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Abstract: The geological storage of CO2 is a critical technique for reducing emissions, which signif-
icantly contributes to the mitigation of the greenhouse effect. Currently, CO2 is often geologically
stored in coal seams, hydrocarbon reservoirs, and saline aquifers in order to store CO2 and improve
the oil and gas recovery simultaneously. Shale formations, as candidates for CO2 storage, are drawing
more attention because of their rich volumes. CO2 storage through shale formations in the Sichuan
Basin, China, has tremendous potential because of the readily available CO2 injection equipment,
such as abandoned shale gas wells. Therefore, we review the potential of using these wells to store
CO2 in this paper. Firstly, we review the status of the geological storage of CO2 and discuss the
features and filed applications for the most studied storage techniques. Secondly, we investigate
the formation properties, shale gas field development process, and characteristics of the abandoned
wells in the Sichuan Basin. Additionally, after carefully studying the mechanism and theoretical
storage capacity, we evaluate the potential of using these abandoned wells to store CO2. Lastly,
recommendations are proposed based on the current technologies and government policies. We
hope this paper may provide some insights into the development of geological CO2 storage using
unconventional reservoirs.

Keywords: CO2 geological storage; Shale Reservoir; competitive adsorption; CO2 storage potential;
CO2 emission reduction

1. Introduction

Recently, global warming has attracted more concern because of the increasing con-
sumption of fossil fuels. Therefore, many countries are striving to alleviate global warming
by proposing measures to control greenhouse gas emissions. To achieve this goal, a method
of carbon neutrality has been proposed [1], the aim of which is to balance anthropogenic
emissions via sources and removals via sinks of greenhouse gases in the second half of the
21st century. China has been the world’s largest emitter of greenhouse gases for 14 consec-
utive years since 2006, according to the statistics from the Global Carbon Atlas [2]. China
attaches great importance to this. In September 2020, at the 75th United Nations General
Assembly, China solemnly pledged to reach peak carbon dioxide emissions by 2030 and to
strive to achieve carbon neutrality by 2060 [3].

A number of emission reduction measures have already been implemented, such as
developing wind, solar, hydro, and nuclear energy sources. In particular, the utilization
and geological storage of CO2 are also critical matters for emission reductions. Coal seams,
saline aquifers, and hydrocarbon reservoirs are the main places for CO2 storage. The
Sleipner Project, the world’s first commercial-scale CO2 storage project in Norway, has
successfully injected tens of millions of tons of CO2 into the saline formation of Utsira
sandstone [4]. The CO2 injection in the Weyburn Project in Canada achieves CO2 storage
while enhancing oil recovery [5]. In China, demonstration projects for CO2-enhanced
oil and coal belt methane recovery have been implemented in the Jilin Oilfield, Shengli
Oilfield, and Qinshui Coalfield [6]. In addition, pilot tests of CO2 sequestration in coal
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seams have been conducted in Australia and Canada [7]. China’s first demonstration
project for geological storage of CO2 in deeply saline aquifers is located in the Ordos Basin
of Inner Mongolia. During 2011–2015, CO2 was injected into the saline aquifers at a rate
of 100,000 tons/year [8]. The project has largely contributed to the development of CO2
storage technology in China.

Inspired by the successful application of CO2 storage in hydrocarbon reservoirs and
saline aquifers, injecting CO2 into abandoned shale gas wells for EOR and CO2 storage
has become a potential candidate approach for CO2 storage. The low porosity and low
permeability of shale reservoirs require an extensive well network to ensure the efficient
extraction of shale gas, resulting in a large number of wells. These wells are abandoned after
a certain period of time because of declining production rates or due to engineering factors
such as casing damage, aging equipment, and downhole junk. The cost of shutting down
and disposing of these abandoned wells is about $50,000, and it would be a huge waste
if these abandoned wells are not used wisely [9]. It is critical to employ these abandoned
shale gas wells to store CO2 and thereby to further mitigate the greenhouse gas effect, as
well as to enhance the recovery factor of shale resources.

China has actively explored the development of relevant theories and technologies
and strived to shorten the gap with the international advanced level in terms of uncon-
ventional oil and gas recovery, geological storage, and CO2 storage monitoring and early
warning systems.

