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Abstract: Previous studies have revealed that global droughts are significantly affected by different 
types of El Niño–Southern Oscillation (ENSO) events. However, quantifying the temporal and spa-
tial characteristics of global droughts, particularly those occurring during combined ENSO and In-
dian Ocean Dipole (IOD) events, is still largely unexplored. This study adopts the severity-area-
duration (SAD) method to identify large-scale drought events and the Liang-Kleeman Information 
Flow (LKIF) to demonstrate the cause-and-effect relationship between the Nino3.4/Nino3/Nino4/Di-
pole Mode Index (DMI) and the global gridded three-month standardized precipitation index (SPI3) 
during 1951–2020. The five main achievements are as follows: (1) the intensity and coverage of 
droughts reach a peak in the developing and mature phases of El Niño, while La Niña most influ-
ences drought in its mature and decaying phases. (2) Compared with Eastern Pacific (EP) El Niño, 
the impacts of Central Pacific (CP) El Niño on global drought are more extensive and complex, es-
pecially in Africa and South America. (3) The areal extent and intensity of drought are greater in 
most land areas during the summer and autumn of the combined events. (4) The spatial variabilities 
in dryness and wetness on land are greater during combined CP El Niño and pIOD events, signifi-
cantly in China and South America. (5) The quantified causalities from LKIF reveal the driving 
mechanism of ENSO/IOD on SPI3, supporting the findings above. These results lead to the potential 
for improving seasonal drought prediction, which is further discussed. 
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1. Introduction 
Drought is a hydrometeorological phenomenon that occurs under all climate regimes 

[1]. From 1998 to 2017, droughts triggered global economic losses of roughly USD 124 
billion. Meanwhile, in 2022, more than 2.3 billion people are facing water stress, and al-
most 160 million children are exposed to severe and prolonged droughts [2]. Although it 
is unclear whether the coverage and frequency of global droughts have increased signifi-
cantly over the past decades [3–6], it is expected that when droughts occur now, they are 
likely to initiate more quickly and become more intense under global warming [5,7,8]. 

All droughts originate from a precipitation deficit over a prolonged period, with a 
meteorological drought occurring first [9–11]. Therefore, investigating the mechanisms of 
the occurrence and evolution of meteorological droughts is important and can provide 
references for drought prediction to resist droughts. Previous studies have revealed that 
land-atmosphere interactions, persistent large-scale circulation anomalies or patterns, and 
large-scale ocean thermal anomalies are the main natural contributors [12]. Land atmos-
pheric interactions/feedbacks favor meteorological droughts by influencing evapotran-
spiration rates [13–16]. However, these land-atmospheric interactions mostly act as local 
factors [16,17], while meteorological droughts are primarily controlled by atmospheric 
circulation and sea surface temperatures [18]. Large-scale circulation anomalies or 
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patterns can be divided into three types contributing to meteorological droughts. One is 
the propagation of planetary-scale or large-scale waves in the horizontal direction [19], 
the second is the vertical descending motion [20], and the third type is the anticyclonic 
circulation that often drives droughts worldwide [21–24]. According to the final natural 
contributor, as the strongest large-scale climate modes in the Pacific Ocean and the Indian 
Ocean, the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) sig-
nificantly impact droughts at the global scale. 

Many studies have investigated the associations and interactions between ENSO, 
IOD, and meteorological droughts. Regarding the impact of ENSO, global anomalies in 
rainfall during El Niño and La Niña events are evident [25], as shown in Figure 1. Areas 
in green (yellow) are likely to become wetter (drier) than normal during the indicated 
months. The dry-trend regions are mostly from 50° S to 50° N, and their locations are 
consistent with the ENSO-affected drought hotspots identified by Nguyen, Min, and Kim 
[18] and Christian, et al. [26]. However, it should be noted that the regions and seasons 
shown in Figure 1 indicate typical but not guaranteed impacts of ENSO. To further ana-
lyze how ENSO modulates droughts, researchers prefer to classify El Niño more precisely, 
based on the event’s central location and intensity. Compared to Eastern Pacific (EP) El 
Niño, Central Pacific (CP) events tend to cause rainfall deficits during southern China 
autumn [27], southeastern Australia summer [28], and US winter [29], whilst CP El Niño 
is also less predictable. In addition, CP El Niño has occurred more frequently, and it is 
expected to be more frequent in the future [30], while EP El Niño has become less common 
[27,31,32]. Another complex issue is whether a strong El Niño implies extreme drought. 
Actually, the coverage and intensity of droughts are strengthened in strong versus weak 
El Niño events in many areas [33], but there exist uncertainties in specific regions. For 
example, the positive summer Eurasian teleconnection (EU) pattern directly determined 
the location and intensity of the 2015 extreme drought in northern China under the 
2015/16 strong El Niño [34]. In addition, droughts do not occur on land or in the ocean 
alone in some cases because the global atmospheric and oceanic circulations are coupled. 
In recent years, studies of land droughts have revealed this process in detail [35,36]. There-
fore, it is necessary to quantify the probabilities of drought occurrence globally in the con-
text of ENSO. 
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Figure 1. Typical rainfall patterns during El Niño and La Niña events based on the whole months 
of rainfall from 1951–2016 [25]. 

