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Abstract: Previous research has documented a tight positive relationship between vegetation activity
and growing season air temperature in China’s temperate zone (TC). However, this relationship may
change over time following alternations in other environmental factors. Using the linear regression
analysis and the moving windows based on partial correlation analysis method, the temporal
variations of responses of vegetation NDVI to rising air temperature during 1982–2015 in the TC
were examined. The results showed that the interannual partial correlation between NDVI and air
temperature (RNDVI−T, include RNDVI−Tmean, RNDVI−Tmax, and RNDVI−Tmin, represents the partial
correlation between NDVI and Tmean, Tmax, and Tmin, respectively) for the growing season (GS) in a
17−year moving window showed a significant decreasing trend during the last 34 years, mainly due
to decreasing RNDVI−T in summer and autumn. The area with a significant decrease of RNDVI−Tmean,
RNDVI−Tmax, and RNDVI−Tmin for the GS approximately accounted for 52.36%, 45.63%, and 49.98% of
the TC, respectively. For the seasonal patterns of RNDVI−T, the regions with a significant downward
trend in all seasons were higher than those with a significant upward trend. We also found a more
significant and accelerating decrease of RNDVI−T for warm years compared to cold years, implying a
decoupling or even a reverse correlation between NDVI and air temperature with continuous climate
warming over the TC. Overall, our study provided evidence that the impact of Tmean, Tmax, and Tmin

on vegetation activities exhibited a weakening trend and cautioned using results from interannual
time scales to constrain the decadal response of vegetation growth to future global warming.

Keywords: vegetation activity; NDVI; temperature change; varying responses; China’s temperate zone

1. Introduction

Vegetation, as an essential component of terrestrial ecosystems, plays a critical role in
the global carbon, water, air quality, and land surface temperature [1–4], and it absorbs more
attention in the study of global change and terrestrial ecosystems [5]. According to previous
studies, vegetation activities depend on temperature changes to a large extent. Recently,
climatic changes have enhanced plant growth, productivity, and terrestrial vegetation
greenness in northern middle and high latitudes [6]. Satellite observations and earth
system simulations have revealed that when compared to other environmental processes
(such as CO2 and nitrogen fertilizer application), warming in the growing season has been
suggested to be the most important controlling element of global greening in recent decades.

In addition, temperature data over the past five decades show that nighttime tem-
peratures have increased more rapidly than daytime temperatures [7], what is commonly
known as asymmetric warming [8,9]. Most plant species take up carbon during the day-
time through photosynthesis, whereas plants’ respiration happens throughout the day.
Therefore, day and night warming could influence vegetation growth and plant vegetation
phenology differently [7,10–13]. For example, Peng et al. (2013) found that in most humid
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and cold ecosystems in northern regions, the rise in the maximum temperature (Tmax)
usually had a positive effect on the normalized difference vegetation index (NDVI) while
the rise in the minimum temperature (Tmin) was usually negatively correlated with NDVI.
Tan et al. (2015) also revealed some striking seasonal differences in the response of vege-
tation activity to the diurnally asymmetric warming in the Northern Hemisphere (NH).
Xia et al. (2018) found that in the Tibetan Plateau in the past 30 years, Tmax and NDVI
had a positive partial correlation in humid and cold regions and a negative correlation
in semi-arid and arid regions; however, the partial correlation between Tmin and NDVI
was positive in alpine and meadow grasslands, and was negative in mountain grasslands
or wet forests. Xia et al. (2014) reviewed the effects of non-uniform climate warming on
the terrestrial carbon cycle. They ascertained that the effects of the current asymmetric
warming on terrestrial ecosystems are still a key challenge in carbon cycle research. It can
be found that the responses of vegetation in different vegetation ecosystems and different
regions to daytime and nighttime warming vary greatly.

However, limited evidence from satellite vegetation greenness [14] and tree-ring
data [15,16] hints that northern terrestrial vegetation activity to temperature may not be
constant over timescales of decades. Piao et al. (2014) documented the strength of the
relationship between space−borne measurements of the NDVI and growing season (GS)
temperature in the Northern Hemisphere declined substantially during the last 30 years.
This phenomenon also exists at the regional or seasonal scale [17,18]. He et al. (2017)
found that the significant positive relationship between NDVI and temperature from 1984
to 1997 dramatically weakened during 1998–2011 in China [18]. This can be interpreted
as a weakening relationship between interannual temperature variability and vegetation
activity. Though many studies have focused on the response of vegetation dynamics to
daily mean temperature (Tmean), whether the impacts of asymmetric diurnal warming on
terrestrial ecosystem behavior have changed is still unclear.