2. Advances in CO2 Geological Storage

Carbon capture and storage (CCS) is one of the most effective ways to mitigate global
warming and reduce carbon dioxide emissions [10–12]. The most studied techniques in-
volve the storage of CO2 in coal seams, hydrocarbon reservoirs, and saline aquifers [13–15].
CO2 storage in shale has drawn growing attention recently. So far, CO2 has been success-
fully stored in hydrocarbon reservoirs, saline aquifers, and non-profitable reservoirs, which
significantly contributes to alleviating the effects of greenhouse gas. Different CO2 storage
mechanisms are involved in these geological storage processes, which are thoroughly
reviewed below.

2.1. CO2 Storage in Coal Seams

The deeply stored coalbed methane (CBM) formation is the targeted location for CO2
storage. The impermeable overburden rock helps to store CO2 in the pores and fractures of
coal seams over the long term. Meanwhile, the injected CO2 can displace the CBM, whose
economic gains can lower the cost of the CO2 storage [16].

Figure 1 shows a schematic diagram of the stored CO2 in a coal seam. The compressor
at the surface compresses the CO2 into a supercritical state prior to injection. Then, super-
critical CO2 is injected into the specified coal seam through the injection wells. The injected
CO2 exists mainly in the adsorbed and free states. After about two months of soaking [17],
the adsorbed and free gases reach equilibrium in the reservoir, and the injected CO2 is fully
adsorbed into the coal seam and displaces the CH4 adsorbed on the inner surface of the coal
pores [18]. Because the coal seams have approximately two times the adsorption capacity
for CO2 than for CH4 [19–21], this implies that the coal seams are capable of adsorbing
more CO2. Meanwhile, the injection of CO2 increases the formation energy at the wellhead
of the injection well and pushes the gas in the coal seam to flow into the production well.
The coalbed methane is then pumped out by deep well pumps and water–gas separation is
performed to obtain high-purity coalbed methane.

The first tests of geological storage of CO2 in coal seams and improved coal bed
methane recovery were applied in the San Juan Basin, USA, in late 1993. Then, a pilot
test of injecting pure CO2 was conducted in the Allison coal seam of the San Juan basin;
the stimulating effect was remarkable and the recovery factor of the coalbed methane was
enhanced by about 18% [22]. Subsequently, pilot tests have been conducted in Alberta in
Canada, Ishikari in Japan, and Silesian in Poland, as well as in other coal seams [23–26]. In
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2004, mini-pilot tests involving CO2 huff-puff injection were carried out in the Qin Shui
Basin, whose preliminary results confirmed the stimulating effect of CO2 injection and
the feasibility of CO2 storage [17]. Parson and Keith [27] estimated that the global CO2
storage capacity of coal seams is about (36.6 − 110) × 1010 t. In fact, these projects have not
achieved the desired effect of being able to store large amounts of CO2. The problem of coal
swelling due to CO2 injection is still difficult to solve, which greatly limits the large-scale
application of this method.
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Figure 1. Schematic diagram of CO2 storage in coal seams: (a) compressor; (b) water–gas separation
system; (c) pump; (d) deep well pump; (e) coal seam.

Currently, the storage of CO2 in coal seams is still in the research and development
phase, and commercialization and large-scale promotion projects have not yet been imple-
mented. There are still many technical barriers to overcome; for example, the injected CO2
will make the coal swell, reduce the permeability of the coal seams, and contaminate the
gas flow path [28].

2.2. CO2 Storage in Hydrocarbon Reservoirs

Mature hydrocarbon reservoirs, which are produced over a long time and exhibit low
economic value, are used for CO2 storage. When unexploited, most of the hydrocarbon
reserves indicate the integrity of the reservoir when no oil or gas leaks occur for millions of
years, which provides a safe location for future CO2 storage. After years of research, this
technology is one of the most mature storage technologies.

