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Abstract: In aviation, fog is a severe phenomenon, causing difficulties in airport traffic management;
thus, accurate fog forecasting is always appreciated. The current paper presents a fog forecast at the
Poprad-Tatry Airport, Slovakia, where various methods of machine learning algorithms (support
vector machine, decision trees, k-nearest neighbors) are adopted to predict fog with visibility below
300 m for a lead time of 30 min. The novelty of the study is represented by the fact that beyond the
standard meteorological variables as predictors, the forecast models also make use of information
on visibility obtained through remote camera observations. Cameras observe visibility using tens of
landmarks in various distances and directions from the airport. The best performing model reached a
score level of 0.89 (0.23) for the probability of detection (false alarm ratio). One of the most important
findings of the study is that the predictor, defined as the minimum camera visibilities from eight
cardinal directions, helps improve the performance of the constructed machine learning models
in terms of an enhanced ability to forecast the initiation and dissipation of fog, i.e., the moments
when a no-fog event turns into fog and vice versa. Camera-based observations help to overcome
the drawbacks of the automated sensors (predominantly point character of measurements) and the
human observers (complex, but lower frequency observations), and offer a viable solution for certain
situations, such as the recent periods of the COVID-19 pandemic.

Keywords: fog forecast; aviation; machine learning; low visibility; remote observer; camera

1. Introduction

Fog, i.e., horizontal visibility below 1000 m on the ground [1] due to floating small
water droplets in the air, is a hazardous meteorological phenomenon affecting various
aspects of human life, from the safety of different ways of transportation (road, water, or air
transport) to agriculture and tourism. In aviation, fog results in difficulties in landing/take-
off, causes delays at airports, and generally, complicates the everyday work of air traffic
controllers. Consequently, high-quality fog forecasting is also needed to more effectively
plan airport routines, optimize flight diversions and additional fuel consumption, minimize
economic losses, and just as importantly, reduce the inconvenience of passengers.

One of the most recent comprehensive overviews of the progress in the field of fog
forecasting is the monograph chapter in a book by Koračin (2017) [2] (preceded by a similar
review paper [3]). Even though the book is specifically devoted to marine fog, the reader can
get acquainted with the evolution of various fog forecasting techniques, their conceptual
differences, and their pros and cons, as well as the trends and the current challenges in
fog forecasting.

In principle, fog can be forecasted by two conceptually different approaches. The first
one is dynamic fog forecasting, in which the occurrence of the phenomenon is predicted on
the basis of numerical weather prediction models (NWPs). Despite rapid improvements
in the complexity of NWPs, the parametrization of the atmospheric processes/feedbacks
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involved, and the growing capacities of computational resources in the last few decades,
the accurate forecasting of fog by means of NWPs still remains a huge challenge [4–8].

A significant supplement to the dynamic method is statistical fog forecasting, which
has greatly expanded in recent years. Its basic process, in general, involves collecting
a large set of meteorological variables (measurements or even NWP outputs) as poten-
tial predictors of fog, finding (by certain statistical tools) a limited number of significant
predictors, and deriving (linear or non-linear) relationships to predict fog. Statistical fog
forecasting models are computationally highly efficient; on the other hand, their valid-
ity is usually restricted to a limited site/area [2]. In the last couple of years, studies
in statistical fog forecasting have been conducted, which make use of various machine
learning (ML) algorithms. Without striving for completeness, these are, e.g., artificial
neural networks [9–11], deep learning [12], feed-forward neural networks and tree-based
ensemble approaches [13], random forests [14], decision trees [15,16], support vector ma-
chines [17], autoregressive time series analyses [18], and Bayesian decision networks [19].
Salcedo-Sanz et al. (2022) [20] presents a detailed review of the applications of ML methods
in the statistical modelling of extreme meteorological phenomena, including fog. On top
of these, the study of Castillo-Botón et al. (2022) [21] can be regarded as a benchmark in
the field of statistical fog forecasting. They were the first in the literature to attempt to
carry out an elaborate analysis of and test the performance of different ML algorithms for
classification and regression problems. In regards to classification tasks (which is the core
topic of the current study), they concluded that the most suitable methods were ensemble-
based ones, such as random forest and gradient boosting techniques, since ‘learners are
tree structures, which behave good for fog-events classification’ [21].

The efforts of our research team in the field of fog forecasting started with the study of
Bartok et al. (2012) [22], which focused on the analysis of fog generation mechanisms, and
particularly fog predictions on the north coast of the Arabian Peninsula, where the land–sea
breeze circulation was found to be the specific climatic factor supporting fog generation.
Their methodological approach consisted in the coupling of a one-dimensional PAFOG fog
model [23] with a three-dimensional WRF 3.0 (Weather Research and Forecast, [24]) NWP
system. The proposed method allowed for the construction of an efficient operative road
traffic warning system for the occurrence of fog in the target region.

This fog prediction model was later further developed for the coastal desert area
of Dubai, based on ML algorithms [16]. High-frequency observations from automatic
weather stations were utilized as a database for the analysis of potential patterns. The
inclusion of the decision trees approach for a lead time of six hours indicated a better
model performance compared to that of the coupled WRF/PAFOG fog model from [22].
The results were further improved by integrating the output of the coupled numerical fog
forecasting models into the training database of the decision trees.

In recent years, we have also adjusted the development of the fog forecasting models
in our research group to the challenges of aviation meteorology and continued within the
framework of the SESAR research projects [25]. A fog prediction model (with a lead time of
30 min and for a visibility below 300 m, as described in this study) was designed specifically
for the systems of air traffic controllers to allow for the effective management of the queues
of arriving and departing aircrafts (PJ.04-29.2, [26]). In parallel, the task ‘Remote Tower’
(PJ.05, [27]) was launched, which was related to the development of air traffic services
by a remote air traffic controller, and this was followed by the task ‘Remote Observer’
(PJ.05-05, [28]) that focused on monitoring visibility, weather phenomena, and clouds
by visual and infrared camera systems, with special attention given to inhomogeneous
weather conditions.

During periods of bad weather, particularly in fog, airports may become completely
invisible from the towers. In such cases, the control centers have to switch to radar and
‘low visibility procedures’ to ensure that airport operations can continue safely. These
special procedures cover aircrafts upon approach and departure, as well as movements on
the ground. In foggy conditions, aircrafts follow the instrument landing system (ILS) at



Atmosphere 2022, 13, 1684 3 of 27

airports to be automatically guided to the runway. After landing, an aircraft has to get far
enough away from the runway such that it no longer interferes with the ILS radio beams
before the next one can be given landing clearance. Aircrafts also have to be more widely
spaced when maneuvering or taxiing. All these operations take extra time and they often
result in considerable delays [29].

In aviation, an additional, visibility-based variable is defined, namely the runway
visual range (RVR), which is the distance over which a pilot of an aircraft on the center line of
the runway can see the runway’s surface markings delineating the runway and identifying
its center line [30]. The RVR is used to support precision landing and take-off operations
for aircraft pilots. The RVR, among others, determines local and international practices,
such as airport operation categories (see an example in Table 1). Besides the main factor of
visibility, the RVR is influenced by the runway lights’ intensity and background luminance.
More intense runway lights increase the RVR, whereas low background luminance (cloudy
sky, twilight) decreases it. Nevertheless, the most essential natural phenomenon that
causes unexpected and significant degradation of the RVR is decreased visibility, which
predominantly appears due to fog.

Table 1. Airport operation categories and the corresponding requirements for the minimum visibility
in horizontal and vertical directions at a typical airport. Abbreviations: VFR—visual flight rules;
ILS CAT—instrument landing system category; RVR—runway visual range; DH—decision height.