In this study, we used the linear regression trend analysis and the moving windows
based on the partial correlation analysis method to investigate the temporal changes in
vegetation activity responses to climate changes in China’s temperate zone (TC) at the
regional scale and seasonal scale based on the long-term NDVI data sets and air temperature
data sets in the past 34 years. Additionally, we compared the changes in the correlation of
vegetation activity and air temperature between cold and warm years. This study can help
us to improve our understanding of the effect of temperature on vegetation in the context
of climate warming.

2. Data Sets and Methods
2.1. Study Area

This study focused on temperate China (70–140◦ E and 30–55◦ N) [8], which has a
relatively consistent growing season throughout the region [8], and the satellite-measured
NDVI used in our study was less impacted by the solar zenith angle effects [14]. The
significant differences in elevation and vegetation types diversity are distinctive features
across the TC (Figure 1).

2.2. Data Sets

Vegetation activity is measured by the normalized difference vegetation index (NDVI).
NDVI is related to the fraction of photosynthetically active radiation absorbed by vegetation
canopies and leaf biomass [19,20]. Therefore, NDVI is frequently used to measure vegeta-
tion activities and productivity on a large spatiotemporal scale. The biweekly NDVI3g data
of 1982–2015 used in this study were obtained from NASA’s GIMMS3g (Global Inventory
Modeling and Mapping Studies) team, with a spatial resolution of 8 km [21]. To reduce the
influence of non-vegetation noise on the NDVI3g time series, we extracted pixels with mean
NDVI values during a growing season above 0.1 because lower values usually indicate
bare soil or sparse vegetation [22]. Mean NDVI during a growing season was defined as
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the average NDVI from April to October each year [19]. The NDVI3g data sets were widely
used to measure vegetation activity in previous studies [23–25].
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Figure 1. Spatial distribution of elevation and vegetation types in temperate regions of China. Data
sources: (a) Resource and Environment Science and Data Center (https://www.resdc.cn/data.aspx?
DATAID=123, accessed on 22 September 2022). (b) Land cover map data set of MODIS MCD12Q1
derived from NASA’s Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/,
accessed on 22 September 2022).

Meteorological data in the growing season were the average monthly precipitation and
the monthly Tmean, Tmax, and Tmin temperatures of 603 weather station sites from the China
Meteorological Administration. According to the China Meteorological Administration,
identical standards and instrumentation were used at these stations. The meteorological
data sets were resampled at the same pixel size (8 km × 8 km) as the NDVI data set by the
nearest neighbor method [18,26].

2.3. Methods

To determine the temporal changes in the relationships between vegetation activity
and temperature, we first calculated the one-order partial correlation coefficients between
averaged NDVI (NDVIGS) during a growing season (April–October) and temperature
(RNDVI−Tmean, RNDVI−Tmax, RNDVI−Tmin), with the sum of precipitation as the control
variable for each of the 17-year moving windows from 1982–1998 to 1999–2015. Con-
sequently, there were 18 moving windows centered from 1990 to 2007 and 18 RNDVI−Tmean,
18 RNDVI−Tmax, and 18 RNDVI-Tmin values, respectively. RNDVI-Tmean, RNDVI-Tmax, and
RNDVI-Tmin were then regressed (unary linear regression model) against the centers of the
moving windows to determine their respective temporal trends [14,17]. Trends in both the
inter-annual and gridded scales were determined using least squares fitting and considered
statistically significant at the 5% (or 1%) level. Our study defined the spring, summer,
and autumn seasons as the periods from April to May, June to August, and September
to October, respectively. The temporal changes in the relationships between vegetation
activity and temperature during different seasons were calculated using a similar approach.

https://www.resdc.cn/data.aspx?DATAID=123
https://www.resdc.cn/data.aspx?DATAID=123
https://lpdaac.usgs.gov/
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To compare the changes in the correlation of vegetation productivity and temperature
between cold and warm years over the TC in warm and cold years. We divided the period
1982–2015 into 15–20−year time windows (i.e., 1982–2001, 1983–2002, . . . ,1996–2015). For
each 20−year series, we divide the 20 years into two groups based on their ranks in the
GS temperature: the 10 years with higher GS temperature are defined as warm years,
and the other 10 years are cold years. We then separately calculate RNDVI−T (including
RNDVI-Tmean, RNDVI−Tmax, and RNDVI−Tmin) for warm and cold years by controlling for
corresponding precipitation.

