of the desert steppe, typical steppe, and meadow
steppe showed an upward trend, with the most significant increase of 0.034/10a in typical
steppe. The correlation coefficients between the NDVI and EDI ranged from −0.642 to
0.888, with an average of 0.392. A total of 98.23% of the areas showed positive correlation,
and 1.7% showed negative correlation. Most of the negative correlation areas were differ-
ent species and grasslands. Significant areas accounted for 37.72%, and unrelated areas
accounted for 62.28%.
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