Categories Minimum Visibility [m] Height of the Lowest
Cloud Base > 4 Octas [ft]

VFR 5000 1500
ILS CAT I RVR ≥ 550 DH ≥ 200
ILS CAT II RVR ≥ 300 DH ≥ 100
ILS CAT III RVR ≥ 200 DH < 100/no DH

The current study was motivated by novel ideas in several directions. First, it was in-
spired by the ability of human aeronautical forecasters to accurately estimate approaching
fog based on their visual perception of the fog and its time evolution in specific direc-
tions. Thus, a scientific question emerged on whether this knowledge could possibly
be transformed into a ML predictor. Secondly, an automatic camera system for deter-
mining visibility for airports was developed within the above-mentioned SESAR project
(PJ.05-05, [28]). Having installed this system at the Poprad-Tatry Airport in Slovakia, a
very detailed database of omnidirectional visibility observations had become available.
As a combination of the forecasters’ experiences and the technological developments,
it was possible to construct a data mining model for forecasting fog, which was also
based on predictors derived from the camera system beyond the ones from traditional
meteorological observations.

The paper is structured as follows: After a description of the geographical/climatological
settings of the target site (Section 2.1), the methodological approach to the analysis is de-
scribed, which includes the principles of the camera-based remote observations
(Section 2.2), the dataset (Section 2.3), and the data mining/machine learning methods
(Sections 2.4 and 2.5). The Results (Section 3) section starts with the long-term fog climatol-
ogy, and continues with an analysis of the fog occurrence (types, frequencies, durations,
etc.) on the basis of METAR messages (Section 3.1). Afterwards, the target attribute of
the ML methods is defined (Section 3.2), and data-based (Section 3.2.1) and then figure-
based analyses (Section 3.2.2) of the fog events are presented. The core of the modelling
(Section 3.4) consists of two parts. First, the performances of the three selected ML
methods are compared, and following this step, a detailed analysis of the various sta-
tistical scores related to the two best performing ML methods is carried out. The Dis-
cussion section attempts to put the results of the current study into a broader context
(Section 4), and finally, the Conclusions section aims at summarizing the most relevant out-
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comes and possible pathways for the future development of the presented fog forecasting
approaches (Section 5).

2. Materials and Methods
2.1. The Target Site and Its Climatology

The analysis focuses on a single target site, which is the Poprad-Tatry Airport (ICAO:
LZTT, IATA: TAT). It is located in Northern Slovakia, at an altitude of 718 m above the
sea level, which means that the LZTT is the highest elevated airport in the country, and
one of the highest elevated airports for short- and medium-haul commercial aircrafts in
Central Europe. The airport has one runway oriented in the east–west direction (09/27),
of a dimension of 2600 m × 45 m. A significant feature of the airport is its geographical
surroundings. The LZTT lies in the Poprad basin that is formed by the High Tatras
Mountain (with peaks exceeding 2500 m) in the north, and the Low Tatras Mountain (with
peaks up to 2000 m) in the south. In the west and east, the basin is open and without hills
or obstacles.

The geographical settings of the LZTT significantly determine the local climatic condi-
tions, mostly the wind speed and direction, and consequently, the occurrence of meteoro-
logical phenomena affecting aviation, such as turbulence, wind shear, fog, etc. Clearly, at
the LZTT, the wind rose is dominated by the winds from the west: in about 30% (10%) of
the cases, it blows from W (SW). The prevalence of the W and SW winds is underpinned by
the fact that their average speed is about 4.5 m/s, whereas the wind speed averaged across
all directions is 3.2 m/s (based on observations in the period 2001–2010 [31]). This average
wind speed (3.2 m/s) is a typical value (between 2 and 4 m/s) for sites located in open
basins in Slovakia [31]. Wind shear of orographic origin appears in the case of winds from
the NW, N, or NE, while vertical rotors tend to occur on the luv side of the High Tatras.

The LZTT has a professional meteorological observatory, equipped with a standard
automatic weather observation system (AWOS), and its professional observers regularly
issue common meteorological messages, such as METAR. In the current study, we made use
of the observations of meteorological variables at the LZTT from the period from January
2018 to March 2021, as this correlated with the availability of camera observations from the
same site.

2.2. Camera-Based Observations of Visibility

There is a general tendency in aviation to automatize meteorological measurements as
much as possible, with the aid of the AWOS. These are useful tools for the measurement
of a wide variety of meteorological variables, mostly those that only require a specific,
calibrated measurement device and in situations in which the subjective human decision
procedure may completely be eliminated, e.g., air temperature, dew point temperature,
pressure, wind characteristics, etc. Nevertheless, there are still a few variables that can
be automatized with only a few compromises and that need complex human perception,
e.g., in cases of estimating the prevailing visibility, cloud types/coverage, or occurrence of
hazardous weather phenomena. Even though there are also efforts to replace these kinds of
human observations with specific automated devices, one cannot disregard their universal
drawback: they can only report point measurements, thus in the case of inhomogeneous
weather conditions, the data provided by those sensors may not be representative for their
entire surroundings.

This is exactly the case when the prevailing visibility is estimated, usually by one of the
two types of automated devices: transmissiometers and forward scatter (FS) sensors [32].
Both types of sensors are generally designed to measure visibility by assuming that the
conditions between the sensors’ receiver and transmitter represent the nominal conditions
around the horizon. As the actual visibility may not be homogeneous over the entire
domain (e.g., fog in patches), it is quite possible that the visibility estimates by the sensor at
the point of its installation could differ from that of the human observer. A further major
drawback related to automated visibility sensors is, in general, their inability to report
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the minimum visibility in specific directions required by the International Civil Aviation
Organization (ICAO) [33].

A novel approach to the determination of visibility by remote and/or automatic means
is using camera images. Cameras are generally available at affordable prices, even with
programmable rotators included. Camera photos, in contrast to the visibility sensors, can
cover the entire environment, and as a result of this feature, the minimum visibility and its
direction can be determined in a relatively straightforward way.

Remote observations of visibility are carried out by means of a high-resolution camera
for the visible spectrum that was installed at the LZTT at the location where the visibility for
METAR messages is being regularly reported every half an hour by professional aviation
observers. The camera installed on a rotator (Figure 1) sends eight images of the horizon
covering all the cardinal directions (N, NE, E, SE, S, SW, W, and NW) to the central system.
Each image has a full HD resolution, i.e., has a dimension of 1920 × 1080 pixels. For the
current study, the target area was scanned by the camera at a 5 min interval.
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Figure 1. Construction of the camera with the rotator.

The markers (landmarks) in all directions represent the cornerstone of the directional
visibility estimation. These were selected carefully to cover the variability in the distances
in each direction, and their distances to the observation point were measured using local
maps of the airport and its surroundings. The number of markers was quite large, and thus,
this made the estimation of the visibility more precise. Table 2 presents the basic statistics
of the marker settings at the LZTT. The division of the markers into the distance categories
was carried out according to the recommendations of the ICAO [33].
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Table 2. The number of landmarks used to identify directional visibility by the camera-based system
at the LZTT. The original stratification by the ICAO distance categories was kept, but the first interval
(0–600 m) was split in line with the settings of the current study.

Distance Interval [m] Number of Markers

0–300 35
300–600 21

600–1500 26
1500–5000 30

>5000 41
Total 153

Figure 2 presents the spatial distribution of the markers in the vicinity of the LZTT, with
a focus on the nearest ones within the two circles with radii of 0.6 and 1.5 km, corresponding
to Table 2.
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in the vicinity of the LZTT. (Map background: www.openstreetmap.org, accessed on 22 August 2022).