3. Results
3.1. Changes in Correlations between Vegetation Activity and Temperature

The partial correlation coefficients between the regionally averaged NDVIGS and grow-
ing season temperature showed substantial temporal evolution during the past 34 years
(Figure 2a). The partial correlation coefficient between NDVIGS and growing season Tmean
(RNDVI−Tmean) was about 0.71 (p < 0.01) for the window 1982–1998, and then generally
decreased to about 0.28 (p > 0.05) for the window 1999–2015. Similarly, the partial correla-
tion coefficient between NDVIGS and growing season Tmax (RNDVI−Tmax) was about 0.56
(p < 0.05) for the first window, decreased to about 0.19 for the window 1996–2012, and then
increased to about 0.50 (p > 0.05) for the last window. Moreover, the partial correlation coef-
ficient between NDVIGS and growing season Tmin (RNDVI−Tmin) was about 0.70 (p < 0.01)
and 0.67 (p < 0.01) for the earliest two windows, respectively, and then gradually decreased
toward 0.00 onward. Overall, the RNDVI−Tmean, RNDVI−Tmax, and RNDVI−Tmin decreased
significantly at the rate of −0.31/10a (p < 0.01, R2 = 0.81), −0.13/10a (p < 0.01, R2 = 0.35),
and −0.40/10a (p < 0.01, R2 = 0.70), respectively.
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Figure 2. Changes in the partial correlation coefficients between seasonal NDVI and corresponding
air temperature (the x axis is the center year of the 17−year moving window, for example, 1990
represents a moving window from 1982–1998, and so on.). Images (a–d) are the partial correlation
coefficients between NDVI and air temperature during GS (a), spring (b), summer (c) and autumn (d),
respectively. Solid (dashed) lines represent significant (insignificant) linear regression lines between
the partial correlation coefficients and the corresponding center year of the 17−year moving window.
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At the regional scale, The RNDVI−Tmean showed distinct patterns among spring, sum-
mer, and autumn (Figure 2b–d). The RNDVI−Tmean for spring gradually increased from 0.55
in the first window centered in 1990 to about 0.74 and 0.69 in the last two windows centered
in 2006 and 2007, and the slope of the increasing trend is 0.11/10a (p < 0.01, R2 = 0.36).
In contrast, both RNDVI−Tmean for summer and autumn showed a significantly decreased
trend, with the rate of decline are 0.11/10a (p < 0.01, R2 = 0.36) and 0.08/10a (p < 0.05,
R2 = 0.23), respectively (Figure 2c,d). The RNDVI-Tmean for summer was 0.57(p < 0.05) and
0.67 (p < 0.01) for the earliest two windows, respectively, and then generally decreased to
0.24 (p > 0.05) for the last window. RNDVI−Tmean for autumn was between 0.38 and 0.42 in
the earlier five windows and reduced to low values in the last four 17−year windows.
These results suggested that the decreased trend of the growing season RNDVI−Tmean during
the last 34 years is likely caused by the decreasing RNDVI−Tmean in summer and autumn.