The interactions between ENSO and IOD can be found in these classic studies [37–
40]; we mainly focus on the combined role of these teleconnections in droughts. In 2019, 
CP El Niño and pIOD resulted in widespread droughts. With the CP El Niño and IOD sea 
surface temperature (SST) forcings prescribed simultaneously, the experiments run by the 
Geophysical Fluid Dynamics Laboratory (GFDL) global Atmospheric Model version 2.1 
suggested that the superimposed effects of CP- and IOD-related SST anomalies tend to 
amplify the drought intensity and coverage in Australia [41,42]. Furthermore, CP El Niño 
and pIOD explained 60% of the intensity and 40% of the amplitude for the 2019 extreme 
drought in the mid-to-lower reaches of the Yangtze River, which was examined using the 
NCAR Community Atmosphere Model version 5 [43,44]. 

In addition to dynamical models, statistical analysis is another method commonly 
used in climate science. When analyzing the relationship between two variables, correla-
tion analysis is used widely, including Pearson correlation analysis [45], empirical orthog-
onal function analysis [46], cross-correlation analysis [47], and so on. Correlation analysis 
can test the relationship between two variables. However, two variables changing to-
gether does not mean that one variable causes the other to change, which means a strong 
correlation may not mean the presence of causality [48]. As a result, we adopt Liang-Klee-
man Information Flow (LKIF) as our causality analysis method to quantify the cause and 
effect between time series [49]. Compared with Granger causality analysis and transfer 
entropy, LKIF provides quantitative information and dramatically reduces the calculation 
time [50]. This method has been used to detect the cause-and-effect relation between El 
Niño and IOD [51]. With this method, we can overcome the problem that traditional sta-
tistical methods can only reveal correlations between data. Although global climate mod-
els disagree on the ENSO/IOD intensity and frequency in the future [52], it is evident that 
the frequency of combined El Niño and IOD events has increased since 1965 [53]. Most 
studies focus on meteorological droughts in a specific year or a fixed region [54–56]. How-
ever, as noted previously, there are different classifications for ENSO, and different com-
binations may imply diverse impacts on droughts globally. Therefore, it is essential to 
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quantify the contribution of ENSO/IOD to global droughts and analyze the changes under 
combinations of various types of ENSO and IOD. 

To better represent climatic consistency and regional climate features, Iturbide et al. 
[57] presented an updated version of the IPCC climate reference regions for subcontinen-
tal analysis (Figure 2). In this study, we investigate the characteristics, evolution, and driv-
ers of meteorological droughts and provide some new insights based on these reference 
regions. We use the severity-area-duration (SAD) method to identify large-scale drought 
events, which reflect the effects of ENSO/IOD on global droughts and the drought timing 
and duration in climate reference regions. Composite analysis and casual interference 
analysis are then used to quantify the relationships between ENSO/IOD and meteorolog-
ical droughts. The remainder of this paper is structured as follows: Section 2 introduces 
the data and methodology. Section 3 presents the results. The conclusions are presented 
in Section 4.  

 
Figure 2. Updated IPCC reference land (grey shading) and ocean (blue shading) regions [57]. 

2. Data and Methods 
2.1. Precipitation and SST Data 

The global monthly gridded precipitation data used in this study are from the 
ECMWF Reanalysis v5 (ERA5, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5, accessed on 30 May 2022) for the period 1950–2020, with a resolution of 0.5° 
× 0.5°. Additionally, the SST data are from the monthly mean Hadley Centre Sea Ice and 
Sea Surface Temperature data set (HadISST1, https://www.metoffice.gov.uk/hadobs/had-
isst, accessed on 30 May 2022) for the same period, with a resolution of 1° × 1°. 