The basic principles of visibility estimation based on the set of markers assigned to the
camera images are as follows:

1. If all the markers are visible in a given direction, then the visibility is larger than the
distance of the most distant marker in this direction.

2. If some markers are not recognizable in a given direction, then the visibility is determined
by the distance of the nearest visible marker preceding the first obscured one.

During nighttime, in accordance with the definition of the nighttime visibility by the
ICAO Annex 3 [33], the camera observes visible lights (obstruction lights, buildings, street
and highway lighting, etc.). Since the distances of these sources of lights are known, the
same principles apply as in the case of the landmarks during the daytime.

All of these principles mimic the procedure that is followed by professional aeronauti-
cal observers.

The visibility from the camera imagery was determined manually by meteorologists,
taking the above-mentioned principles into account.

2.3. Dataset

The initial dataset of observations at the LZTT originates from the period of January
2018–March 2021. One entry represents the whole set of observations for the given time.
This includes:

www.openstreetmap.org
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• information from the METAR messages available with a frequency of 30 min;
• FS sensor measurements available with a frequency of 1 min, averaged through a

10 min moving window as per ICAO rules [33];
• other AWOS sensor measurements at the same intervals;
• camera imagery with frequency of 5 min supplemented by preceding sensor/camera

measurements to these times.

Overall, 6.1% of the entries have no or some missing values. After removing the entries
with missing/no values, 52,064 entries remained for modelling. A total of 1.7% (1.2%) of
these are associated with a visibility lower than 1000 m (lower or equal to 300 m), which
underpins the fact that the dataset is unbalanced from the point of view of the fog/no-fog
ratio, and it needs to be resampled before adopting the ML procedures (Section 2.4.2).

2.4. Data Mining Methods

The goal of this study, i.e., developing a data mining method that can predict the
occurrence of fog (class 1) and distinguish it from a no-fog event (class 0) in the near future,
can be defined as a classification task. Common approaches are the classical rule-based
methods [34] that rely on human expertise and machine learning methods [35] that rely
on tagged datasets. Rule-based methods apply a set of rules derived by humans, such as
‘at Poprad-Tatry Airport, fog does not occur during the summer months at temperatures
higher than 16 ◦C’, to a given input and reach a conclusion. These methods are easily
interpretable and implementable; however, they might miss some of the insights gained
by data mining. An update or a modification of rules can be easily implemented without
the need to retrain the whole system. ML methods are less transparent, the quality of
the predictions heavily depends on the quality of the dataset, and the implementation for
production is less trivial; on the other hand, they are much better at recognizing patterns in
data. ML methods range from easily interpretable decision trees to ‘black-box’ approaches,
such as sophisticated deep learning methods. A methodically sound modelling protocol is
essential for obtaining reliable outputs. It can help spot model flaws and detect irregularities
in a given dataset. In order to update the ML model to account for additionally available
data, retraining is necessary. Sometimes, a combination of rule-based and ML methods can
significantly improve the results.

2.4.1. Rule-Based Methods in the Context of Unbalanced Datasets

It is known that classification problems in meteorology often involve unbalanced
datasets [36]. In this case, it is not straightforward to implement a classification ML
algorithm. One typically resamples the training dataset (so that the distribution of both
classes is more balanced either by oversampling [37] or undersampling [38]), selects an
adequate penalty function [39,40], or resorts to anomaly detection [41].

Since the aim of this study is to develop a generally applicable method for fog detection,
undersampling was chosen because it reduces the existing bias towards the majority class.
Undersampling describes a class of procedures that discard some of the dominant class
samples (no-fog events) in order to improve the balance. In the current study, a rule-based
method was applied, which systematically eliminated the no-fog events, based on a set of
‘IF-THEN’ rules collected by an expert.

Rule-based methods are expert systems that determine the outcome of a query, based
on a set of rules called the ‘rule base’. A semantic reasoner reads in the input and evaluates
the outcome based on the rule base by deciding which of the rules applies to the given
situation and acting on it.

Utilizing the rule-based methods, a two-phase model was constructed:

1. Rule-based system: Based on the input features, determine whether one can safely
conclude the occurrence of ‘no-fog’ event. If yes, end the task. Else, continue to step #2.

2. Machine learning classification: Based on the input features, predict the outcome (‘fog’
or ‘no-fog’).
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The entire model of fog forecasting in the current study, described in detail in
Sections 2.3 and 2.4, is visualized in the form of a flowchart in Figure 3. The key ele-
ment of the decision procedure is the above-described two-phase model of the prediction
of ‘no-fog’ or ‘fog’ events.
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and machine learning methods. Abbreviations: AWOS—automated weather observing system;
ML—machine learning.

2.4.2. Machine Learning Methods

There exists a wide range of ML methods used for classification tasks in weather
forecasting [36]. In the following subsections, we briefly introduce the general features of
the ones adopted in the current study. Further information on them (e.g., the most essential
relationships) can be found in Appendix A.

K-Nearest Neighbors

The k-nearest neighbors algorithm (KNN; [42,43]) was originally developed in 1951
and can be used both for classification and regression tasks. It is a lazy supervised learning
method. The algorithm can only be used with a labelled dataset. It is computationally
cheap, because during the training phase, it simply stores the training dataset and does not
perform any calculations. During the evaluation, the algorithm determines the distance
between the data point being considered and all the stored training points in the feature
space, selects k points, which are the ones nearest to the considered data point, and assigns a
predicted label based on the majority vote. This algorithm is universally applicable since it
makes no assumption about the data distribution and is well suited for pattern recognition.
Its main disadvantages are the need to determine an optimal value of the neighbors, its
sensitivity to irrelevant features, and a high likelihood of overfitting if many features are
considered. Feature reduction either by a field expert or by automated feature reduction
algorithms, such as a principal component analysis [44], is strongly encouraged.

Support Vector Machine

Support vector machine algorithms (SVM; [45]) were developed at AT&T Bell Labora-
tories in 1995. It is a class of supervised learning models with learning algorithms typically
used for classification tasks, although suited for regression tasks as well. Each data point
in the training dataset is plotted in an n-dimensional space, where n is the number of
considered features. SVMs optimize the boundaries between the considered classes. These
algorithms are effective in high-dimensional spaces and perform well even if the number
of features is significantly larger than the number of samples. On the downside, these
algorithms do not perform well with overlapping target classes.
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Decision Trees

Decision trees (DTs; [46]) are a non-parametrical supervised learning algorithm, which
can be used both in statistics and data mining. They can be applied both to discrete and
continuous variables. During training, a DT searches for the most significant splitters, which
can optimally divide the subset of the training dataset into several subsets. These algorithms
are transparent, easily identify the most relevant features, can deal with different data
types and noisy data, and make no assumptions about dataset distributions. Unfortunately,
these algorithms tend to overfit. This can be remedied by using either an automatized or
expert-based feature selection method. Therefore, in this study, an upper limit was set to
the number of features (max. 20) considered at once in all ML models, including the DTs.

2.5. Verification Methodology

Generally, the success of ML highly depends on the settings of the training and testing
processes. Our modelling process consists of six steps:

1. Create a list of promising ML methods.

i. For each ML method, create a list of hyperparameters.

The list should include ML methods suitable both from performance and deployment
perspectives—accurate and fast enough, moderately computationally demanding,
with modest memory requirements, etc. The corresponding hyperparameters can
help in fine-tuning the performance of the methods. An example could be KNN with
k = 3 or 5.

2. Based on the available dataset, create systematic sets of features. One should start by
making a full list of available features, and subsequently, imposing restrictions, such
as no more than a certain amount of N features at a time, to avoid overfitting. The
generated subsets should each contain N or less elements. Another option would be
to rely on expert knowledge/intuition and select elements based on rules.