Similarly, both RNDVI−Tmax and RNDVI−Tmin showed distinct patterns among three
seasons at the regional scale (Figure 2b–d). The RNDVI−Tmax for spring gradually increased
from 0.49 (p > 0.05) in the first window centered in 1990 to about 0.64 (p < 0.01) and 0.65
(p < 0.01) in the last two windows centered in 2006 and 2007, and the slope of the increasing
trend is 0.08/10a (p < 0.05, R2 = 0.23). In contrast, both RNDVI−Tmax for summer and
autumn showed a decreased trend, although the former was insignificant. RNDVI−Tmax
for autumn were 0.55 (p < 0.05) and 0.51 (p < 0.05) in the first two windows, respectively,
and then gradually decreased toward about 0.00 in the last eight 17−year windows, and
the slope of the decreasing trend is −0.35/10a (p < 0.01, R2 = 0.78). The RNDVI−Tmin
for spring and summer showed a significant trend during the past 34 years (p > 0.05).
However, RNDVI−Tmin for autumn exhibited a significantly decreased pattern (Figure 2d).
The RNDVI−Tmin for autumn was 0.47 in the first window and then gradually decreased
toward 0.00 onward in the last four windows, and the slope of the decreasing trend is
−0.26/10a (p < 0.01, R2 = 0.57).

3.2. Spatial Patterns of Changes in Correlations between Vegetation Activity and Temperature

In terms of the spatial patterns across the TC. The RNDVI−Tmean for the GS revealed
a general decreasing trend. In most areas (70.10% of temperate China), the RNDVI−Tmean
showed a downward trend in the GS, with statistical significance (p < 0.05) for 52.36% of the
TC (Figure 3). These pixels showing a significant decreasing trend are mainly distributed in
the Inner Mongolia Plateau, the Loess Plateau, Western Northeast Plain, and Xinjiang region.
The number of pixels with increasing RNDVI−Tmean is small, accounting for 16.02% of the
total area, mainly distributed in Qinghai and Gansu provinces and the eastern coastal areas.
For Tmean, the RNDVI−Tmean for spring showed a negative temporal trend in 57.75% of
areas, mostly in Heilongjiang Province, Shaanxi Province, and eastern Xinjiang Province,
40.05% of pixels showed a significant negative trend across the TC. RNDVI−Tmean for spring
showed a positive trend in 42.25% of areas, with 25.77% of areas of the TC being significant
(p < 0.05), and mostly located in the Inner Mongolia Plateau, Gansu Province, and Eastern
China. RNDVI−Tmean for summer showed negative temporal trend in 57.78% of areas,
mostly in the Inner Mongolia Plateau, Qinghai Province, and the northeast of China, with
40.05% of pixels of the TC being significant (p < 0.05). Positive trends of RNDVI−Tmean for
summer were found at the other 42.22% of areas, with 25.56% of areas of the TC being
significant (p < 0.05). For autumn, the RNDVI−Tmean showed negative temporal trend in
54.43% of areas, primarily located in the Inner Mongolia Plateau and central parts of China,
and 36.30% of areas of the TC being significant (p < 0.05). Positive trends of RNDVI−Tmean
for autumn were found at the other 45.57% of areas across the TC, mostly located in the
northeast of China, the western regions of China, and the North China regions, with 27.79%
of areas of the TC being significant (p < 0.05).
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mean temperature (RNDVI−Tmean) during 1982–2015 for growing season (a), spring (b), summer
(c) and autumn (d).

Similarly, in most areas (64.86% of temperate China), the RNDVI−Tmax for the GS
showed a downward trend, with statistical significance (p < 0.05) for 45.63% of areas of the
TC (Figure 4). These pixels showing a significant decreasing trend are mainly distributed
in the Inner Mongolia Plateau, the Loess Plateau, and the North China Plain. Positive
trends of RNDVI−Tmax were found at the other 35.14% of areas, with 19.54% of areas of the
TC being significant (p < 0.05), mainly distributed in Qinghai Province, Sichuan Province,
and the Northeast Plain. The RNDVI−Tmax for spring showed a negative temporal trend in
57.75% of areas, mainly in the Loess Plateau and northern Xinjiang Province, and 38.32% of
pixels showed a significant negative trend across the TC. RNDVI−Tmax for spring showed a
positive trend in the other 42.25% of areas, with 25.77% of areas of the TC being significant
(p < 0.05), and mostly located in the Qinghai Province and Eastern China. RNDVI−Tmax for
summer showed a negative temporal trend in 54.91% of areas, mostly in western Xinjiang
Province, Qinghai Province, and the Inner Mongolia Plateau, with 37.34% of pixels of the
TC being significant (p < 0.05). Positive trends of RNDVI−Tmax for summer were found in
the other 45.09% of areas, with 28.17% of areas of the TC being significant (p < 0.05). For
autumn, the RNDVI−Tmax showed a negative temporal trend in 63.84% of areas, mostly
located in the Inner Mongolia Plateau and central parts of China, and 47.23% of areas of
the TC being significant (p < 0.05). Positive trends of RNDVI−Tmax for autumn were found
in the other 36.16% of areas across the TC, primarily located in the northeast of China, and
the western regions of China, with 22.12% of areas of the TC being significant (p < 0.05).