2.2. ENSO and IOD Indices 
Based on the HadISST1 data, we calculated the Nino3 (150° W–90° W, 5° S–5° N), 

Nino4 (160° E–150° W, 5° S–5° N), and Nino3.4 (5° S–5° N, 170°–120° W) indexes. Follow-
ing the identification standard for ENSO events in Ren, et al. [58], an ENSO event is de-
fined when the absolute value of the 3-month moving average of the NINO3.4 index 
reaches or exceeds 0.5 °C and lasts for at least 5 months (NINO3.4 index ≥ 0.5 °C is an El 
Niño event, NINO3.4 index ≤ −0.5 °C is a La Niña event). An El Niño event with an abso-
lute value of Nino3 (Nino4) index at or above 0.5 °C for at least 3 months is classified as 
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EP (CP) El Niño. The years of different ENSO types (El Niño, EP El Niño, CP El Niño, and 
La Niña) are shown in Table 1 from 1950 to 2020. In addition, positive and negative IOD 
events are defined by the Dipole Mode Index (DMI), which is derived from the difference 
in SST anomalies between the western (10° S–10° N, 50°–70° E) and eastern (10° S–0° N, 
90°–110° E) equatorial Indian Ocean. A positive (negative) IOD event is defined in the year 
when the sliding average of the DMI from September to November is greater (less) than 
one positive (negative) standard deviation of DMI. Details of the index can be found in 
Saji et al. [59] and Hameed and Yamagata [60]. The years of all regimes of combined ENSO 
and IOD events are displayed in Table 2. 

Table 1. List of El Niño, La Niña, and IOD events during 1950–2020. 

El Niño 
La Niña 

IOD 

EP El Niño CP El Niño pIOD nIOD 

1951/1952, 1957/1958, 
1963/1964, 1965/1966, 
1969/1970, 1972/1973, 
1976/1977, 1979/1980, 
1982/1983, 1986/1987, 
1987/1988, 1991/1992, 
1997/1998, 2006/2007, 
2014/2015, 2015/2016, 

1968/1969, 
1977/1978, 
1994/1995, 
2002/2003, 
2004/2005, 
2009/2010, 
2018/2019, 
2019/2020, 

1954/1955, 1955/1956, 
1956/1957, 1964/1965, 
1970/1971, 1971/1972, 
1973/1974, 1975/1976, 
1983/1984, 1984/1985, 
1988/1989, 1998/1999, 
1999/2000, 2007/2008, 
2010/2011, 2011/2012, 

2017/2018 

1951, 1961, 
1963, 1972, 
1982, 1994, 
1997, 2002, 
2006, 2011, 
2015, 2017, 
2018,2019 

1954, 
1957, 
1958, 
1959, 
1960, 
1996, 
1998 

Table 2. All regimes of combined ENSO and IOD events during 1950–2020. 

EP El Niño + pIOD CP El Niño + pIOD 
EP El Niño 

+ nIOD 
La Niña + 

pIOD 
La Niña + 

nIOD 

1951/1952, 1963/1964,  
1972/1973, 1982/1983, 
1997/1998, 2006/2007, 

2015/2016 

1994/1995, 2002/2003, 
2018/2019, 2019/2020 

1957/1958 
2011/2012, 
2017/2018 

1954/1955, 
1998/1999 

2.3. Identification of Large-Scale Drought Events 
Since rainfall varies greatly in different regions, the concept of drought varies. In or-

der to assess drought better, the World Meteorological Organization (WMO) recommends 
using the SPI [61]. In this study, we use SPI3, calculated from monthly ERA5 precipitation 
data for the whole year, as the seasonal drought index [62–64]. The detailed calculation 
algorithm for SPI3 can be found in McKee, et al. [65]. Here, the global gridded SPI3 dataset 
during 1951–2020 is computed via the Climate Indices Python package [66] for conven-
ience. 

Using the SPI3 dataset, we perform a global drought analysis from 1951 to 2020. Tak-
ing the continuity of time and space into account, we adopt the SAD drought diagnosis 
method [67–70] to identify large-scale drought events. In contrast with traditional studies, 
which analyze the intensity, severity, and duration of drought over a fixed region, the 
SAD method specializes in simultaneously tracking the development of droughts in space 
and time based on a gridded dataset [71]. The SAD method is briefly outlined as follows. 