3. Split the dataset into training and testing parts. It is a common practice to divide the
dataset into two parts: the first one for training the ML models and the second one
for testing their performance. In the current study, the data were randomly divided
into two groups in a ratio of 70% for training to 30% for testing with a random seed,
which ensured the reproducibility of the splitting.

4. Loop over models, hyperparameters, and features:

i. Train the model;
ii. Evaluate the model.

In this step, the actual ML modelling was performed. The protocol can be best
explained with a pseudocode:

for model in models:
for parameter in parameters:

for set in features set:
train model (parameter, set)
evaluate model (parameter, set)

5. Repeat steps #3 and #4 with different random splits. Generally speaking, this step
is optional. However, inspired by the statistical technique of bootstrapping [47], in
order to obtain more accurate and robust results, the original dataset was resampled
200 times with the same ratio (70:30) and with random seed repetition.

6. Evaluate the overall statistics. In this step, the obtained results were analyzed. The
overall statistical scores were calculated as the mean of the 200-model runs with
different random seeds.
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The performance of the forecast models, in general, is evaluated on the basis of the
2 × 2 confusion matrix (contingency table):(

TN FP
FN TP

)
=

(
correct negatives f alse alarms

misses hits

)
(1)

where

• TN is the number of cases, in which no fog was predicted and no fog occurred (true
negatives or correct negatives or zeros);

• FP is the number of cases with a fog forecast but fog did not occur (false positives or
false alarms);

• FN is the number of cases, in which no fog was predicted but fog occurred (false
negatives or misses); and

• TP is the number of cases, in which fog was forecasted and fog also occurred (true
positives or hits).

The elements of the contingency table are then used for the definition of various
scores giving detailed information about the statistical behavior of the examined forecast
models. The most frequently used measures in atmospheric sciences are the probability of
detection (POD) and the false alarm ratio (FAR). For rare events, such as fog, it is advised
to use Gilbert’s skill score (GSS) and the true skill score (TSS) [48]. All of these can be
complemented by the F1 score (F1), commonly used with ML processes, representing the
harmonic mean of POD and precision (1 − FAR). Utilizing the elements of the contingency
table (Equation (1)), these measures are defined as [49]

POD =
TP

FN + TP
=

hits
misses + hits

(2)

FAR =
FP

FP + TP
=

f alse alarms
f alse alarms + hits

(3)

TSS =
TN ∗ TP− FP ∗ FN

(TN + FP) ∗ (FN + TP)
(4)

GSS =
TP− TPrandom

TP + FN + FP− TPrandom
(5)

where

TPrandom =
(TP + FN) ∗ (TP + FP)

TN + FP + FN + TP
(6)

F1 =
hits

hits + 1
2 (misses + f alse alarms)

=
TP

TP + 1
2 (FN + FP)

(7)

In addition to the above listed standard evaluation tools, it is interesting to track how
good the models are at predicting significant changes. Therefore, we will try to evaluate,
through an adequately defined metric, the per cent ratio of the correctly predicted fog starts
(fog initiation) as well as the fog ends (fog dissipation). From a practical point of view, the
metric related to the prediction of fog starts and ends is of particular importance in the
everyday routines of air traffic controllers and airport staff.

3. Results
3.1. Statistical Analysis of Local Fog Patterns

Fog, i.e., when visibility drops below 1000 m [1], occurs at the LZTT, on average
52.1 days a year (1961–2010 [31]). Even though this is quite a substantial share of each
year for airport operators and pilots to cope with consequences of fog, Poprad is classified
in the set of Slovak stations with below-average values for the annual frequency of fog
occurrence. A similar conclusion, although showing a slight increase in fog events in recent
decades, was presented by Michalovič and Jarošová (2019) [50], who ranked the LZTT
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in third place among the four analyzed Slovak airports, in terms of their average annual
fog occurrence (77.8 days), based on an analysis of METAR messages from the period
1998–2018. From a seasonal perspective, fog predominantly occurs during the autumn and
winter seasons [31,50]. From the aspect of the diurnal cycle, most of the fog appears at
night in the morning hours (between 12 p.m. and 12 a.m.)—this comprises 71% of all fog
occurrences at the LZTT [50]. The annual and diurnal regime of fog occurrence in the target
region is in line with the general features of its continental type of climate.

For the purposes of the current study, fog characteristics from the 39-month period
(Section 2.3) were processed. Figure 4 shows the frequency of fog occurrence at the target
site for the analyzed period, stratified according to hours of the day and the individual
months. Herein, the observed low-visibility phenomena were classified as fog as soon as the
METAR message reported: (i) visibility below 1000 m; and (ii) any type of fog. The figures
in the matrix as well as the color shading of the cells in Figure 4 indicate the frequency of
the occurrence of fog, expressed in the per cent of the total available number of METAR
messages for the given hours and month.
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Figure 4. Frequency of fog occurrence, expressed as a per cent ratio of the total available number of
METAR messages for the given hour (vertically) and month (horizontally) at the LZTT, in the period
of January 2018–March 2021. Herein, the low visibility was declared as fog as soon as the METAR
message included report of any type of fog and the visibility was below 1000 m.

Figure 4 clearly indicates that the most frequent occurrence of fog is associated with
the cold half of the year, defined customarily as the period from October to March (though,
in March, the fog occurrence is not significant). This is the main reason why the current
study focuses on fog in cold seasons. From the perspective of the daytime occurrence of
fog, Figure 4 reveals that fog at the LZTT typically occurs in the period from midnight
to 8–9 a.m., which corresponds with the most intensive cooling of the Earth’s surface in
the nighttime, and which is in line with the findings of the above-mentioned studies. The
secondary maximum occurs in the late evening hours.

Table 3 ranks the fog types reported by professional meteorological observers in
METAR messages that are issued each half an hour at the LZTT, according to their average
annual frequency of occurrence. Note that the observers reported 20 further combinations
of phenomena containing fog, but due to their low frequency of occurrence (less than three
times per year), they were omitted from Table 3.
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Table 3. Average annual frequency of occurrence of different type of fogs in METAR messages at the
LZTT during the analyzed period of 3 and 1

4 years. For a detailed explanation of the fog type codes,
see Section 3.1.

Rank Fog Type—
Code

Fog Type—
Short Explanation

Annual Frequency
of Occurrence

1 BCFG fog in patches 225.5
2 FZFG freezing fog 221.2
3 FG fog with no further specification 112.6
4 MIFG shallow fog 36.0
5 PRFG partial fog 33.5
6 VCFG fog in the vicinity 24.6
7 BR BCFG mist and fog in patches 13.2

In METAR messages, fog (FG) is reported when the visibility drops below 1000 m [33].
Fog is classified as freezing fog (FZFG) when it consists of supercooled water droplets.
Special cases of fog appear when the visibility inside the fog is less than 1000 m, but the
visibility in the remaining sectors is 1000 m or higher. METAR messages distinguish the
following special types of fog:

• BC—fog patches randomly covering the aerodrome;
• MI—shallow fog, reaching at most 2 m (6 ft) above ground level;
• PR—partial fog, in which a substantial part of the aerodrome is covered by fog whereas

the remainder is clear;
• VC—fog in the vicinity, i.e., between the radii of approx. 8 and 16 km of the aerodrome

reference point.

In cases, in which the visibility is at least 1000 m but not more than 5000 m, mist (BR)
is reported in the METAR messages. Note that the abbreviation of ‘BR BCFG’ in Table 3
indicates the special case, in which patches of fog occur with a visibility inside them of less
than 1000 m, but at the same time, the visibility in the remaining air space is between 1000
and 5000 m [33].