For Tmin, the RNDVI−Tmin for the growing season showed a downward trend in most
areas (67.80% of temperate China), with statistical significance (p < 0.05) for 49.98% of areas
of the TC. These pixels showing a significant decreasing trend are mainly distributed in the
Loess Plateau, the Tibet Plateau, and the Northeast Plain. Positive trends of RNDVI−Tmin
were found at the other 32.20% of areas, with 18.02% of areas of the TC being significant
(p < 0.05), mainly distributed in Qinghai Province, Gansu Province, and the eastern coastal
regions. The RNDVI−Tmin for spring showed a negative temporal trend in 61.26% of areas,
mainly in the Loess Plateau, the Northeast Plain, and the Tibet Plateau, and 44.55% of
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pixels showed a significant negative trend across the TC. RNDVI−Tmin for spring showed
a positive trend in other 38.74% of areas, with 24.67% of areas of the TC being significant
(p < 0.05), and mostly located in the Xinjiang Province, Gansu Province, and the eastern
coastal regions. RNDVI−Tmin for summer showed a negative temporal trend in 52.86% of
areas, mostly in the North China Plain and the Xinjiang Province, with 34.18% of areas of
the TC being significant (p < 0.05). Positive trends of RNDVI−Tmin for summer were found
at the other 47.14% of areas, with 29.52% of areas of the TC being significant (p < 0.05).
For autumn, the RNDVI−Tmin showed a negative temporal trend in 52.53% of areas, mostly
in the Greater Khingan Mountains and the central regions of the Inner Mongolia Plateau,
and 32.55% of areas of the TC were significant (p < 0.05). Positive trends of RNDVI−Tmin for
autumn were found in the other 47.47% of areas across the TC, mostly located in the central
and western regions of China, with 27.99% of areas of the TC being significant (p < 0.05).
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3.3. Changes in the Partial Correlation Coefficient between Growing Season NDVI and
Temperature over the TC in Warm and Cold Years

We compared RNDVI−T and its change between cold and warm years over the TC in
Figure 5. The data in Figure 6a indicate that RNDVI−Tmean for cold years is systematically
higher than for warm years. Over the past 34 years, RNDVI−Tmean for warm years showed a
significant decreasing trend (R2 = 0.45, p < 0.01), that for cold years showed an insignificant
increasing trend (R2 = 0.45, p < 0.01). Similarly, RNDVI−Tmax for warm years showed a
significant decreasing trend (R2 = 0.45, p < 0.01), that for cold years showed an insignificant
increasing trend (R2 = 0.45, p < 0.01) (Figure 6b). RNDVI−Tmin shows a significant decreasing
trend for both warm (R2 = 0.45, p < 0.01) and cold (R2 = 0.45, p < 0.01) years over the past 34
years (Figure 6c). Overall, there is a more significant and accelerating decrease of RNDVI−T
for warm years compared to cold years, implying a decoupling or even a reverse correlation
between NDVI and air temperature with continuous climate warming over the TC.



Atmosphere 2022, 13, 1574 8 of 12

Atmosphere 2022, 13, x FOR PEER REVIEW 8 of 12 
 

 

trend for both warm (R2 = 0.45, p < 0.01) and cold (R2 = 0.45, p < 0.01) years over the past 34 

years (Figure 6c). Overall, there is a more significant and accelerating decrease of RNDVI−T 

for warm years compared to cold years, implying a decoupling or even a reverse correla-

tion between NDVI and air temperature with continuous climate warming over the TC. 

 

Figure 5. Spatial distribution of the trend of partial correlation coefficient between NDVI and 

nighttime temperature (RNDVI−Tmin) during 1982–2015 for growing season (a), spring (b), summer (c) 

and autumn (d). 