The SPI3 dataset is three-dimensional (month × latitude × longitude), and we first 
need to identify the drought grid points on the two-dimensional data at each time step 
(month). Specifically, we regard a grid with a SPI3 value below −1.0 as being under 
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drought and consider connected areas within which all grids have a SPI3 below −1.0 as a 
drought cluster. To track clusters through time, we link clusters with overlapping grid 
cells between time t and time t + 1, while clusters with an area less than 500,000 km2 (often 
used in global or continental droughts identification [67,69,71]) are removed. Notably, this 
means that Sahara droughts are not examined in our study. The spatial-temporal evolu-
tion of global drought events from August to November 2019 identified using the SAD 
method is given as an example in Figure 3. 

 
Figure 3. Global drought evolution from August to November in 2019. The droughts in China, South 
Africa, and South America are marked respectively, where the black line represents the evolution 
of a drought, the blue triangle represents the center of a drought at a time step, and the blue circle 
covers the drought area roughly. 

2.4. Causal Analysis between ENSO/IOD and SPI3 
As described in Section 2.2, we derived the time series of Nino3.4, DMI, and global 

SPI3 at all grids for the whole year from 1951 to 2020. LKIF is used to quantify the causality 
between them. Causality is measured as the time rate of information flow (IF) from one 
time series to another. It has long been recognized that a non-zero IF, or information trans-
fer as it may appear in some literature, from one event to another logically indicates the 
strength of the causality from the former to the latter, and a vanishing causality must en-
tail a zero flow [72]. A brief introduction of LKIF is outlined as follows. 

Given a two-dimensional stochastic system, 
𝑑𝑑𝑥𝑥1
𝑑𝑑𝑡𝑡

= 𝐹𝐹1(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) + 𝑏𝑏11𝑤𝑤1 + 𝑏𝑏12𝑤𝑤2  (1) 

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑡𝑡

= 𝐹𝐹2(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) + 𝑏𝑏21𝑤𝑤1 + 𝑏𝑏22𝑤𝑤2 (2) 

where 𝑤𝑤𝑖𝑖  (𝑖𝑖 = 1, 2) indicates white noise, 𝑏𝑏𝑖𝑖𝑖𝑖  and 𝐹𝐹𝑖𝑖 are arbitrary functions of 𝑋𝑋 and 𝑡𝑡. 
The rate of information flow from 𝑋𝑋2 to 𝑋𝑋1 is: 

𝑇𝑇2→1 = −𝐸𝐸 � 1
𝜌𝜌1

𝜕𝜕(𝐹𝐹1𝜌𝜌1)
𝜕𝜕𝑥𝑥1

� + 1
2
𝐸𝐸 � 1

𝜌𝜌1

𝜕𝜕�𝑏𝑏11
2 +𝑏𝑏12

2 �𝜌𝜌1
𝜕𝜕𝑥𝑥2

�  (3) 

where 𝐸𝐸 stands for mathematical expectation (units: nats per unit time), and 𝜌𝜌1 = 𝜌𝜌1(𝑥𝑥1) 
is the marginal probability density of 𝑋𝑋1. If the evolution of 𝑋𝑋1 is independent of 𝑋𝑋2, then 
𝑇𝑇2→1 = 0. The nat is a natural unit of information, based on natural logarithms and powers 
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of e [73]. One nat is the information content of an event when the probability of that event 
occurring is 1/e. 

When only two time series 𝑋𝑋1 and 𝑋𝑋2 are given, the maximum likelihood estimator 
of Equation (3) is very concise as follows: 

𝑇𝑇2→1 = 𝐶𝐶11𝐶𝐶12𝐶𝐶2,𝑑𝑑1−𝑐𝑐122 𝐶𝐶1,𝑑𝑑1
𝑐𝑐11
2 𝐶𝐶22−𝐶𝐶11𝑐𝑐12

2   (4) 

where 𝐶𝐶𝑖𝑖𝑖𝑖  (𝑖𝑖, 𝑗𝑗 = 1, 2) is the sample covariance matrix between time series 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑖𝑖, and 
𝐶𝐶1,𝑑𝑑𝑖𝑖 is the sample covariance between 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑖𝑖 = �

𝑋𝑋𝑗𝑗,𝑛𝑛+1−𝑋𝑋𝑗𝑗,𝑛𝑛

∆𝑡𝑡
�, with ∆𝑡𝑡 being the time 

step size (units: nats per unit time). If |𝑇𝑇2→1| is nonzero, 𝑋𝑋2 is causal to 𝑋𝑋1; if not, it is 
non-causal. In this study, the SPI3 at each grid is 𝑋𝑋1; Nino3.4, Nino3, Nino4, and DMI are 
𝑋𝑋2, respectively, so we can calculate the information flow from Nino3.4/Nino3/Nino4/DMI 
to SPI3. All confidence intervals reported here are significant at the 95% level, which fol-
lows Liang [50,74]. 

2.5. Metrics 
It is known that seasonal precipitation variation corresponds to the evolution of 

ENSO in many regions [75–77]. To quantify the impacts of the different ENSO types, we 
calculate the drought proportion in each season globally. The equation of drought pro-
portion for each grid is as follows. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖𝑃𝑃𝑃𝑃 = 𝑛𝑛
𝑁𝑁

  (5) 

where 𝑁𝑁 represents the total number of months in a season when one ENSO type occurs. 
For example, there are 17 La Niña years from 1950 to 2020. So 𝑁𝑁 equals 3 × 17 when we 
calculate the drought proportion in JJA, and the 𝑃𝑃 is the total number of months a grid is 
in drought during the 𝑁𝑁 months. 

To match the seasonal scale of SPI3, we process all the atmospheric variables to nor-
malized seasonal anomalies. 

 𝑁𝑁𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑁𝑁𝑁𝑁𝑑𝑑 𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁 𝐴𝐴𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑁𝑁𝑆𝑆 = 𝑋𝑋−𝜇𝜇
𝜎𝜎

 (6) 

where 𝑋𝑋 represents the original variable, and 𝜇𝜇 and 𝜎𝜎 are the climatological mean and 
standard deviation, respectively. Strictly speaking, 𝑋𝑋  is the 3-month running mean, 
whose value is located in the last month of the running window. The two climatological 
variables (𝜇𝜇, 𝜎𝜎) are further computed based on the 3-month running mean. 

3. Results 
3.1. Global Drought during ENSO Events 
3.1.1. The Proportion of Global Droughts during Different ENSO Types 

As illustrated in Figures 4 and 5, meteorological droughts are located in Southeast 
Asia, Australia, Central America, North South-America, Central Africa, and South Africa 
during El Niño years, which is consistent with Figure 1 and previous studies. The intensity 
and coverage of droughts change with the evolution of El Niño and reach their peak dur-
ing autumn and winter. The distribution of droughts also transforms. For example, El 
Niño may cause droughts in East Asia and South Asia in the developing and mature 
phases, while La Niña influences drought most in the mature and decaying phases. As 
shown in Figure 4f, the percentage of drought coverage is quite high around 15° S and 15° 
N. The possible cause of this is the descending branch of the anomalous Hadley circula-
tion. In contrast to El Niño years, droughts in East Asia, the Arabian Peninsula, and Cen-
tral and East Africa are more frequent in La Niña years, and fewer areas of drought are 
on land. 
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Figure 4. The drought proportion in all seasons from 1951–2020 when El Niño events occur. (a,c,e,g) 
represent the drought proportion in Jun-Jul-Aug (JJA), Sep-Oct-Nov (SON), Dec-Jan-Feb (DJF) of 
the current year, and March-April-May (MAM) of the following year. (b,d,f,h) represent the per-
centage of drought areas at different latitudes. The land regions with red edges are easily affected 
by ENSO. The easily-affected regions are where the yellow areas in Figure 1 and the areas with high 
drought proportion in Figure 4 overlap. 

 
Figure 5. The same as Figure 4, but for La Niña. 

Figure 6 indicates that the impacts of CP El Niño on global drought are more exten-
sive and complex compared with EP El Niño. In addition to the regions commonly influ-
enced, the occurrence of drought is possible in West North-America and East Asia during 
the developing phases of CP El Niño. It should be noted that Africa and South America 
could suffer more intense and widespread droughts under CP El Niño rather than EP 
events. 



Atmosphere 2022, 13, 1673 9 of 19 
 

 

 
Figure 6. The same as Figure 4, but for EP El Niño and CP El Niño. 