Unlike Table 3 which presents statistics related to the occurrence of different fog types
in individual METAR messages, Figure 5 focuses on fog events. A fog event was defined by
an uninterrupted sequence of fog reports in subsequent METAR messages. If, in a longer
sequence of fog reports, even a single METAR message with no fog report was found, then
the two parts of the sequence before and after the interruption were considered as two
separate fog events.

Beyond the elementary finding that short fog events are significantly more frequent
than the long ones, Figure 5 also indicates that the fog duration, in general, also depends
on the fog type. Fog in patches (BCFG) rarely last longer than 4 h, whereas the duration of
standard fog (and regardless of the air temperature, FG and FZFG) may exceed 10–12 h;
in the outermost case, fog with a duration of 22.5 h was observed (not indicated directly
in Figure 5, due to the scarce occurrence of fog events of longer durations). The average
length of the BCFG (FG and FZFG) category was approximately 3.4 (7.5) METAR messages,
i.e., 1.7 (3.8) h.

The presented analysis of the local fog patterns reveals that the fog in Poprad is of a
local nature, with quite a patchy structure in time, and therefore, according to the analogy
of Taylor’s hypothesis, also disjointed in space. This ‘non-continuous’ behavior classifies
fog as a meteorological phenomenon that is rather hard to predict.
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3.2. Target Attribute Definition

The variability of fog types, their occurrence, and/or the length of fog events indicated
that the exact definition of the target attribute of the ML algorithms should be very carefully
considered, i.e., which fog properties should be used for prediction. The decision procedure
was mostly based on the following three findings:

• The majority of fog occurs in the cold half of the year (Figure 4); thus, fog forecasting
has the right justification in this time of the year;

• The operationally significant visibility threshold for air traffic controllers and airport
operators is 300 m (see ILS CAT II in Table 1; additionally, personal communication
with several air traffic controllers);

• On the basis of the METAR records, the number of events in the cold half of the year
with a visibility below 300 m that were caused by meteorological phenomena not
related to any type of fog was negligible. The detailed analysis of these low-visibility
events revealed that they were exclusively caused by heavy snow, and consequently,
they were excluded from the fog occurrences.

Having considered the above-listed facts, the dataset of meteorological observations
at the LZTT was limited to the cold half of the year, and the binary target attribute was
defined as follows:

• ‘fog’ event (fog = 1/true) = when the 10 min running average of the visibility stan-
dardly available in METAR messages is less than or equal to 300 m;

Conversely:

• ‘no-fog’ event (fog = 0/false) = when the 10 min running average of the visibility
standardly available in METAR messages is higher than 300 m.

3.2.1. First Step of Modelling

The first task of fog modelling was to derive a set of rules for the rule-based step of
our algorithm (Section 2.4.1) and prepare the undersampled dataset for the ML modelling
that is required in its second step. This was carried out on the basis of the statistical
distributions of the observed meteorological variables (extremes and selected quantiles
of their distribution) and their relationship with the fog vs. no-fog events, as presented
in Table 4.
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Table 4. Statistical characteristics (minimum, maximum, lower and upper 2.5% quantiles) of the
selected meteorological variables influencing the occurrence of fog vs. no-fog events. Abbreviations:
ws—wind speed, wg—wind gust, at—air temperature, rh—relative humidity, ap—atmospheric pres-
sure, ps—precipitation sum, sr—solar radiation, min—minimum, max—maximum, q2.5%—the lower
2.5th quantile of the distribution, and q97.5%—the upper 2.5th quantile of the distribution.

No-Fog Fog

Variable Min q2.5% q97.5% Max Min q2.5% q97.5% Max

ws [m/s] 0.1 0.6 8.9 19.9 0.2 0.4 2.2 5.6
wg [m/s] 0.1 0.9 11.2 24.1 0.3 0.5 2.8 8.4

at [◦C] −22.8 −9.7 14.0 33.2 −14.4 −10.8 12.9 15.9
rh [%] 10 36 97 99 86 90 99 99

ap [hPa] 906.4 919.6 948.7 962.0 921.7 923.4 948.9 953.0
ps [mm/hr] 0 0 0 1.5 0 0 0 0
sr [W/m2] 0 0 824 1392 0 0 158 296

The following meteorological variables were selected:

• ws—wind speed in 10 m [m/s];
• wg—wind gust in 10 m [m/s];
• wd—wind direction in 10 m [degrees];
• at—air temperature in 2 m [◦C];
• rh—relative humidity [%];
• ap—atmospheric pressure [hPa];
• ps—precipitation sum [mm/h];
• sr—solar radiation [W/m2].

Note that wd is missing in Table 4 since fog occurred in connection with almost any
wind direction, and this fact did not allow for the generation of a rule.

On the basis of the summary in Table 4, and also based on the expert knowledge of
the long-term climatological conditions of the target region, the following conditions were
defined as those favoring fog genesis at the LZTT:

1. ws: [0.2 m/s; 3.0 m/s]— neither wind calm nor strong wind support fog genesis;
2. wg: [0.3 m/s; 4.0 m/s]—the same reasoning as in the case of the common wind speed

holds true;
3. at: [−14 ◦C; 16 ◦C]—considerably low air temperatures during the winter are associ-

ated with a low relative humidity; thus, no fog genesis is expected in such cases;
4. rh: [86%; 100%]— lower humidity favors no-fog;
5. ap: [920 hPa; 955 hPa];
6. ps: 0 mm/hr;
7. sr: [0 W/m2; 300 W/m2].

The decision algorithm, in accordance with the two-phase model described in
Section 2.4.1 and Figure 3, can be formulated as follows:

• IF all the above-listed seven conditions are met, keep the dataset sample and proceed
to step #2 (ML classification);

• ELSE discard the dataset sample and predict ‘no-fog’.

This algorithm has significantly reduced the initial dataset to the total number of
4214 entries potentially related to the occurrence of fog. Due to the applied rule-based
model, the ratio of fog events, in which the visibility was ≤300 m (<1000 m), increased to
35% (47%), effectively balancing the dataset. Since the reduced dataset loses the character
of the time series (as the remaining events are sparsely distributed in time), there is no need
to account for the autocorrelation in later stages of the analysis [51].
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3.2.2. Figure Based Analysis

Using camera imagery, one can gain deeper insight into the directional differences in
the fog distribution as well as into the dynamics and temporal evolution of fog.

Figure 6, showing the situation on 17 October 2019 at 5:00 a.m., serves as an example
of a spatially inhomogeneous fog event. As the camera records from different directions
illustrate, the visibility is reduced in some directions (1.1 km NE, 1.5 km N), whereas
in other segments of the horizon, the visibility is fairly good (7.5 km W). This kind of
information on the spatial extent of the phenomena significantly differs from that obtained
from the FS sensor (24,097 m in a 10 min average), which is only able to provide data of the
point character.

Figure 7 demonstrates various stages of the morning fog approaching the airport on
17 October 2019. The sequence of records provides detailed information on the dynamics
of the changes in the visibility in the given direction, which, in the presented example,
changes from about 1500 m (at 05:20 a.m.) to about 50 m (at 06:05 a.m.).

Figure 8 presents the frequency distribution of the directions of the minimum visibility
determined on the basis of the camera records. Low visibility at the LZTT tends to occur
due to fog predominantly in southerly directions (S, SE, SW), whereas the second peak
may be observed in the opposite directions (N, NW). Note that Figure 8 underpins the
added value of the camera-based observations. Such a figure can be constructed neither on
the basis of the METAR messages (since METAR contains information on the minimum
visibility only in operationally significant cases; otherwise, only the prevailing visibility
is standardly reported) nor based on the records of the FS sensor (since it only measures
visibility at a fixed point).