Figure 5. Spatial distribution of the trend of partial correlation coefficient between NDVI and
nighttime temperature (RNDVI−Tmin) during 1982–2015 for growing season (a), spring (b), summer
(c) and autumn (d).

Atmosphere 2022, 13, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 6. Changes in RNDVI−T (include RNDVI−Tmean, RNDVI−Tmax, and RNDVI−Tmin, represent the partial cor-

relation between NDVI and Tmean, Tmax, and Tmin, respectively) over the TC in warm and cold years. 

Year on the horizontal axis is the central year of each 20−year moving window used to derive RNDVI−T 

(for example, 1992 represents period 1982–2001 in the 20−year time window). For each 20−year se-

ries, we divide the 20 years into two groups based on their ranks in GS temperature: the 10 years 

with higher GS temperature are defined as warm years, and the other 10 years are cold years. We 

then calculate RNDVI−T for warm and cold years, separately, through controlling for corresponding 

precipitation. (a) Changes in RNDVI−Tmean over the TC in warm and cold years. (b) Changes in 

RNDVI−Tmax over the TC in warm and cold years. (c) Changes in RNDVI−Tmin over the TC in warm and 

cold years. 

4. Discussion 

Satellite NDVI measurements and meteorological data provide evidence of an over-

all decrease in the interannual correlation between vegetation activity and temperature in 

temperate regions of China over the last three decades. The interannual change of the 

response of vegetation activity to temperature is a supplement or verification to previous 

studies on a larger scale [17,18]. For instance, Cong et al. (2017) found that the interannual 

partial correlation coefficient between NDVI in summer and temperature in a 15−year 

moving window for an alpine meadow showed a decreased trend. The phenomenon is 

similar to the changes of the response of tree−ring width to temperature changes in the 

United States [15], Alaska [27], and the high latitudes of the Northern Hemisphere [16]. 

Briffa et al. (1998) found that tree−growth’s sensitivity to temperature decreased at high 

northern latitudes during the second half of the twentieth century. In recent years, Piao et 

al. (2014) research showed that in the NH, the positive influence of the temperature during 

a growing season on vegetation growth tends to be weak. Although the time and space 

scales are different, these studies show that with global warming, the sensitivity of vege-

tation to temperature rise has decreased, and the influence of temperature on vegetation 

Figure 6. Changes in RNDVI−T (include RNDVI−Tmean, RNDVI−Tmax, and RNDVI−Tmin, represent the
partial correlation between NDVI and Tmean, Tmax, and Tmin, respectively) over the TC in warm and



Atmosphere 2022, 13, 1574 9 of 12

cold years. Year on the horizontal axis is the central year of each 20−year moving window used to
derive RNDVI−T (for example, 1992 represents period 1982–2001 in the 20−year time window). For
each 20−year series, we divide the 20 years into two groups based on their ranks in GS temperature:
the 10 years with higher GS temperature are defined as warm years, and the other 10 years are
cold years. We then calculate RNDVI−T for warm and cold years, separately, through controlling
for corresponding precipitation. (a) Changes in RNDVI−Tmean over the TC in warm and cold years.
(b) Changes in RNDVI−Tmax over the TC in warm and cold years. (c) Changes in RNDVI−Tmin over the
TC in warm and cold years.

4. Discussion

Satellite NDVI measurements and meteorological data provide evidence of an overall
decrease in the interannual correlation between vegetation activity and temperature in tem-
perate regions of China over the last three decades. The interannual change of the response
of vegetation activity to temperature is a supplement or verification to previous studies
on a larger scale [17,18]. For instance, Cong et al. (2017) found that the interannual partial
correlation coefficient between NDVI in summer and temperature in a 15−year moving
window for an alpine meadow showed a decreased trend. The phenomenon is similar
to the changes of the response of tree−ring width to temperature changes in the United
States [15], Alaska [27], and the high latitudes of the Northern Hemisphere [16]. Briffa
et al. (1998) found that tree−growth’s sensitivity to temperature decreased at high northern
latitudes during the second half of the twentieth century. In recent years, Piao et al. (2014)
research showed that in the NH, the positive influence of the temperature during a growing
season on vegetation growth tends to be weak. Although the time and space scales are
different, these studies show that with global warming, the sensitivity of vegetation to
temperature rise has decreased, and the influence of temperature on vegetation may tend to
develop in a weak direction. Interestingly, limited studies revealed some striking seasonal
differences in the response of vegetation phenology to the global warming [28]. Recent
studies reported a slowdown in the warming−induced advanced spring phenology in tem-
perate regions [28,29]. However, the differences in the trend of RNDVI−Tmean, RNDVI−Tmax,
and RNDVI−Tmin are still not clear.

