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Abstract: Previous studies have revealed that global droughts are significantly affected by different
types of El Niño–Southern Oscillation (ENSO) events. However, quantifying the temporal and spatial
characteristics of global droughts, particularly those occurring during combined ENSO and Indian
Ocean Dipole (IOD) events, is still largely unexplored. This study adopts the severity-area-duration
(SAD) method to identify large-scale drought events and the Liang-Kleeman Information Flow (LKIF)
to demonstrate the cause-and-effect relationship between the Nino3.4/Nino3/Nino4/Dipole Mode
Index (DMI) and the global gridded three-month standardized precipitation index (SPI3) during
1951–2020. The five main achievements are as follows: (1) the intensity and coverage of droughts
reach a peak in the developing and mature phases of El Niño, while La Niña most influences drought
in its mature and decaying phases. (2) Compared with Eastern Pacific (EP) El Niño, the impacts of
Central Pacific (CP) El Niño on global drought are more extensive and complex, especially in Africa
and South America. (3) The areal extent and intensity of drought are greater in most land areas
during the summer and autumn of the combined events. (4) The spatial variabilities in dryness and
wetness on land are greater during combined CP El Niño and pIOD events, significantly in China and
South America. (5) The quantified causalities from LKIF reveal the driving mechanism of ENSO/IOD
on SPI3, supporting the findings above. These results lead to the potential for improving seasonal
drought prediction, which is further discussed.

Keywords: global droughts; ENSO; IOD; causality analysis

1. Introduction

Drought is a hydrometeorological phenomenon that occurs under all climate regimes [1].
From 1998 to 2017, droughts triggered global economic losses of roughly USD 124 billion.
Meanwhile, in 2022, more than 2.3 billion people are facing water stress, and almost
160 million children are exposed to severe and prolonged droughts [2]. Although it is
unclear whether the coverage and frequency of global droughts have increased significantly
over the past decades [3–6], it is expected that when droughts occur now, they are likely to
initiate more quickly and become more intense under global warming [5,7,8].

All droughts originate from a precipitation deficit over a prolonged period, with a
meteorological drought occurring first [9–11]. Therefore, investigating the mechanisms
of the occurrence and evolution of meteorological droughts is important and can pro-
vide references for drought prediction to resist droughts. Previous studies have revealed
that land-atmosphere interactions, persistent large-scale circulation anomalies or patterns,
and large-scale ocean thermal anomalies are the main natural contributors [12]. Land
atmospheric interactions/feedbacks favor meteorological droughts by influencing evap-
otranspiration rates [13–16]. However, these land-atmospheric interactions mostly act as
local factors [16,17], while meteorological droughts are primarily controlled by atmospheric
circulation and sea surface temperatures [18]. Large-scale circulation anomalies or patterns
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can be divided into three types contributing to meteorological droughts. One is the propa-
gation of planetary-scale or large-scale waves in the horizontal direction [19], the second is
the vertical descending motion [20], and the third type is the anticyclonic circulation that
often drives droughts worldwide [21–24]. According to the final natural contributor, as
the strongest large-scale climate modes in the Pacific Ocean and the Indian Ocean, the El
Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) significantly impact
droughts at the global scale.

Many studies have investigated the associations and interactions between ENSO, IOD,
and meteorological droughts. Regarding the impact of ENSO, global anomalies in rainfall
during El Niño and La Niña events are evident [25], as shown in Figure 1. Areas in green
(yellow) are likely to become wetter (drier) than normal during the indicated months.
The dry-trend regions are mostly from 50◦ S to 50◦ N, and their locations are consistent
with the ENSO-affected drought hotspots identified by Nguyen, Min, and Kim [18] and
Christian, et al. [26]. However, it should be noted that the regions and seasons shown in
Figure 1 indicate typical but not guaranteed impacts of ENSO. To further analyze how
ENSO modulates droughts, researchers prefer to classify El Niño more precisely, based on
the event’s central location and intensity. Compared to Eastern Pacific (EP) El Niño, Central
Pacific (CP) events tend to cause rainfall deficits during southern China autumn [27],
southeastern Australia summer [28], and US winter [29], whilst CP El Niño is also less
predictable. In addition, CP El Niño has occurred more frequently, and it is expected to
be more frequent in the future [30], while EP El Niño has become less common [27,31,32].
Another complex issue is whether a strong El Niño implies extreme drought. Actually, the
coverage and intensity of droughts are strengthened in strong versus weak El Niño events
in many areas [33], but there exist uncertainties in specific regions. For example, the positive
summer Eurasian teleconnection (EU) pattern directly determined the location and intensity
of the 2015 extreme drought in northern China under the 2015/16 strong El Niño [34]. In
addition, droughts do not occur on land or in the ocean alone in some cases because the
global atmospheric and oceanic circulations are coupled. In recent years, studies of land
droughts have revealed this process in detail [35,36]. Therefore, it is necessary to quantify
the probabilities of drought occurrence globally in the context of ENSO.