3.1.2. The Significant Drought Timing and Duration in Climate Reference Regions 
To quantify the ENSO-induced drought timing and duration in El Niño, CP El Niño, 

EP El Niño, and La Niña years, we carry out a Student t-test to test the significance of the 
drought coverage in each month during ENSO years (Figure 7). It should be noted that 
the results in Figure 7 represent the statistics of global droughts rather than general dry-
ness, in contrast to Figure 1. Although many regions could be dry for long periods in Fig-
ure 1, the meteorological droughts in these regions are not significantly influenced by El 
Niño, and the duration of droughts is short. For example, the duration of the rainfall def-
icit is from June to March in North Central-America in Figure 1, whereas the months at a 
significance level of 90% are from January to March in Figure 7. Compared to La Niña, El 
Niño affects droughts on land more significantly, consistent with Figure 1. 

In addition to the regions, including South Asia, Southeast Asia, and Australia, vul-
nerable to El Niño during its evolution, we now pay attention to regions affected in spe-
cific phases. Droughts in East Africa are easily detected in the boreal winter, the mature 
phase of El Niño. However, the significant months of drought in West and Central Africa 
are much later and shorter. Another interesting finding is that El Niño influences droughts 
in South Central-America and the Caribbean region during the developing phase, but in 
South America during the mature and decaying phases. 
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Figure 7. Comparisons of ENSO-induced drought timing and duration for SPI3 during El Niño, CP 
El Niño, EP El Niño, and La Niña. Light and dark filled bars indicate the statistical significance at 
the 90% and 95% confidence level of drought coverage from June to the next May, respectively. 
Error bars represent the statistical significance of drought coverage at the 80% confidence level. 

3.2. Global Drought during Combined El Niño and pIOD Events 
The occurrences of IOD events can be independent of ENSO or occur simultaneously 

with ENSO [78]. In this study, we focus on whether combined ENSO and IOD events 
cause more droughts. Table 2 shows five regimes of combined ENSO and IOD events from 
1950 to 2020. Among them, El Niño and pIOD is the most common combination. Seasonal 
phase locking is an important characteristic of IOD, with significant anomalies appearing 
around June, intensifying in the following months, and peaking in October [59]. Thus, the 
changes in droughts in summer and autumn are most interesting. 

As displayed in Figures 4 and 5, the drought coverage is greater in autumn than in 
summer, probably due to the higher intensity of El Niño and pIOD in the former. Except 
for South Asia and South China, where the frequency of drought is slightly reduced, other 
land regions are more prone to droughts, especially Southeast Asia, Australia, and Africa 
in Figure 8. As indicated in Figure 8, compared with the combined EP El Niño and pIOD 
events, the changes of intensity and areal extent of droughts are greater in the summer of 
the years when CP El Niño and pIOD occur simultaneously. In addition, the spatial vari-
abilities of dryness and wetness on land are greater. However, during combined CP El 
Niño and pIOD events, contrasting drought proportion changes are observed in the Yang-
tze-Huai River basin and South China. The same phenomenon is also observed in North 
and Northeast South America. 
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Figure 8. The drought proportion in Jun-Jul-Aug (JJA) and Sep-Oct-Nov (SON) when combined El 
Niño and pIOD occur. (a,b) is for El Nino, (c,d) is for EP El Nino, and (e,f) is for CP El Nino. (El 
Niño + pIOD) − El Niño represents the difference between the drought proportion when combined 
events occur and the proportion when only El Niño events occur. The land regions with red edges 
are easily affected by El Niño. 

In order to examine the effects of combined events on drought variability, we also 
calculate the drought timing and duration (Figure 9). It can be seen that drought is more 
significant in Southeast Asia and Australia but not in South Asia during combined events. 
Notably, CP El Niño is more likely to cause drought in Central and East Australia, 
whether it is an El Niño alone or a combined event. As illustrated in Figure 8, droughts 
are enhanced across Africa and South America. 

 
Figure 9. The same as Figure 7, but for comparisons during El Niño + pIOD, CP El Niño + pIOD, 
and EP El Niño + pIOD. 
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3.3. Composite Analysis of Vertical Velocity Anomalies 
We have identified that the percentage of drought coverage is highest at around 15° 

S and 15° N, and at its maximum in winter. As we know, the descending motion of the 
vertical winds is a direct cause of precipitation deficits, and ENSO events tend to induce 
anomalies of atmospheric dynamics [79–81]. Therefore, we now perform a composite 
analysis to investigate the impacts of normalized seasonal anomalies of vertical velocity, 
as shown in Figures 10 and 11. 