This study confirms that the positive effects of growing season Tmean on vegetation
growth in the middle and high latitudes of the Northern Hemisphere are weakening [14,17,18].
Furthermore, we found that over the past three decades, there was a similar trend of
significant weakening of the effect of nighttime and daytime temperature on vegetation
in temperate regions of China. Notably, the diminished degree of temperature impacts
vegetation mainly in summer and autumn. In contrast, the positive effects of spring
temperature on vegetation activity in temperate China show an increasing trend over
the last 34 years. This systematic and comprehensive study can help us to improve our
understanding of the effect of temperature on vegetation in the context of climate warming.

Due to complex and changing factors, the reasons for the changes in vegetation activity
response to temperature changes are still not easy to verify. Piao et al. (2014) attributed
the weakening relationship between vegetation activity and temperature changes to the
continuous increase of drought in the Northern Hemisphere. Our study also confirms
the opinion that the relationship between vegetation activity and temperature for warm
years showed a significant decreasing trend. In contrast, for cold years, this relationship
showed an insignificant increasing trend (Figure 6). Cong et al. (2017) believed that the
increase in precipitation might change the response of vegetation to temperature. He
et al. (2017) believed that the reduction of solar radiation, the increase in rainfall, and
human influence are the reasons for the transformation of the response of vegetation to
temperature changes in China. One possible explanation for the spatial difference shown
by vegetation response is that the temperature rise in this area may be close to the optimum
temperature or physiological and ecological threshold of some plants, or the vegetation has
gradually adapted to the warming environment [30]. In addition, differences in climatic
control factors of vegetation in different regions and vegetation types may also lead to the
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large spatial differences in the temporal trends of the relationship between temperature
and vegetation activity [11,19].

In addition to air temperature and precipitation, other indirect factors might affect
vegetation growth in temperate regions of China. Other indirect effects of climate such
as soil temperature [31,32], drought [33,34], insect damage [35], fire disturbances [36,37],
human interventions (e.g., ecological projects), land cover changes [38], nutrient limitations
and changes in nutrient availability [39], and seasonal biological carryover [40] also have
the potential to attenuate the observed vegetation–temperature interannual correlations.
Moreover, it is unknown whether these observed changes reflect decadal variability or
a long−term transition in the vegetation–temperature relationship due to satellite data’s
relatively short time period. Moreover, atmospheric observation data from weather stations
cannot always represent the thermal environment of vegetation. In the future, it will be
necessary to observe the response of vegetation growth to climatic conditions during a
longer period under continuous global warming conditions.

5. Conclusions

This paper analyzes the temporal changes in vegetation activity responses to temper-
ature changes in China’s temperate zone at the regional and seasonal scales in the past
34 years. At the regional scale, the strength (correlation) of the linkage between vegetation
activities and temperature for the growing season has declined from the early 1980s to 2015,
mainly due to decreasing RNDVI−T in summer and autumn. The RNDVI−Tmean, RNDVI−Tmax,
and RNDVI−Tmin for the growing season decreased significantly at the rate of −0.31/10a,
−0.13/10a, and −0.40/10a, respectively. For the spatial patterns, the regions showing a
significantly negative trend in the partial correlation coefficient between vegetation ac-
tivities and the temperature was greater than that of areas showing a significant positive
trend in all seasons. The area with a significant decrease of RNDVI−Tmean, RNDVI−Tmax, and
RNDVI−Tmin for the GS approximately accounted for 52.36%, 45.63%, and 49.98% of the
TC, respectively. After comparing changes in the correlation of NDVI and temperature
between cold and warm years over the TC in warm and cold years, we also found a more
significant and accelerating decrease of RNDVI−T for warm years compared to cold years.
This result implies a decoupling or reverses correlation between vegetation activities and
air temperature with continuous climate warming over the TC.
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