Figure 1. Typical rainfall patterns during El Niño and La Niña events based on the whole months of
rainfall from 1951–2016 [25].
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The interactions between ENSO and IOD can be found in these classic studies [37–40];
we mainly focus on the combined role of these teleconnections in droughts. In 2019, CP
El Niño and pIOD resulted in widespread droughts. With the CP El Niño and IOD sea
surface temperature (SST) forcings prescribed simultaneously, the experiments run by the
Geophysical Fluid Dynamics Laboratory (GFDL) global Atmospheric Model version 2.1
suggested that the superimposed effects of CP- and IOD-related SST anomalies tend to
amplify the drought intensity and coverage in Australia [41,42]. Furthermore, CP El Niño
and pIOD explained 60% of the intensity and 40% of the amplitude for the 2019 extreme
drought in the mid-to-lower reaches of the Yangtze River, which was examined using the
NCAR Community Atmosphere Model version 5 [43,44].

In addition to dynamical models, statistical analysis is another method commonly
used in climate science. When analyzing the relationship between two variables, correlation
analysis is used widely, including Pearson correlation analysis [45], empirical orthogonal
function analysis [46], cross-correlation analysis [47], and so on. Correlation analysis can
test the relationship between two variables. However, two variables changing together does
not mean that one variable causes the other to change, which means a strong correlation may
not mean the presence of causality [48]. As a result, we adopt Liang-Kleeman Information
Flow (LKIF) as our causality analysis method to quantify the cause and effect between
time series [49]. Compared with Granger causality analysis and transfer entropy, LKIF
provides quantitative information and dramatically reduces the calculation time [50]. This
method has been used to detect the cause-and-effect relation between El Niño and IOD [51].
With this method, we can overcome the problem that traditional statistical methods can
only reveal correlations between data. Although global climate models disagree on the
ENSO/IOD intensity and frequency in the future [52], it is evident that the frequency
of combined El Niño and IOD events has increased since 1965 [53]. Most studies focus
on meteorological droughts in a specific year or a fixed region [54–56]. However, as
noted previously, there are different classifications for ENSO, and different combinations
may imply diverse impacts on droughts globally. Therefore, it is essential to quantify the
contribution of ENSO/IOD to global droughts and analyze the changes under combinations
of various types of ENSO and IOD.

To better represent climatic consistency and regional climate features, Iturbide et al. [57]
presented an updated version of the IPCC climate reference regions for subcontinental
analysis (Figure 2). In this study, we investigate the characteristics, evolution, and drivers of
meteorological droughts and provide some new insights based on these reference regions.
We use the severity-area-duration (SAD) method to identify large-scale drought events,
which reflect the effects of ENSO/IOD on global droughts and the drought timing and du-
ration in climate reference regions. Composite analysis and casual interference analysis are
then used to quantify the relationships between ENSO/IOD and meteorological droughts.
The remainder of this paper is structured as follows: Section 2 introduces the data and
methodology. Section 3 presents the results. The conclusions are presented in Section 4.

2. Data and Methods
2.1. Precipitation and SST Data

The global monthly gridded precipitation data used in this study are from the ECMWF
Reanalysis v5 (ERA5, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/
era5, accessed on 30 May 2022) for the period 1950–2020, with a resolution of 0.5◦ × 0.5◦.
Additionally, the SST data are from the monthly mean Hadley Centre Sea Ice and Sea
Surface Temperature data set (HadISST1, https://www.metoffice.gov.uk/hadobs/hadisst,
accessed on 30 May 2022) for the same period, with a resolution of 1◦ × 1◦.

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.metoffice.gov.uk/hadobs/hadisst
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Figure 2. Updated IPCC reference land (grey shading) and ocean (blue shading) regions [57].