Existing facilities can be used to store CO2 directly, which significantly increases the
efficiency of the CO2 storage. Once the storage depth is deeper than 800 m, the injected CO2
will be in the supercritical state corresponding to the reservoir temperature, resulting in
the large-scale and stable storage of CO2 [29]. The majority of the CO2 is stored in the pore
space, while part of the CO2 is dissolved in the residual fluid and a small part of the CO2
mineralizes in the underground rock. Meanwhile, both the viscosity and interfacial tension
of the crude oil can be lower after the dissolution of CO2 [30]. Furthermore, the injection
of CO2 helps maintain the reservoir pressure and displaces hydrocarbon resources, which
enhances the oil recovery and extends the producing period of the well [31].

The concept of CO2 flooding was first proposed during the 1920s and matured in
the 1980s. In the Weyburn Field, Canada, large-scale CO2 flooding projects have been
carried out since 2000; more than 15 billion tons of CO2 have been injected so far [32]. The
statistics show that the mass of CO2 that can be stored using globally depleted hydrocarbon
reservoirs is about 923 Gt, which is equivalent to 125 years of global CO2 emissions from
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fossil-fuel-burning power plants [33]. Injecting CO2 into reservoirs has obtained significant
results in both EOR and CO2 storage.

2.3. CO2 Storage in Saline Aquifers

Saline aquifers are mostly sandstone, shale, and argillaceous rocks, which are widely
distributed in inland and offshore sedimentary basins. Compared with coal seams and
hydrocarbon reservoirs, saline aquifers possess better geological conditions for CO2 stor-
age in terms of their storage capacity, duration, technical difficulty, and environmental
impact [34]. The CO2 injected into the saline aquifers diffuses and flows into the porous
media, which is stored underground after a series of physical and chemical processes.

The main mechanisms for storing CO2 in saline aquifers are summarized in Figure 2,
including structural trapping, hydrodynamic trapping, residual trapping, dissolution trap-
ping, and mineralization trapping [7,35]. Structural trapping refers to the immobilization
of CO2 under the confinement of a cap rock or structural trap so that the CO2 can be stored.
Due to the effect of gas–liquid interfacial tension, part of the CO2 is trapped in the pores,
resulting in CO2 storage as the form of residual gas. The hydrodynamic trapping mecha-
nism involves the blockage of CO2 by water, which occurs when the flow pressure of the
groundwater is opposite to the buoyancy direction of the CO2 migration and approximately
equal to that of the buoyancy force of the CO2. Meanwhile, part of the CO2 can be dissolved
in formation water and stored. The key influential factors affecting the solubility of CO2
in water include the temperature, pressure, and salinity of the formation water. As the
most stabilized trapping approach, mineralization trapping plays an important role in CO2
storage. The principle of this process is the formation of stable carbonate minerals by the
acidized water (H2CO3 (aq), HCO3

− and CO3
2−) after the dissolution of CO2 and mineral

ions (Ca2+, Mg2+ and Fe2+) [36].
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Figure 2. Schematic diagram of CO2 storage mechanism in saline aquifers: (a) residual trapping
((a1) dissolved trapping; (a2) mineralization trapping; (a3) residual trapping); (b) hydrodynamic
trapping; (c) structural trapping ((c1) anticline trapping; (c2) block trapping; (c3) pinch out trapping).

The CO2 can be transformed into a supercritical fluid under supercritical conditions
(T > 31.1 ◦C, p > 7.38 MPa) [37]. The supercritical CO2 exhibits high density and low
viscosity, resulting in great solubility and diffusivity in formation water [38]. Injecting CO2
under supercritical conditions can significantly enhance the capacity of the CO2 storage.
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Demonstration projects of CO2 storage have been carried out successively in many
countries. The Sleipner Project in the North Sea of Norway, started in 1996, was the first
demonstration project, with a designed storage capacity of 220 million tons of CO2. In 2004,
the United States also started the construction of the Frio Demonstration Project [39]. In
China, one of the representative projects of CO2 storage in deep saline aquifers is the CCS
Demonstration Project in Shenhua, whose first phase was completed in 2016. A total of
300,000 tons of CO2 was injected into a deep saline aquifer in the Ordos Basin, making it
the largest CO2 storage project in the saline aquifer in Asia [40].