The red areas in Figure 10a–d almost overlap with the drought areas in Figures 4–6. 
This suggests that the vertical velocity anomalies at 500 hPa are closely associated with 
the drought distribution. Previous studies have used vertical velocity to analyze and pre-
dict drought [82–84]. Here we examine whether vertical velocity at 500 hPa is sufficient to 
represent the vertical motion anomalies of the whole atmosphere during drought. In ad-
dition, the spatial distribution of the positive vertical velocity during CP El Niño is signif-
icantly more complex than that of EP El Niño, especially in the western Pacific. 

Another concern is the latitudinal distribution of the drought area during ENSO 
events, as illustrated in Figure 10e–h. Compared with CP El Niño, the descending motions 
are more concentrated and intense near to 15° N in EP El Niño years, resulting in a broader 
drought coverage than at other latitudes. In contrast, the areas between 30° S to 20° N also 
experience widespread drought during CP El Niño events. 

To further investigate the roles of vertical velocity, Figure 11 presents the differences 
in normalized seasonal anomalies of vertical velocity for autumn when combined events 
occur. The red areas in Figure 11 are almost the same as the brown regions in Figure 8, 
except for North Australia in CP El Niño and pIOD years. 

 
Figure 10. Normalized seasonal anomalies of vertical velocity in DJF during (a) El Niño, (b) EP El 
Niño, (c) CP El Niño and (d) La Niña. The red (blue) contours represent vertical descending (up-
ward) motions. (a–d) show the vertical velocity anomalies at 500 hPa during these events, and the 
dotted areas are significant at the 95% confidence level. (e–f) are the average of vertical velocity 
anomalies between 130°–150° E. 
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Figure 11. Normalized seasonal anomalies of vertical velocity in SON when combined El Niño and 
pIOD occur. (a) is for El Nino, (b) is for EP El Nino, and (c) is for CP El Nino. (El Niño + pIOD) − El 
Niño represents the difference between the vertical velocity anomalies when combined events occur 
and the frequency when only El Niño events occur. The dotted areas are significant at the 95% con-
fidence level. 

3.4. Causal Analysis between Nino3.4/Nino3/Nino4/DMI and SPI3 
The quantified causalities of Nino3.4, Nino3, Nino4, and DMI on global SPI3 are dis-

played in Figure 12. Causalities are significant in almost all the regions where drought 
proportion increases during ENSO. This demonstrates the mutual validity of our drought 
identification and causal analysis methods. 

The information flows of Nino3.4 and DMI decrease as the lead time increases. Com-
pared with DMI, the information flow between Nino3.4 and SPI3 is stronger and wider at 
all lead months. The regions where the two causal relationships overlap, including Africa 
and South America, are those where drought frequency is significantly enhanced during 
combined events. The easily affected regions are all detected with solid information flow, 
which is consistent with the results in Section 3.2.  

However, it is unexpected that there exists causality from South China to Japan, al-
most coinciding with the trajectory of the atmospheric rivers in East Asia [85,86]. The rea-
son is that the whole series of climate indices from 1951–2020 are used, so Figure 12 reflects 
the information on dryness and wetness. Although the information flow declines with 
increasing lead time, the coverage of the information flow from DMI to SPI3 changes. For 
example, there is no significant causality between DMI and SPI3 at 1 month in East Asia, 
but the spatial distribution of information flows of DMI and Nino3.4 in the region are 
similar at lead 3 months. This means DMI may have long-time lag effects on SPI3. This is 
also revealed in Zhang, et al. [87]; IOD can still exert a stronger influence on precipitation 
during the ensuing summer. 

Since Nino3 reflects the anomalies in the eastern Pacific, the information flow rates 
in this area and for South America are higher in Figure 12g. In contrast to this, the areas 
affected significantly by Nino4 are wider in the western Pacific, especially in Australia. 
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Figure 12. Global information flow from Nino3.4, Nino3, Nino4, and DMI to SPI3 from 1951–2020. 
The colored areas are statistically significant at the 95% confidence level. (a,c,e) are the spatial dis-
tribution of the information flow between Nino3.4 and the global gridded SPI3 at lead 1, 2, and 3 
months, (b,d,f) are the spatial distribution of the information flow between the DMI and the gridded 
global SPI3 at lead 1, 2, and 3 months, and (g,h) are the spatial distribution of the information flow 
between the Nino3/Nino4 and the gridded global SPI3 at lead 1 month. The slashed areas in (a,c,e) 
are the areas of drought coverage over 0.75 in DJF during El Niño and La Niña. The slashed areas 
in (b,d,f) are the areas of drought coverage increase over 0.25 in SON during combined CP El Niño 
and pIOD. The slashed areas in (g) are the areas of drought coverage over 0.75 in DJF during EP El 
Niño and La Niña. The slashed areas in (h) are the areas of drought coverage over 0.75 in DJF during 
CP El Niño and La Niña. 