The findings summarized in Figure 8 are best interpreted in light of Figure 9, which
presents a composition of METAR-based wind roses for the target site from three different
aspects. The first one (Figure 9, top) is the wind rose illustrating the wind conditions in
Poprad for all climatology, i.e., for the entire analyzed period from January 2018 to March
2021, regardless of fog occurrence. This wind rose is fully in line with the overall wind
climatology of the target site, also depicted in Section 2.1, with a dominance of winds from
the W and SW, with an abundance of N and NW winds due to the blockage by the High
Tatra Mountains, and with nearly the same mean (3.3 m/s) as for the average from the
2001–2010 period (3.2 m/s).

The remaining two wind roses are then directly related to the occurrence of fog,
indicating the distribution of the wind speed and wind direction half an hour before
fog onset (Figure 9, middle), and exactly at the time of fog onset (Figure 9, bottom),
respectively. Both wind roses, according to expectations, show clearly decreased wind
speeds in comparison with all climatology. Additionally, the distribution of the wind
directions indicates a higher ratio of weaker winds from the southerly directions, which
are also the directions with the highest frequency of the lowest visibilities, as illustrated
in Figure 8.
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3.3. Feature Selection

Since ML algorithms generally are sensitive to overfitting on a moderate-size dataset,
the number of features entering the individual models should be low. Thus, the procedure
of predictor selection started with the ‘basic’ variables from the set of AWOS measurements
based on the judgement of meteorological experts: the hour of the day; month of the year;
and the meteorological variables as listed in Section 3.2.1.

Subsequently, about 700 further derived predictors were constructed from these basic
variables, mainly ‘delayed’ variables and ‘differences’. A delayed variable means that
instead of the measured value at the time of the model run, an older value is used, e.g.,
relative humidity 5, 10, 15, . . . or 60 min before the model run time. Differences, on the other
hand, indicate temporal changes in the basic variables (within the time window of 5, 10, 15,
. . . 60 min). The working hypothesis was that the temporal changes could be important
features for fog initiation. Nevertheless, the results did not meet these expectations. During
the experiments, the performance of a multitude of various sets with the inclusion of
the derived predictors (not more than a total of 20 predictors at once) was tested, but
finally, the scores of the different ML models did not change significantly, only at the third
significant figure (not shown). It was therefore concluded that the derived predictors were
unimportant, except for those related to visibility. More specifically, each of the above-listed
predictors (Section 3.2.1) should be used in the ML modelling with its value relating to the
moment of the model run. The only exception is the visibility, which, beyond the time of
the model run, is also significantly important 5 and 10 min earlier.

3.4. Machine Learning Performance

At this stage of the research, it was crucial to find out how the various ML methods
perform in comparison to each other. To answer this question, an experiment was carried
out, which was initialized with the same set of predictors for the entire set of ML methods,
to examine the possible differences in their performances. The R [52–54] and PyTorch [55]
libraries were used for implementation; their parameter/option settings can be found in
Appendix A.4.

The results of this experiment are summarized in Figure 10, with the ML methods
sorted in a descending order according to the POD values. In accordance with the findings
of Lakshmanan et al. (2010) [56], the statistical scores of the various methods are generally
quite similar: they are all able to detect the signal in the data. SVM exhibited the highest
POD, followed closely by the DTs, with both methods having reasonably low FAR. KNN
performed worse, but a trend can be distinguished, in which a higher number of neighbors
leads to better results. On the other hand, a further increase in neighbors did not lead
to a better performance; thus, the nine neighbors seem to be the optimum selection. The
lowest value of the FAR is reached by the DTs, and with the second-highest POD value,
this method seems to be suitable for decision support systems with a low tolerance for
false alarms. All in all, the best results were reached by the SVM and DT methods, and
consequently, a more elaborate analysis was dedicated to them.

Detailed results related to the different variants of the two best performing meth-
ods, SVM and DT, are presented in Tables 5 and 6 and Figure 11. All of these out-
comes are constructed on the basis of 200 resamplings, in which in each turn, 70% of
the data was used to train the ML models, and the remaining 30% represented the verifi-
cation dataset (Section 2.5). Tables 5 and 6 present the average values of the resamplings,
whereas Figure 11 allows for a deeper insight into the distributions of the selected major
statistical scores.
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Figure 10. Performance of different machine learning methods in terms of POD (probability of
detection), FAR (false alarm ratio), and F1 (F1 score). The abbreviations of the models stand for:
SVM—support vector machine, DT—decision trees, and 9NN/5NN/3NN—k-nearest neighbors
(with numbers indicating the number of neighbors).

Table 5. Average statistical scores (based on 200 resamplings) of three variants of the support
vector machine (SVM) method. Abbreviations: POD—probability of detection, FAR—false alarm
ratio, F1—F1 score, GSS—Gilbert’s skill score, TSS—true skill score, FgIni—fog initiation score,
FgEnd—fog ending score, ws—wind speed, wd—wind direction, at—air temperature, rh—relative
humidity, ap—atmospheric pressure, ps—precipitation sum, vsFS—visibility from the forward scatter
sensor, vsMM—visibility from the METAR messages, vsCR—visibility from the camera records, and
D05/D10—delay in minutes.

Variant Predictors POD FAR F1 GSS TSS FgIni FgEnd

SVM #1 ws, wd, at, rh, ap, ps, vsFS 0.86 0.28 0.78 0.50 0.70 0.39 0.13
SVM #2 ws, wd, at, rh, ap, ps, vsMM 0.86 0.29 0.78 0.49 0.70 0.43 0.16
SVM #3 ws, wd, at, rh, ap, ps, vsCR-D10 0.85 0.30 0.77 0.48 0.69 0.50 0.25

Table 6. The same as for Table 5, but for the three variants of the decision trees (DT) method.

Variant Predictors POD FAR F1 GSS TSS FgIni FgEnd

DT #1 ws, wd, at, rh, ap, ps, vsFS 0.89 0.23 0.83 0.57 0.75 0.36 0.09
DT #2 ws, wd, at, rh, ap, ps, vsFS-D05 0.87 0.23 0.81 0.55 0.73 0.32 0.08
DT #3 ws, wd, at, rh, ap, ps, vsCR-D10 0.84 0.22 0.81 0.54 0.71 0.40 0.40

Beyond the statistical scores POD, FAR, F1, GSS, and TSS, Tables 5 and 6 involve
two additional characteristics: FgIni and FgEnd, which were introduced especially for the
purposes of the current study. The abbreviation FgIni stands for ‘fog initiation’, and it
was defined to evaluate the successful prediction of the moments when a no-fog event ‘0’
changes to fog ‘1’, i.e., in terms of the target attribute, the visibility caused by fog decreases
below the threshold of 300 m. Technically, FgIni is the number of successful predictions
normalized by the total number of fog events. A similar line of reasoning also holds true in
the opposite case: FgEnd (‘fog ending’ or ‘fog dissipation’ score) expresses the ratio of the
successful forecast of the cases when a fog event ‘1’ changes to no-fog ‘0’, i.e., the visibility
caused by fog increases above the threshold of 300 m. The values of these newly defined
scores indicate the complexity and difficulty of the task of fog forecasting.
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Figure 11. Box plots of the distribution of three selected statistical scores of the models’ performance
(POD—probability of detection, FAR—false alarm ratio, F1—F1 score), based on a validation experi-
ment with 200 repetitions for each of the three variants of the SVM (support vector machine) and
three variants of the DT (decision trees) methods. The box plots indicate the standard characteristics of
the data distribution: median (middle line), the 25th and 75th percentiles (bottom and top edges of the
boxes), the most extreme data points not considered outliers (whiskers), and the outliers (markers ‘o’).