From the existing worldwide experience of CO2 injection, the geological storage of CO2
in saline aquifers is feasible from a technical point of view. However, only in certain areas
of the world are these saline aquifers available. Additionally, there are many problems to
be solved, such as the distribution of storage projects in different subsurface environments
around the world, the lack of site characterization information, the need for different
monitoring techniques, as well as legal and regulatory issues.

2.4. CO2-ESGR

Using CO2 to enhance the shale gas recovery (CO2-ESGR) is a new method of CO2
geological storage and a shale gas development technique. This method employs CO2
fracturing fluids to replace the conventional fracturing fluids, which can be applied in
stimulation, primary recovery, secondary recovery, and CO2 geological storage processes.
The CO2 can be massively recycled via this technique, which saves the company money
and increases the operational efficiencies. However, this technique is still in the feasibility
analysis and pilot testing phase.

Various scholars have demonstrated the great potential of CO2 storage in shale [41,42].
Compared with coal seams, hydrocarbon reservoirs, and saline aquifers, shale is the safest
geological site for CO2 storage due to its extremely low permeability. In addition, the shale
reservoirs are much more abundant than coal seams or hydrocarbon reservoirs, which
further indicates the possibility for massive CO2 storage.

3. Exploitation Status of Shale Gas in the Sichuan Basin

In this section, we review the exploitation status of shale gas in the Sichuan Basin,
China. It is estimated that the recoverable reserves of shale gas in China exceed 36 × 1012 m3.
The total amount of shale gas resources in the Sichuan Basin is about 41.5 × 1012 m3 [43],
which ranks first for shale gas reserves in China. The abundant shale formations and
considerable number of wells provide a guarantee for CO2 injection and storage through
abandoned shale gas wells. The production status of the shale gas indicates the formation
characteristics and provides information for assessing the feasibility of the CO2 storage,
which needs to be studied thoroughly.

3.1. Shale Gas and Shale Reservoir Characteristics

Methane is the primary component of shale gas. The main occurrence forms of shale
gas are adsorbed and free, and the proportion range of adsorbed gas is about 20–85% [44].
The origins are mainly biological, thermogenic, and a combination of the two [45–47].

Shale gas reservoirs are “self-generation and self-storage” gas reservoirs [48,49], with
independent oil and gas systems. The reservoirs are characterized by low porosity and
ultra-low permeability. The nanoscale pore throat systems are well developed, the porosity
is generally less than 10% [50], and the permeability is generally less than 10−4 mD [51].
Shale reservoirs have the characteristics of a large area and wide range. Generally, reservoirs
are stored at depths of 200–3500 m and have thicknesses ranging 90–180 m [52].

The shale mainly consists of organic content, quartz, and clay minerals. According
to the exploration and development experiences, the threshold values for the average
organic carbon content of prospective, favorable, and core areas are 0.5%, 1.5%, and 2.0%,
respectively [53]. The total organic content (TOC) values of the shale gas reservoirs in
the Wufeng Formation and Longmaxi Formation range from 0.2% to 12% [54], which are
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at a low level but are greater than the lower limit of shale gas hydrocarbon generation
(TOC > 0.5%).

3.2. Exploration and Development Process of Shale Gas

Before 2009, there was a lack of geological understanding and evaluation of shale
gas in the Sichuan Basin. After more than a decade of unremitting exploration, the large-
scale commercial development of shale gas has occurred successively through formation
selection, pilot testing, and demonstration area construction [55].

Since the discovery of the first giant gas field in Puguang, Sichuan Basin, large shale
gas fields have been successively explored in the Changning, Weiyuan, and Fuling shale gas
fields. The Changning, Weiyuan, and Fuling shale gas blocks are located in the southern,
southwestern, and near the eastern boundary of the basin, respectively (Figure 3) [56]. The
shale blocks have equivalent vitrinite reflectance (EqVRo, %) values ranging from 2.4% to
3.8%, indicating that they are largely thermally over-mature and in a dry gas generation
stage [57–59]. Table 1 shows the published production data for these areas. A total of
about 13,703 million tons of shale gas has been produced in these areas; the production rate
increases year-by-year.
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Table 1. Production overview of the Changning, Weiyuan, and Fuling shale demonstration blocks [60–67].