2.2. ENSO and IOD Indices

Based on the HadISST1 data, we calculated the Nino3 (150◦ W–90◦ W, 5◦ S–5◦ N),
Nino4 (160◦ E–150◦W, 5◦ S–5◦ N), and Nino3.4 (5◦ S–5◦ N, 170◦–120◦W) indexes. Following
the identification standard for ENSO events in Ren, et al. [58], an ENSO event is defined
when the absolute value of the 3-month moving average of the NINO3.4 index reaches
or exceeds 0.5 ◦C and lasts for at least 5 months (NINO3.4 index ≥ 0.5 ◦C is an El Niño
event, NINO3.4 index ≤ −0.5 ◦C is a La Niña event). An El Niño event with an absolute
value of Nino3 (Nino4) index at or above 0.5 ◦C for at least 3 months is classified as EP
(CP) El Niño. The years of different ENSO types (El Niño, EP El Niño, CP El Niño, and
La Niña) are shown in Table 1 from 1950 to 2020. In addition, positive and negative IOD
events are defined by the Dipole Mode Index (DMI), which is derived from the difference
in SST anomalies between the western (10◦ S–10◦ N, 50◦–70◦ E) and eastern (10◦ S–0◦ N,
90◦–110◦ E) equatorial Indian Ocean. A positive (negative) IOD event is defined in the year
when the sliding average of the DMI from September to November is greater (less) than
one positive (negative) standard deviation of DMI. Details of the index can be found in Saji
et al. [59] and Hameed and Yamagata [60]. The years of all regimes of combined ENSO and
IOD events are displayed in Table 2.

Table 1. List of El Niño, La Niña, and IOD events during 1950–2020.

El Niño
La Niña

IOD

EP El Niño CP El Niño pIOD nIOD

1951/1952, 1957/1958,
1963/1964, 1965/1966,
1969/1970, 1972/1973,
1976/1977, 1979/1980,
1982/1983, 1986/1987,
1987/1988, 1991/1992,
1997/1998, 2006/2007,
2014/2015, 2015/2016,

1968/1969,
1977/1978,
1994/1995,
2002/2003,
2004/2005,
2009/2010,
2018/2019,
2019/2020,

1954/1955, 1955/1956,
1956/1957, 1964/1965,
1970/1971, 1971/1972,
1973/1974, 1975/1976,
1983/1984, 1984/1985,
1988/1989, 1998/1999,
1999/2000, 2007/2008,
2010/2011, 2011/2012,

2017/2018

1951, 1961,
1963, 1972,
1982, 1994,
1997, 2002,
2006, 2011,
2015, 2017,
2018,2019

1954,
1957,
1958,
1959,
1960,
1996,
1998
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Table 2. All regimes of combined ENSO and IOD events during 1950–2020.

EP El Niño + pIOD CP El Niño + pIOD EP El Niño
+ nIOD

La Niña
+ pIOD

La Niña
+ nIOD

1951/1952, 1963/1964,
1972/1973, 1982/1983,
1997/1998, 2006/2007,

2015/2016

1994/1995, 2002/2003,
2018/2019, 2019/2020 1957/1958 2011/2012,

2017/2018
1954/1955,
1998/1999

2.3. Identification of Large-Scale Drought Events

Since rainfall varies greatly in different regions, the concept of drought varies. In order
to assess drought better, the World Meteorological Organization (WMO) recommends using
the SPI [61]. In this study, we use SPI3, calculated from monthly ERA5 precipitation data for
the whole year, as the seasonal drought index [62–64]. The detailed calculation algorithm
for SPI3 can be found in McKee, et al. [65]. Here, the global gridded SPI3 dataset during
1951–2020 is computed via the Climate Indices Python package [66] for convenience.

Using the SPI3 dataset, we perform a global drought analysis from 1951 to 2020.
Taking the continuity of time and space into account, we adopt the SAD drought diagnosis
method [67–70] to identify large-scale drought events. In contrast with traditional studies,
which analyze the intensity, severity, and duration of drought over a fixed region, the SAD
method specializes in simultaneously tracking the development of droughts in space and
time based on a gridded dataset [71]. The SAD method is briefly outlined as follows.

The SPI3 dataset is three-dimensional (month × latitude × longitude), and we first
need to identify the drought grid points on the two-dimensional data at each time step
(month). Specifically, we regard a grid with a SPI3 value below−1.0 as being under drought
and consider connected areas within which all grids have a SPI3 below −1.0 as a drought
cluster. To track clusters through time, we link clusters with overlapping grid cells between
time t and time t + 1, while clusters with an area less than 500,000 km2 (often used in global
or continental droughts identification [67,69,71]) are removed. Notably, this means that
Sahara droughts are not examined in our study. The spatial-temporal evolution of global
drought events from August to November 2019 identified using the SAD method is given
as an example in Figure 3.