The analyzed variants of the SVM and DT methods differ from the perspective of the
predictors included. In all of the ML variants, the core of the predictors consists of the same
set of elementary meteorological variables, which are ws, wd, at, rh, ap, and ps. Nevertheless,
more importantly, the individual variants of the ML models differ in terms of which of the
three sources of visibility information they utilize. These are as follows:

1. the forward scatter sensor (vsFS), i.e., the visibility measured by the automated tool
with a 1 min frequency (averaged through a 10 min window);

2. the METAR messages (vsMM), i.e., visibility determined by professional observers
with a 30 min frequency;

3. the camera records (vsCR) with a 5 min frequency; more specifically, the minimum
camera visibility constructed on the basis of the concurrent values from the eight
cardinal directions.

Furthermore, as mentioned before, visibility data may also be used with a 5 or
10 min delay (D05/D10, i.e., earlier records) with respect to the model run-time. Note that
the character of the ‘delayed’ variables (whether they are averaged or instantaneous) corre-
sponds with their real-time counterparts. In other words, the variable vsFS-D05 (Table 6) is
a 10 min average, since all the data from the forward scatter sensor are, in the very first
step of the evaluation, averaged through a 10 min window. On the other hand, the variable
vsCR-D10 (Tables 5 and 6) is instantaneous, as it was derived from a still camera picture.

The traditional statistical scores (POD, FAR, F1, GSS, TSS) in Tables 5 and 6 can be
examined from several aspects. Firstly, the differences are small, and the models behave
in a similar way. The variant DT #3 shows both the worst POD (0.84) and the best FAR
value (0.22) among the analyzed ML variants (also in Figure 11). In terms of the F1 score,
which combines all four elements of the confusion matrix (Equation 1), the best F1 score
is associated with the DT #1 variant (again, see Figure 11). The TSS score values are quite
similar in individual model groups, and are especially close in the SVM models.

As the figures in Tables 5 and 6 indicate, the type of visibility data did not significantly
affect the traditional statistical scores. On the other hand, the increase in the fog initiation
score FgIni is noticeable from around 0.40 to 0.50 in the case of the SVM method and from
0.32–0.36 to 0.40 in case of the DT methods. The fog dissipation score FgEnd increased from
0.13–0.16 to 0.25 for the SVM method, and an even more remarkable increase was found for
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the DT method, from around 0.09 to 0.40. The presented figures underpin the importance
of the camera system in the detection of changes in foggy situations. A deeper analysis
related to these results is included in the Discussion section.

Concerning the selection of the optimal fog forecast model, the summary in
Tables 5 and 6 does not offer a straightforward guide but rather a set of recommenda-
tions for different decision support systems. Taking a holistic view of the traditional scores
(F1, GSS, TSS), the best selection would be the DT #1 variant. Nonetheless, for a decision
support system, the change scores FgIni and FgEnd may also be important since with
changes in weather situations, the operative rules at the airport also change, and the system
has to adapt to it, e.g., maintaining wider gaps between aircrafts when calculating the
planes’ arrival and departure queues in fog. One may select either a model with higher fog
initiation scores (FgIni = 0.50) but with the worst ability to predict the dissipation of fog
(FgEnd = 0.25), which is the case of the variant SVM #3, or alternatively, one can select the
DT #3 variant with levelled scores both for the initiation and dissipation of fog (equally
0.40 for both processes). The final choice should be governed by the preferences of the
decision support system in the operative work. It can be based on an individual’s need,
such as whether one prefers a more precise forecast of the beginning of an adverse weather
event or a somehow balanced ability to predict both the start and the end of an unfavorable
meteorological phenomena.

As an extension of Tables 5 and 6, Figure 11 presents, in terms of box plots, some
further properties of the distribution of the score values from the series of the resampling
experiment (Section 2.5). Even though the box plots are restricted to the three most fre-
quently used statistical scores, POD, FAR, and F1, it is obvious that they reproduce similar
figures and overall, the same rankings of the individual ML variants as in Tables 5 and 6.
However, most importantly, the boxes are dense, indicating the low variability of each score;
therefore, the average scores presented in Tables 5 and 6 are robust and representative, and
each of the resampled ML models is acceptably good.

4. Discussion

In the current paper, three different machine learning methods were adopted to
predict the occurrence of fog in a short time horizon. The selection of the particular ML
methods was partially influenced by the trends in the relevant and up-to-date research in
the subject area; nonetheless, the scope of our methods could not be exhaustive. There is
still a possibility to adopt further ML approaches, since any of the multitude of methods
and/or configurations can lead to even a minor improvement in the statistical scores of the
constructed models.

Herein, we attempt to compare the findings of our study with the baseline metrics.
The first one is a simple fog forecast model based on the local fog climatology, i.e., using
the knowledge of the long-term frequency of fog occurrence [51]. The second source of
information is the ‘TREND nowcast’ message. These are special messages that are also
issued by aviation forecasters; they follow the format of the TAF messages, but they are
appended to the METAR messages. The results related to both approaches are summarized
in Table 7. One can immediately see the poor performance of the climate-driven fog
forecast model, which clearly confirms the unsuitability of using climate-type information
in synoptic-type/local predictions in our target area. On the other hand, the quality of
the fog predictions on the basis of the TREND nowcasts is higher. This is what currently
is in operative use at the LZTT. From the aspect of FAR, the performance of the ‘TREND
nowcast’ model is comparable with the SVM model variants (Table 5), but it does not reach
the level of the DT variants (Table 6). In terms of the POD and F1, the ML models from
Tables 5 and 6 outperform the TREND message-based fog prediction model.
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Table 7. Statistical scores of fog prediction models utilizing different inputs: fog climatology and
TREND nowcast messages.

Fog Prediction Model POD FAR F1

fog climatology 0.35 0.50 0.41
TREND nowcast 0.68 0.31 0.69

Since the cameras at the airport are a novel observation technique, it was not possible
to find any study that analyzes the added value of the camera-based observations of
visibility, which prevented us from evaluating the proposed camera-based approaches
using some independent sources.

The trichotomy of visibility measurements and consequently, the construction of
camera-based predictors are also worth a broader discussion. All of the three sources of
visibility data have their pros and cons. The standard visibility sensors (used at the majority
of airports globally) provide visibility measurements with a high frequency (~1 min) in
an objective way; however, they characterize a localized point of the space, and therefore,
they cannot principally distinguish directional changes in visibility and approaching fog.
In contrast to this, METAR messages may contain detailed information on the directional
visibility, since human observers are able (and have) to perform such observations. On
the other hand, the frequency of METAR messages (30 min) may represent a serious issue
in fog forecasting since significant changes in the fog density/structure may occur on
smaller temporal scales. Cameras can distinguish directions and work operationally with a
~1 min frequency (though, we used a 5 min setting); thus, in this regard, they are possibly
a valuable extension to the methods of observation by automated sensors and human
professionals, at least in terms of the timings of fog initiation and dissipation.

Beyond the traditional statistical scores (POD, FAR, F1, GSS, ...), the special indicators
FgIni and FgEnd (Tables 5 and 6) were supposed to express the success of the predictions
of the changes in the foggy conditions. The figures in Tables 5 and 6 indicate that camera-
based predictors indeed helped to increase the performance of the ML models, both in
terms of the fog initiation score (FgIni) and the fog dissipation score (FgEnd). It is, therefore,
worth of a closer examination of what is behind those findings. A schematic in Figure 12
was constructed to illustrate a typical situation at the airport with approaching fog.
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Let us suppose that a cloud of fog is approaching the airport, but still has not reached
it. At that moment, the meteorological variables at the airport are, generally, not able to
indicate any discernible temporal change in the current weather (Section 3.3). On the other
hand, based on camera records, one is able to recognize that fog is coming, i.e., fog is
in the vicinity of the airport, but has not reached the area. Consequently, including the
camera-based visibility as a ML predictor increases the performance of the ML models in
forecasting the moments when the no-fog event turns into a fog event.