Blocks

Daily Gas
Production

per
Well/×104 m3

Stored
Depth/m

Favorable
Area/km2

EUR per
Well/×108 m3

Well
Numbers

(2020)

Cumulative
Production/×
108 m3 (2020)

Accumulative
Prove Geological
Reserves/×108 m3

Changning
block 23

<4000
4450 1.13 >1000 115 >6000

Weiyuan
block 17 8500 0.78 6200

Fuling block 18.3 6000 0.85 >400 78 9000

Based on the production decline trend in the currently available production data, there
is no stable production period for shale gas wells. Even if the production is allocated to
less than 1/3 of the open flow rate, the production can only be stable for about 3 years, and
the annual decline rate can reach 50% or more. The overall production and development
cycle of shale gas wells is estimated to be less than 40 years [68]. To achieve a stabilized or
enhanced production rate, we need infill wells that increase the total well number. As the
production continues, a large number of wells will be abandoned due to production decline
or flawed operations. Taking the Changning, Weiyuan, and Fuling blocks as examples, it is
estimated that more than 500 wells will be abandoned shale gas wells by 2030, providing a
large number of good injecting channels for storing CO2.

3.3. Characteristics of Abandoned Shale Gas Wells

Due to the ultra-low porosity and permeability of shale reservoirs, fracturing is re-
quired to achieve an industrial production rate [69,70]. The stimulating effect of hydraulic
fracturing directly affects the fluid flow capacity and CO2 storage potential of the reser-
voir. Therefore, a better understanding of the fracturing performance is critical to the
evaluation of the storage of CO2 in fractured wells. At present, micro-seismic monitoring,
post-fracturing evaluation, flow-back data, and production information are used to design
and adjust the CO2 storage scheme [71].

The statistics of the hydraulic fracturing operations show that the average lateral
length of the stimulated section is about 1500 m and the average fracturing stage is about
21. Various scholars have attempted to understand the fracturing performance and fracture
geometry from different perspectives. Some representative results are listed below.

Liu et al. [72] used the microseismic monitoring technique to interpret and analyze the
fracture complexity of three fractured wells in Fuling. The results showed that the fracture
heights are between 20 to 80 m, and the stimulated reservoir volume (SRV) is greater than
3.56 × 107 m3. Applying the same methodology, the analyses of TYB well in Jiaoshiba
showed that the main fracture length range is between 310 m and 1118 m and the SRV is
about 3.273 × 107 m3 [73].

Shu et al. [74] proposed a new post-fracturing analysis method using the material
balance theory to evaluate the shale gas well productivity. They found that the fracture
conductivity of the three tested wells in Jiaoshiba is greater than 673 mD·m. By combining
pressure buildup tests and microseismic monitoring, Liu [75] found that the fracture half-
length of the Weiyuan Shale Gas I well is about 10 m through curve fitting. The fracture
complexity increases and the permeability enhances by several orders of magnitude.

Based on the flowback data, Wang et al. [76] used the aqueous phase seepage mathe-
matical model for gas well production at a constant production rate in the calculation; the
estimated fracture width of Longmaxi Well I is about 0.02 m and the fracture pore volume
is about 12,572 m3.

The complex fracture network and large SRV provide excellent seepage channels and
storage spaces for the injected CO2. The fracturing performances, including the fracture
length, number, and conductivity, determine the potential for CO2 storage in fractured
shale gas wells. Chen et al. [77] quantitively evaluated the CO2 storage potential through
shale gas wells. Table 2 summarizes the recommended indices and major influential factors
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of this process. Based on the typical fracture scales of hydraulic fracturing operations
evaluated via the abovementioned different methods, the shale gas well in Sichuan Basin
meets the storage requirement.

Table 2. Impact of engineering factors on storage [77].

Influential Factors Sensitivity Analysis Recommendations

Fracture conductivity
The storage potential increases with the increase in fracture

conductivity; the enhancement becomes stable once the
fracture conductivity exceeds 300 mD·m.

Fracture conductivity > 10 mD·m.

Fracture number The storage volume boosts significantly with the increase in
fracture number.

Fracture numbers > 2; the more hydraulic
fractures, the better storage performance.

Fracture length The storage volume increases with the lengthened fracture.