Figure 3. Global drought evolution from August to November in 2019. The droughts in China, South
Africa, and South America are marked respectively, where the black line represents the evolution of a
drought, the blue triangle represents the center of a drought at a time step, and the blue circle covers
the drought area roughly.
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2.4. Causal Analysis between ENSO/IOD and SPI3

As described in Section 2.2, we derived the time series of Nino3.4, DMI, and global
SPI3 at all grids for the whole year from 1951 to 2020. LKIF is used to quantify the causality
between them. Causality is measured as the time rate of information flow (IF) from one time
series to another. It has long been recognized that a non-zero IF, or information transfer as
it may appear in some literature, from one event to another logically indicates the strength
of the causality from the former to the latter, and a vanishing causality must entail a zero
flow [72]. A brief introduction of LKIF is outlined as follows.

Given a two-dimensional stochastic system,

dx1

dt
= F1(x1, x2, t) + b11w1 + b12w2 (1)

dx2

dt
= F2(x1, x2, t) + b21w1 + b22w2 (2)

where wi (i = 1, 2) indicates white noise, bij and Fi are arbitrary functions of X and t.
The rate of information flow from X2 to X1 is:

T2→1 = −E
[

1
ρ1

∂(F1ρ1)

∂x1

]
+

1
2

E

[
1
ρ1

∂
(
b2

11 + b2
12
)
ρ1

∂x2

]
(3)

where E stands for mathematical expectation (units: nats per unit time), and ρ1 = ρ1(x1) is
the marginal probability density of X1. If the evolution of X1 is independent of X2, then
T2→1 = 0. The nat is a natural unit of information, based on natural logarithms and powers
of e [73]. One nat is the information content of an event when the probability of that event
occurring is 1/e.

When only two time series X1 and X2 are given, the maximum likelihood estimator of
Equation (3) is very concise as follows:

T2→1 =
C11C12C2, d1 − c2

12C1, d1

c2
11C22 − C11c2

12
(4)

where Cij (i, j = 1, 2) is the sample covariance matrix between time series Xi and Xj, and

C1, dj is the sample covariance between Xi and Xj =
{Xj, n+1−Xj, n

∆t

}
, with ∆t being the time

step size (units: nats per unit time). If |T2→1| is nonzero, X2 is causal to X1; if not, it is non-
causal. In this study, the SPI3 at each grid is X1; Nino3.4, Nino3, Nino4, and DMI are X2,
respectively, so we can calculate the information flow from Nino3.4/Nino3/Nino4/DMI to
SPI3. All confidence intervals reported here are significant at the 95% level, which follows
Liang [50,74].

2.5. Metrics

It is known that seasonal precipitation variation corresponds to the evolution of ENSO
in many regions [75–77]. To quantify the impacts of the different ENSO types, we calculate
the drought proportion in each season globally. The equation of drought proportion for
each grid is as follows.

Proportion =
n
N

(5)

where N represents the total number of months in a season when one ENSO type occurs.
For example, there are 17 La Niña years from 1950 to 2020. So N equals 3× 17 when we
calculate the drought proportion in JJA, and the n is the total number of months a grid is in
drought during the N months.
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To match the seasonal scale of SPI3, we process all the atmospheric variables to
normalized seasonal anomalies.

Normalized Seasonal Anomalies =
X− µ

σ
(6)

where X represents the original variable, and µ and σ are the climatological mean and
standard deviation, respectively. Strictly speaking, X is the 3-month running mean, whose
value is located in the last month of the running window. The two climatological variables
(µ, σ) are further computed based on the 3-month running mean.

3. Results
3.1. Global Drought during ENSO Events
3.1.1. The Proportion of Global Droughts during Different ENSO Types

As illustrated in Figures 4 and 5, meteorological droughts are located in Southeast
Asia, Australia, Central America, North South-America, Central Africa, and South Africa
during El Niño years, which is consistent with Figure 1 and previous studies. The intensity
and coverage of droughts change with the evolution of El Niño and reach their peak during
autumn and winter. The distribution of droughts also transforms. For example, El Niño
may cause droughts in East Asia and South Asia in the developing and mature phases,
while La Niña influences drought most in the mature and decaying phases. As shown in
Figure 4f, the percentage of drought coverage is quite high around 15◦ S and 15◦ N. The
possible cause of this is the descending branch of the anomalous Hadley circulation. In
contrast to El Niño years, droughts in East Asia, the Arabian Peninsula, and Central and
East Africa are more frequent in La Niña years, and fewer areas of drought are on land.