The procedure in the opposite direction, i.e., fog dissipation, seems to be more complex
in comparison with fog initiation. The values of the FgEnd indicator are generally lower
than those for the FgIni indicator (this also holds true for the variants of the ML approach
without the camera-based predictors). This could be, in principle, explained by the fact
that the FgEnd score comprises a superposition of two slightly different situations: (i) the
camera is located entirely out of the fog; thus, it has the chance to ‘see’ the receding fog
(which is exactly the inverse to the approaching fog); and (ii) the camera is covered by fog;
therefore, it has limited ability to see the surroundings and to ‘help’ to the other predictors
in the ML estimation.

5. Conclusions

In the recent years/decades, several studies worldwide (including the contributions
of our research group to the topic) have confirmed that fog forecasting based on the
various approaches of machine learning (ML) methods has potential. In particular, the
transportation sector (road, air, or water) is probably the most affected by difficulties due to
low visibility and the associated phenomena caused by fog (wet/slippery roads, freezing
deposits, etc.). We limited our study to the field of aviation meteorology, in which the
decision support systems of the air traffic controllers indeed need timely and accurate
forecasting of any type of adverse weather phenomena, including fog at the airport. The
innovation of the presented paper was the idea to use visibility information obtained from
a camera system as a predictor in an ML-based fog forecast.

Observing systems with the use of cameras do not yet belong to the standard equip-
ment in airport observatories. Their development for the purposes of aviation meteorology
have just started recently, within the framework of several tasks of the manifold SESAR
initiative [27,28]. Nevertheless, it is supposed that such observation systems capable of
remote operation will expand in the coming years. A camera-aided system can qualita-
tively, objectively, and effectively complement standard meteorological observations [32].
Beyond helping to overcome the limitations stemming in the point character of the cur-
rent automated measuring devices, these systems offer a viable option for professional
observers to do their job remotely, e.g., from a distant airport, centralized office, or even
from home. Remote observation gained more interest during the episodes of the COVID-19
pandemic, which forced both employers and employees to adapt to different levels of
travelling restrictions or unprecedented living and working conditions.

In terms of traditional scores (POD, FAR, F1, etc.), the performance of the ML models
was quite good, comparable to other approaches. One of the several positive findings of
the current study is that the predictor constructed on the basis of the camera-based system
is able to improve the forecast of both the start and the end of fog events (herein, when
visibility drops below 300 m, or conversely, rises above this limit). This information is
appreciated by air traffic controllers when scheduling special airport regimes in the case
of the initiation or dissipation of fog. In a broader sense, more accurate fog predictions
bring benefits for all participants in air transport: the passengers might not suffer from
the consequences of delays and re-routed flights, the airlines may save fuel and additional
costs, and overall, society as a whole may benefit from a higher level of air transport safety.

These first outcomes of the novel, camera-aided approach to fog forecasting are encour-
aging; however, further research is necessary to achieve more significant improvements
in fog forecasting models. It is expected that in a time horizon of two to three years, the
size of the available database of meteorological measurements will be doubled, which
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would naturally positively influence data-driven analyses. The same effect is anticipated by
including further target sites into statistical fog modelling. From a long-term perspective,
it would also be beneficial to extend the dataset of potential predictors with information
derived from satellite imagery. Up to a point, satellite data are similar to those from the
cameras: both offer a ‘visual’ view of the approaching/receding fog; however, due to the
high local variability of fog, high-resolution satellite images should be used, such as those
of the currently commencing METEOSAT Third Generation (MTG).

A further and important direction of future research will be to reach a phase of
the automated recognition of visibility landmarks captured by cameras. In our research
group, attempts have been made to use neural networks for the pattern recognition of
visibility markers, and recently, deep learning algorithms are being implemented to boost
the methods’ performance. To succeed in this challenge would be a step forward.
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Appendix A Basic Relationships and Settings of the Adopted Machine
Learning Methods

Appendix A.1 K-Nearest Neighbors

The first step in the k-nearest neighbors algorithm is the determination of the distances
between the evaluated instance and the instances in the training dataset, and subsequently,
the selection of the k closest neighbors. Thus, a distance metric between the two feature
vectors xi and xj should be defined. For an L-dimensional space of features, typically a
special case of the Minkowski distance is chosen:

dMin
(
xi, xj

)
=

(
L

∑
l=1

∣∣∣xil − xjl

∣∣∣p) 1
p

(A1)

where the parameter p specifies the particular Minkowski space. If p = 2, we obtain the
Euclidean distance:

dE
(
xi, xj

)
=

√√√√ L

∑
l=1

(
xil − xjl

)2
(A2)

For p = 1, we obtain the Manhattan distance:

dM
(

xi, xj
)
=

L

∑
l=1

∣∣∣xil − xjl

∣∣∣ (A3)
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Appendix A.2 Support Vector Machine

For linear separable data, support vector machines search for the best linear discrimi-
nator (a multidimensional hyperplane), which is located at the maximum possible distance
from the planes of the training data. For a two-class classification, the training data can be
represented as {(x1, y1), . . . , (xN , yN)}, where xi ∈ RL, yi ∈ {−1, 1}. The function of the
linear discriminator is a hyperplane:

y(x) = wTx + b (A4)

where w is a weight vector and b is the shift of the hyperplane with regard to the origin.
The points closest to the separating hyperplane, satisfying y(x) = 1 or y(x) = −1 are

called support vectors. The problem can thus be written as:

yi(xi·w + b)− 1 ≥ 0 for ∀i (A5)

The maximum distance to the hyperplane is equal to 1
‖w‖ ; in other words, we are

minimizing ‖w‖. In general, the solution of this minimizing problem can be expressed as:

w =
N

∑
i=1

αixi (A6)

where αi are optimization coefficients. Thus, the decision function can be written as:

y(x) = sign

(
N

∑
i=1

αiyix·xi + b

)
(A7)

Appendix A.3 Decision Trees

The iterative dichtomiser 3 (ID3, [57]) is one of the first and the simplest algorithms of
the decision trees methodology. ID3 is a recursive algorithm, which chooses a feature for a
root of the decision subtree for a set D with the largest information gain. The amount of
information required to specify a class based on a selected feature can be described by the
entropy H(D) or the information gain IG(α). Entropy describes the amount of uncertainty
in the dataset D:

H(D) = − ∑
c∈C

p(c) log2 p(c) (A8)

where C is the set of classification classes, p(c) the ratio of the instances belonging to class c
to all instances in the dataset D.

The information gain IG(α) of the feature α is the difference in the entropies before and
after the division of the set D based on this feature:

IG(α) = H(D)−∑
s∈S

p(s)H(S) (A9)

where S is the disjunct set of instances created by dividing D based on the feature in such a
way that their union is D.

Appendix A.4 Parameter/Option Settings for the Machine Learning Modelling

The following libraries were used in our implementation: kernlab [52], rpart [53], class [54]
and PyTorch [55]. Unless specified otherwise, default parameter settings were adopted.

The parameters/options of the individual ML models were set as follows:

• KNN—default values, number of neighbors varied depending on the model;
• SVM—kernel = rbfdot (Radial Basis kernel ‘Gaussian’), type = C-svc (classification),

C = 5 (regularization constant), sigma = 0.05 (inverse kernel width for the Radial Basis
kernel function ‘rbfdot’ and the Laplacian kernel ‘laplacedot’);
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• DT—loss matrix =
[

0 1
1.5 0

]
, method = class (decision tree).
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