The spatial distribution of the vertical velocity anomalies explains the mechanism 
behind the changes of drought coverage, and the LKIF reveals the impacts of ENSO on 
SPI3 by a statistical method. We speculate whether the results from these two completely 
different approaches are aligned. As indicated in Figure 13, the significant regions of ver-
tical velocity anomalies almost overlap with those of significant causality, except for the 
Southern Indian Ocean and the Northwest Pacific. Another robust proof is Figure A1, 
which displays the causal analysis results between ENSO and the vertical velocity anom-
alies. 
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Figure 13. Normalized seasonal anomalies of vertical velocity and the information flow from 
Nino3.4, Nino3, and Nino4 to SPI3 from 1951–2020. The contours and slashed areas are all signifi-
cant at a 95% confidence level. 

4. Conclusions 
Prior work has documented the roles of ENSO and IOD events in drought causation. 

Nevertheless, different combinations of ENSO and IOD conditions may imply diverse im-
pacts on droughts globally. This study investigates global drought coverage, frequency, 
and evolution during ENSO and combined El Niño and pIOD events.  

The results suggest that the intensity and coverage of droughts change with the evo-
lution of El Niño and reach their peak during the developing and mature phases, whereas 
La Niña influences drought most in the mature and decaying phases. Compared with EP 
El Niño, the impacts of CP El Niño on global droughts are more extensive and complex, 
and Africa and South America may suffer from more intense and widespread droughts. 
We also find that during the summer and autumn of combined El Niño and pIOD events, 
the total area of drought is greater, and their intensity is enhanced across most land areas. 
Moreover, the spatial variabilities of dryness and wetness on land are greater during CP 
El Niño and pIOD events in China and South America. The 500 hPa vertical vorticity 
anomalies are detected in close association with global droughts, reflecting the dynamic 
mechanism. Most notably, this is the first study to our knowledge to quantify the infor-
mation flow from Nino3.4/Nino3/Nino4/DMI to global SPI3 by using LKIF, which reveals 
the driving mechanism of ENSO/IOD on SPI3, supporting the findings above. 

These results provide the potential for improving future seasonal drought prediction. 
For seasonal drought prediction, ENSO is often used as a predictor related to drought 
indices. Researchers can construct statistical models between ENSO and seasonal drought 
[88–90]. Moreover, with the increasing accuracy of ENSO prediction through deep learn-
ing and multi-model ensemble projection [91,92], the frequency and intensity of seasonal 
drought can be estimated based on the mechanisms investigated in this paper. 

Author Contributions: Conceptualization, H.Y. and Z.W.; methodology, H.Y.; software, H.Y.; vali-
dation, H.J.F. and S.B.; formal analysis, H.Y., H.J.F. and S.B.; investigation, H.Y.; resources, Z.W.; 
data curation, H.Y., H.H. and Y.L.; writing—original draft preparation, H.Y.; writing—review and 
editing, Z.W., H.J.F. and S.B.; visualization, H.Y.; supervision, Z.W., H.J.F. and S.B.; project admin-
istration, Z.W.; funding acquisition, Z.W. All authors have read and agreed to the published version 
of the manuscript. 

Funding: This work is supported by the National Natural Science Foundation of China (No. 
U2240225). The authors gratefully acknowledge the School of Engineering of Newcastle University 



Atmosphere 2022, 13, 1673 16 of 19 
 

 

for providing laboratory and computing resources for use in this study and the funding supported 
by the China Scholarship Council. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 
study. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 
Figure A1. Global information flow from Nino3.4, Nino3, Nino4, and DMI to normalized seasonal 
anomalies of vertical velocity from 1951–2020. The spatial distribution of the information flow is at 
lead 1 month. The slashed areas are the same as in Figure 12. 
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