Figure 4. The drought proportion in all seasons from 1951–2020 when El Niño events occur. (a,c,e,g)
represent the drought proportion in Jun-Jul-Aug (JJA), Sep-Oct-Nov (SON), Dec-Jan-Feb (DJF) of the
current year, and March-April-May (MAM) of the following year. (b,d,f,h) represent the percentage
of drought areas at different latitudes. The land regions with red edges are easily affected by ENSO.
The easily-affected regions are where the yellow areas in Figure 1 and the areas with high drought
proportion in Figure 4 overlap.
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Figure 5. The same as Figure 4, but for La Niña.

Figure 6 indicates that the impacts of CP El Niño on global drought are more extensive
and complex compared with EP El Niño. In addition to the regions commonly influenced,
the occurrence of drought is possible in West North-America and East Asia during the
developing phases of CP El Niño. It should be noted that Africa and South America could
suffer more intense and widespread droughts under CP El Niño rather than EP events.

Figure 6. The same as Figure 4, but for EP El Niño and CP El Niño.

3.1.2. The Significant Drought Timing and Duration in Climate Reference Regions

To quantify the ENSO-induced drought timing and duration in El Niño, CP El Niño,
EP El Niño, and La Niña years, we carry out a Student t-test to test the significance of the
drought coverage in each month during ENSO years (Figure 7). It should be noted that the
results in Figure 7 represent the statistics of global droughts rather than general dryness, in
contrast to Figure 1. Although many regions could be dry for long periods in Figure 1, the
meteorological droughts in these regions are not significantly influenced by El Niño, and
the duration of droughts is short. For example, the duration of the rainfall deficit is from
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June to March in North Central-America in Figure 1, whereas the months at a significance
level of 90% are from January to March in Figure 7. Compared to La Niña, El Niño affects
droughts on land more significantly, consistent with Figure 1.

Figure 7. Comparisons of ENSO-induced drought timing and duration for SPI3 during El Niño, CP
El Niño, EP El Niño, and La Niña. Light and dark filled bars indicate the statistical significance at the
90% and 95% confidence level of drought coverage from June to the next May, respectively. Error
bars represent the statistical significance of drought coverage at the 80% confidence level.

In addition to the regions, including South Asia, Southeast Asia, and Australia, vul-
nerable to El Niño during its evolution, we now pay attention to regions affected in specific
phases. Droughts in East Africa are easily detected in the boreal winter, the mature phase
of El Niño. However, the significant months of drought in West and Central Africa are
much later and shorter. Another interesting finding is that El Niño influences droughts
in South Central-America and the Caribbean region during the developing phase, but in
South America during the mature and decaying phases.

3.2. Global Drought during Combined El Niño and pIOD Events

The occurrences of IOD events can be independent of ENSO or occur simultaneously
with ENSO [78]. In this study, we focus on whether combined ENSO and IOD events cause
more droughts. Table 2 shows five regimes of combined ENSO and IOD events from 1950
to 2020. Among them, El Niño and pIOD is the most common combination. Seasonal phase
locking is an important characteristic of IOD, with significant anomalies appearing around
June, intensifying in the following months, and peaking in October [59]. Thus, the changes
in droughts in summer and autumn are most interesting.

As displayed in Figures 4 and 5, the drought coverage is greater in autumn than in
summer, probably due to the higher intensity of El Niño and pIOD in the former. Except
for South Asia and South China, where the frequency of drought is slightly reduced, other
land regions are more prone to droughts, especially Southeast Asia, Australia, and Africa
in Figure 8. As indicated in Figure 8, compared with the combined EP El Niño and pIOD
events, the changes of intensity and areal extent of droughts are greater in the summer
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of the years when CP El Niño and pIOD occur simultaneously. In addition, the spatial
variabilities of dryness and wetness on land are greater. However, during combined CP
El Niño and pIOD events, contrasting drought proportion changes are observed in the
Yangtze-Huai River basin and South China. The same phenomenon is also observed in
North and Northeast South America.