Preference is given to the abandoned
wells with multi-stage fracturing, which

are preferred because of their large
storage capacity.

Matrix permeability Higher permeability yields a larger storage volume. Massive fracturing is beneficial to
store CO2.

Lateral section length The longer the horizontal well, the larger SRV and the
higher the storage capacity.

Longer lateral sections are preferred to
store CO2.

4. Feasibility Assessment of CO2 Storage in Abandoned Shale Reservoirs
4.1. Analysis of Storage Mechanism

The mechanisms of CO2 storage in shale reservoirs are similar to the aforementioned
geological storage mechanisms, including structure, hydraulic, residual, dissolved, miner-
alization, and adsorption trapping mechanisms. Adsorption plays a critical role in CO2
storage [78–80], as illustrated in Figure 4. The CO2 storage potential and shale gas recovery
significantly increase because of the competitive adsorption between CO2 and CH4 [81].
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Various researchers have thoroughly examined the competitive adsorption mecha-
nisms of CO2 and CH4 to increase the CO2 storage potential in shale. The adsorption
characteristics of the organic and inorganic contents are reviewed below.

4.1.1. Competitive Adsorption in Organic Matters of Shale

Effects of temperature and pressure. Sui et al. [82] and Sui et al. [83] used molecular
simulation to explore the competitive adsorption behaviors of CH4 and CO2 under different
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molar ratios and pressures, and analyzed the effect of each atom in kerogen in affecting
gas adsorption via a radial distribution function. Coussy [84] and Brochard et al. [85,86]
pointed out that the adsorption in the low-pressure stage is the main cause of volumetric
strain. Sun et al. [87] simulated the adsorption on a narrow slit kerogen fracture pore in
the simulation. The results showed that the coefficient selective adsorption of CO2/CH4
decreased with increasing temperature but first increased and then decreased with rising
pressure. Overall, kerogen is strongly affinitive to CO2, which is consistent with the
experimental results [88–90].

Effects of moisture. Billemont et al. [91] and Huang et al. [92] experimentally and
numerically investigated the adsorption behavior of CH4 and CO2 in water-saturated
carbon nanopores and found that the average equivalent heat of adsorption for CH4
ranged from 20.42 kJ/mol to 22.10 kJ/mol with respect to the humidity range of 0 to
2.8%. The simulated results were close to the experimental data obtained for activated
carbon (29.12 kJ/mol) [93]. At low humidity, the replacement effect of CO2 enhances
with increasing humidity content. At high humidity, water molecules tend to form a cage
with cluster structures that worsen the effect of the CO2 replacement of CH4 and greatly
reduce the amount of adsorbed gas [94]. When the pores are large, gas molecules mainly
concentrate in the center of the pore channels [95].

4.1.2. Competitive Adsorption in Inorganic Matters of Shale

Competitive adsorption in quartz. Jing [96] and Xiong et al. [97] constructed pore
models for quartz and investigated the effect of moisture on competing CH4/CO2 ad-
sorption. The results showed that the moisture content significantly reduced the total
adsorption of the gas mixture, while the adsorption preference of CO2 over CH4 in quartz
increased with the increasing moisture content.

Competitive adsorption in montmorillonite. Jin and Firoozabadi [98] conducted a
simulation to understand the effect of the moisture content on the competitive adsorption
on montmorillonite; the obtained density distribution of CO2/CH4 showed that water
inhibited the gas adsorption. In 1 nm pores, water and CO2/CH4 adsorb in the same layer,
while in pores whose diameter is large than 2 nm, water molecules adsorb on the first layer
and the CO2/CH4 forms a second layer. At relatively low pressure and a moderate water
level, montmorillonite exhibits a more pronounced preference for CO2 adsorption [99]. By
examining the adsorption equilibrium configuration and calculating the adsorption heat,
Yang et al. [100] examined the competitive adsorption mechanism of the mixed gas and
found that the charged sodium montmorillonite resulted in stronger adsorption of CO2.