Figure 8. The drought proportion in Jun-Jul-Aug (JJA) and Sep-Oct-Nov (SON) when combined
El Niño and pIOD occur. (a,b) is for El Nino, (c,d) is for EP El Nino, and (e,f) is for CP El Nino.
(El Niño + pIOD) − El Niño represents the difference between the drought proportion when com-
bined events occur and the proportion when only El Niño events occur. The land regions with red
edges are easily affected by El Niño.

In order to examine the effects of combined events on drought variability, we also
calculate the drought timing and duration (Figure 9). It can be seen that drought is more
significant in Southeast Asia and Australia but not in South Asia during combined events.
Notably, CP El Niño is more likely to cause drought in Central and East Australia, whether
it is an El Niño alone or a combined event. As illustrated in Figure 8, droughts are enhanced
across Africa and South America.

Figure 9. The same as Figure 7, but for comparisons during El Niño + pIOD, CP El Niño + pIOD, and
EP El Niño + pIOD.
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3.3. Composite Analysis of Vertical Velocity Anomalies

We have identified that the percentage of drought coverage is highest at around 15◦ S
and 15◦ N, and at its maximum in winter. As we know, the descending motion of the
vertical winds is a direct cause of precipitation deficits, and ENSO events tend to induce
anomalies of atmospheric dynamics [79–81]. Therefore, we now perform a composite
analysis to investigate the impacts of normalized seasonal anomalies of vertical velocity, as
shown in Figures 10 and 11.

Figure 10. Normalized seasonal anomalies of vertical velocity in DJF during (a) El Niño, (b) EP El
Niño, (c) CP El Niño and (d) La Niña. The red (blue) contours represent vertical descending (upward)
motions. (a–d) show the vertical velocity anomalies at 500 hPa during these events, and the dotted
areas are significant at the 95% confidence level. (e–f) are the average of vertical velocity anomalies
between 130◦–150◦ E.

Figure 11. Normalized seasonal anomalies of vertical velocity in SON when combined El
Niño and pIOD occur. (a) is for El Nino, (b) is for EP El Nino, and (c) is for CP El Nino.
(El Niño + pIOD) − El Niño represents the difference between the vertical velocity anomalies when
combined events occur and the frequency when only El Niño events occur. The dotted areas are
significant at the 95% confidence level.

The red areas in Figure 10a–d almost overlap with the drought areas in Figures 4–6.
This suggests that the vertical velocity anomalies at 500 hPa are closely associated with
the drought distribution. Previous studies have used vertical velocity to analyze and
predict drought [82–84]. Here we examine whether vertical velocity at 500 hPa is sufficient
to represent the vertical motion anomalies of the whole atmosphere during drought. In
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addition, the spatial distribution of the positive vertical velocity during CP El Niño is
significantly more complex than that of EP El Niño, especially in the western Pacific.

Another concern is the latitudinal distribution of the drought area during ENSO
events, as illustrated in Figure 10e–h. Compared with CP El Niño, the descending motions
are more concentrated and intense near to 15◦ N in EP El Niño years, resulting in a broader
drought coverage than at other latitudes. In contrast, the areas between 30◦ S to 20◦ N also
experience widespread drought during CP El Niño events.

To further investigate the roles of vertical velocity, Figure 11 presents the differences
in normalized seasonal anomalies of vertical velocity for autumn when combined events
occur. The red areas in Figure 11 are almost the same as the brown regions in Figure 8,
except for North Australia in CP El Niño and pIOD years.

3.4. Causal Analysis between Nino3.4/Nino3/Nino4/DMI and SPI3

The quantified causalities of Nino3.4, Nino3, Nino4, and DMI on global SPI3 are
displayed in Figure 12. Causalities are significant in almost all the regions where drought
proportion increases during ENSO. This demonstrates the mutual validity of our drought
identification and causal analysis methods.