Competitive adsorption in illite. Lu et al. [101] conducted isothermal sorption exper-
iments and found that illite was favorable to increasing the amount of adsorbed gas in
shale. Zhang et al. [102] used the GCMC method to examine the effects of the temperature,
pressure, and CO2 injection ratio affecting the CO2/CH4 adsorption and desorption in 1 M
of illite. When the CO2/CH4 injection ratio was larger than 2 and the formation depth
exceeded 2 km, the CO2 adsorption gradually increased with increasing depth and then
stabilized at a depth of 5 km. Additionally, their experimental results echoed well with the
simulation results shown by Ou [103] and Wang [104].

Competitive adsorption in kaolinite. Heller and Zoback [105] studied competitive
adsorption in different types of clay minerals and showed that the adsorption on illite was
greater than that of kaolinite. Song et al. [106] constructed a kaolinite supercell model using
the GCMC method; most of the CH4 and CO2 molecules were adsorbed in the micropores.
Additionally, the adsorbed CH4 and CO2 amounts at different temperatures conformed
with those calculated by the Langmuir model.

4.2. Evaluation of Storage Potential

Various models have been proposed to estimate the CO2 storage potential in shale
reservoirs [107,108]. Tao et al. [109] developed an algorithm to estimate the CO2 storage
capacity of the Marcellus Basin based on historical production data, the CH4/CO2 sorption
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equilibrium, and kinetic models. They also predicted that 1.04~1.84 billion tons of CO2
would be stored in the region by 2030. Godec et al. [110] predicted that the same region
had a CO2 storage capacity of about 0.92 Mt/km2. Sun et al. [111] proposed a dual pore
transfer model to investigate the CO2 storage capacity. The results showed that the storage
capacity of CO2 enhances with increasing injecting pressure. Zhou et al. [112] estimated the
storage of the target shale reservoir using a self-developed CO2 theoretical storage potential
calculation formula, and the results showed that the shale has good prospects for CO2
storage, which is larger than the shale gas reserves in the target reservoir. Busch et al. [42],
Lu et al. [113], and Tang et al. [114] experimentally demonstrated the considerable storage
capacity of shale for CO2.

In this study, the equation we used to estimate CO2 storage in shale was adapted
from the method proposed by Zhou et al. [112]. This method was developed based on the
mechanism of CO2 storage, of which the competing adsorption mechanism is particularly
important, which is where it differs from the mechanism of storing CO2 in conventional
oil and gas reservoirs. Adsorption increases the amount of CO2 stored in the shale, which
was described in detail in the previous section. We assumed that CO2 is stored in the shale
reservoir only in the adsorbed and free states. It was also assumed that the injected CO2
can completely replace the free CH4 in the pore space, ignoring the reservoir mineralization
of CO2 and the effect of moisture on the gas. This method requires fewer geological
parameters and assumptions than traditional methods for estimating the geological storage
of CO2, such as the area method and the volume method [115–118], and can be calculated
quickly when applied in the field as a guide for an initial estimation of a reservoir’s CO2
storage potential. The method can be applied to various shale blocks in the Sichuan Basin,
and we have carried out detailed calculations and analyses using the Changning shale gas
block as an example. The model formula is as follows:

QCO2 =

[
(1 − X) +

ACO2

ACH4

X
]

QCH4 (1)

where X is the percentage of adsorbed CH4 in the reservoir; ACO2 and ACH4 are the
adsorption capacity of CO2 and CH4 in shale, respectively; and QCH4 is the shale gas
storage volume, m3.

Shale reservoirs in different regions are located in different geological environments,
with different formation temperatures and pressures, and have different rock compositions.
All of these factors can affect the adsorption of gas by shale. By review, the percentage
of absorbance state (X) range in shale is about 20% to 85% [43], and the amounts of CO2
adsorbed in different regions of shale range from 2.68 to 19.41 times the amount of adsorbed

CH4, i.e.,
ACO2
ACH4

ranges between 2.68 and 19.41 [112]. This means that to replace 1 mole of

adsorbed CH4 gas, 2.68–19.41 moles of CO2 are required. The shale gas reserves in the
Changning block are 6 × 1011 m3 (from Table 1), and the potential for storing CO2 in the
block can be calculated by substituting the data into Equation (1).

Using these parameters, we calculate the CO2 storage potential of the Changning

shale gas block, as shown in Figure 5. When X is 20% and
ACO2
ACH4

is 2.68, the minimum CO2

storage capacity of the Changning block is 8.016 × 1011 m3 according to Equation (1); when

X is 85% and
ACO2
ACH4

is 19.41, the maximum CO2 storage capacity of the Changning block is

9.821 × 1012 m3 by calculation. Both of these are greater than the shale gas reserves of the
block itself (6 × 1011 m3).

Most of the reservoir storage depths in this block range from 2000 to 4000 m [69,119],
and the average depth of storage is set at 3000 m. The formation pressure gradient in the
Sichuan basin is 0.01 MPa/m, and the average geothermal gradient is 0.024 ◦C/m [120].
Assuming an average surface temperature of 20 ◦C and a storage depth of 3000 m, the
formation pressure is 30 MPa and the temperature is 92 ◦C at this time. Thus, the cor-
responding CO2 density can be derived as 695 kg/m3. After a simple transformation,
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the minimum CO2 storage and the maximum CO2 storage of the Changning block are
about 5.57 × 105 million tons and 6.83 × 106 million tons, respectively. This shows that
the Changning shale block has high potential for storing CO2. The huge storage potential
could help drive CO2 shale-storage-related projects.
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5. Conclusions and Prospects

This paper briefly reviewed CO2 storage projects around the world, focusing on the
applications and storage mechanisms related to CO2 storage in coal seams, hydrocarbon
reservoirs, and saline aquifers. Inspired by these CO2 storage projects, we evaluated the
potential for CO2 storage through abandoned shale gas wells. The abundant shale gas
resources and abandoned shale wells in the Sichuan Basin will provide sufficient and
effective sites for the storage of CO2, which was adopted here as the research topic.

In a review of the competitive adsorption of CO2/CH4 in shale, both the experimental
and simulation results showed that the adsorption of CO2 is significantly greater than that
of CH4 under different conditions of temperature and pressure, and the adsorption is more
stable, which can help increase the storage of CO2. We calculated the CO2 storage capacity
of the Changning shale block in the Sichuan Basin using a mechanistic approach model that
considers only the adsorbed and free states of CO2, and the results were greater than for its
own shale gas reserves, proving that shale has great potential for CO2 storage. The method
is also applicable to other shale blocks in the Sichuan Basin. This provides guidance for
initial assessments of reservoir CO2 storage potential. However, the need for improved
models that take into consideration the multiple storage states of CO2 in shale is also more
urgent to ensure the accuracy of the calculation results. In general, the potential for using
abandoned shale gas wells to store CO2 is high. This method is feasible and can effectively
reduce carbon emissions and protect the environment.

Based on a review of available CO2 storage techniques and an analysis of the CO2
storage capacity of shale blocks in the Sichuan Basin, China, both technical and policy
recommendations are made.
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5.1. Technical Recommendations

1. Due to the limitations related to the experimental setup and capability of numerical
simulations, most studies are conducted in simplified reservoir conditions or assumed
unrealistic ones. This will lead to errors in the results and in real life. We should further
develop the technical means to ensure the maximum restoration of real situations.

2. Storage analyses are conducted by assuming the wells are in relatively good condition.
The differences between CO2 storage in abandoned wells and integrity wells are not
fully understood. The CO2 injection and storage processes while considering the
characteristics of abandoned wells require further investigation. Additionally, the
optimization of the operation parameters (i.e., injection volume, time, and pressure) is
required to achieve optimal storage.

5.2. Policy Recommendations

1. Strengthen state and local government support measures, increase the amount of
loans, and lower the interest rates for investment in CO2 shale-storage-related projects,
and increase the fiscal and tax incentives and subsidies. Support the implementation
of demonstration projects and encourage research centers and key laboratories.

2. The government should take the initiative to establish a data management and service
system that allows information sharing, to establish a technology and experience
exchange platform, and to provide services for enterprise development. The approval
and licensing of projects related to CO2 storage in shale optimized, and a safety and
environmental protection emergency resource system should be provided. Meanwhile,
an effective information disclosure and exchange platform should be established, so
that enterprises can fully communicate with society.
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