Figure 12. Global information flow from Nino3.4, Nino3, Nino4, and DMI to SPI3 from 1951–2020.
The colored areas are statistically significant at the 95% confidence level. (a,c,e) are the spatial
distribution of the information flow between Nino3.4 and the global gridded SPI3 at lead 1, 2, and
3 months, (b,d,f) are the spatial distribution of the information flow between the DMI and the
gridded global SPI3 at lead 1, 2, and 3 months, and (g,h) are the spatial distribution of the information
flow between the Nino3/Nino4 and the gridded global SPI3 at lead 1 month. The slashed areas in
(a,c,e) are the areas of drought coverage over 0.75 in DJF during El Niño and La Niña. The slashed
areas in (b,d,f) are the areas of drought coverage increase over 0.25 in SON during combined CP El
Niño and pIOD. The slashed areas in (g) are the areas of drought coverage over 0.75 in DJF during
EP El Niño and La Niña. The slashed areas in (h) are the areas of drought coverage over 0.75 in DJF
during CP El Niño and La Niña.
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The information flows of Nino3.4 and DMI decrease as the lead time increases. Com-
pared with DMI, the information flow between Nino3.4 and SPI3 is stronger and wider at
all lead months. The regions where the two causal relationships overlap, including Africa
and South America, are those where drought frequency is significantly enhanced during
combined events. The easily affected regions are all detected with solid information flow,
which is consistent with the results in Section 3.2.

However, it is unexpected that there exists causality from South China to Japan, almost
coinciding with the trajectory of the atmospheric rivers in East Asia [85,86]. The reason
is that the whole series of climate indices from 1951–2020 are used, so Figure 12 reflects
the information on dryness and wetness. Although the information flow declines with
increasing lead time, the coverage of the information flow from DMI to SPI3 changes. For
example, there is no significant causality between DMI and SPI3 at 1 month in East Asia,
but the spatial distribution of information flows of DMI and Nino3.4 in the region are
similar at lead 3 months. This means DMI may have long-time lag effects on SPI3. This is
also revealed in Zhang, et al. [87]; IOD can still exert a stronger influence on precipitation
during the ensuing summer.

Since Nino3 reflects the anomalies in the eastern Pacific, the information flow rates
in this area and for South America are higher in Figure 12g. In contrast to this, the areas
affected significantly by Nino4 are wider in the western Pacific, especially in Australia.

The spatial distribution of the vertical velocity anomalies explains the mechanism
behind the changes of drought coverage, and the LKIF reveals the impacts of ENSO on
SPI3 by a statistical method. We speculate whether the results from these two completely
different approaches are aligned. As indicated in Figure 13, the significant regions of
vertical velocity anomalies almost overlap with those of significant causality, except for the
Southern Indian Ocean and the Northwest Pacific. Another robust proof is Figure A1, which
displays the causal analysis results between ENSO and the vertical velocity anomalies.

Figure 13. Normalized seasonal anomalies of vertical velocity and the information flow from Nino3.4,
Nino3, and Nino4 to SPI3 from 1951–2020. The contours and slashed areas are all significant at a 95%
confidence level.

4. Conclusions

Prior work has documented the roles of ENSO and IOD events in drought causation.
Nevertheless, different combinations of ENSO and IOD conditions may imply diverse
impacts on droughts globally. This study investigates global drought coverage, frequency,
and evolution during ENSO and combined El Niño and pIOD events.

The results suggest that the intensity and coverage of droughts change with the
evolution of El Niño and reach their peak during the developing and mature phases,
whereas La Niña influences drought most in the mature and decaying phases. Compared
with EP El Niño, the impacts of CP El Niño on global droughts are more extensive and
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complex, and Africa and South America may suffer from more intense and widespread
droughts. We also find that during the summer and autumn of combined El Niño and
pIOD events, the total area of drought is greater, and their intensity is enhanced across most
land areas. Moreover, the spatial variabilities of dryness and wetness on land are greater
during CP El Niño and pIOD events in China and South America. The 500 hPa vertical
vorticity anomalies are detected in close association with global droughts, reflecting the
dynamic mechanism. Most notably, this is the first study to our knowledge to quantify the
information flow from Nino3.4/Nino3/Nino4/DMI to global SPI3 by using LKIF, which
reveals the driving mechanism of ENSO/IOD on SPI3, supporting the findings above.

These results provide the potential for improving future seasonal drought predic-
tion. For seasonal drought prediction, ENSO is often used as a predictor related to
drought indices. Researchers can construct statistical models between ENSO and sea-
sonal drought [88–90]. Moreover, with the increasing accuracy of ENSO prediction through
deep learning and multi-model ensemble projection [91,92], the frequency and intensity of
seasonal drought can be estimated based on the mechanisms investigated in this paper.
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Appendix A

Figure A1. Global information flow from Nino3.4, Nino3, Nino4, and DMI to normalized seasonal
anomalies of vertical velocity from 1951–2020. The spatial distribution of the information flow is at
lead 1 month. The slashed areas are the same as in Figure 12.
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