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Abstract: The depolarization ratio and backscattering cross sections have been calculated for shapes
and size of ice crystals that are typical in cirrus clouds. The calculations are performed in the physical-
optics approximation. It is shown that the depolarization ratio approaches some constant when the
size of the crystals becomes much larger than the incident wavelength. For the transparent ice crystals,
when absorption is absent, the magnitude of this constant strongly depends on crystal shapes. This
fact allows inferring the crystal shape from magnitudes of the depolarization ratio in lidar signals.
For the lidar wavelengths, where absorption of light is considerable, the depolarization ratio of lidar
signals can be used for inferring crystal sizes. Such results are important for the development of
algorithms interpreting the signals obtained by both ground-based and space-borne lidars.

Keywords: physical optics approximation; light scattering; backscattering; Mueller matrix;
depolarization; cirrus clouds; ice crystals

1. Introduction

Polarization lidars are prospective tools for studying the microphysical properties
of clouds and dust in the atmosphere [1,2]. In these studies, the cloud microphysics is
inferred from dimensionless quantities such as the color ratio, lidar ratio and depolarization
ratio. Among them, the depolarization ratio is the most common quantity because of the
simplicity of its measurement.

At the beginning of lidar studies of atmospheric clouds, the depolarization ratio was
used for distinguishing between water-drop and ice-crystal clouds [3–5]. Later, there were
attempts to infer the ice crystal shapes from magnitudes of the depolarization ratio [6–8].
At present, the depolarization ratio is used as one of the important parameters in various
numerical models for retrieving cirrus cloud microphysics from the data obtained by
combined measurements with lidars, radiometers and radars [9–25].

In spite of the demands of the depolarization ratio for practical needs, magnitudes
of the depolarization ratio in cirrus clouds are not reliably known yet. The reason for
this is that the problem of light scattering by a single ice crystal has not been solved,
both theoretically and numerically [26]. There are several obstacles around the numerical
calculation of the depolarization ratio. First, the sizes of the ice crystals range from several,
to thousands of micrometers. For the visible wavelengths, the size parameter x = πD/λ,
where D is the particle size and ¦Ë is the wavelength, reaches several thousand, while
up-to-date computers are capable of calculating by rigorous numerical methods only cases
of x < 150. Second, the light scattered by a large crystal particle at the backward direction
proves to be very sensitive to crystal orientation. For randomly oriented crystals, the main
portion of computer time is spent on statistical averaging over orientations. Therefore,
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different approximations and numerical algorithms are used in literature [1,27–29] that are
not always well coordinated with each other.

In our previous papers [30,31], we presented the depolarization ratio in cirrus clouds
for large crystal sizes obtained in physical-optics approximation. However, such calcu-
lations for large crystals (at x > 100) demanded large computer resources. Recently,
we have recalculated these data using high-performance computing with a IAO SB RAS
supercomputer. As a result, we were convinced that the previous data concerning the
depolarization ratio should be improved. In particular, such correction is important for
the development of algorithms interpreting lidar signals from space-borne lidars [16]
such as CALIPSO [11–13], EarthCARE, and others. In this paper we show the improved
magnitudes of the depolarization ratio in cirrus clouds and present their interpretation.

2. Scattering Matrix and Depolarization Ratio

The light scattered by a particle is a function of the scattering direction n = (θ, ϕ),
where θ and ϕ are the zenith and azimuthal scattering angles, respectively, and the incident
light is assumed to propagate in the direction θ = 0. The incident I0 and scattered I(n) light
in the conventional coordinate system on the scattering direction sphere are described by
the Stokes vector I0 = (I0, Q0, U0, V0)

T and I(n) = (I(n), Q(n), U(n), V(n))T. In general,
these vectors are connected by the so-called phase matrix 4 × 4 [26]

I(θ, ϕ) = Z(θ, ϕ)I0, (1)

where the distance between the particle and the point of observation is omitted.
In the case of randomly oriented particles, the phase matrix reduces to the 4 × 4 scattering

matrix M(θ) depending on the zenith angle. For the backward direction θ = π detected by
lidars, the scattering matrix has the following form

M(π) =


M11 0 0 M14

0 M22 0 0
0 0 −M22 0

M41 0 0 M11 − 2M22

. (2)

In cirrus clouds, the quantities M14 and M41 are usually negligible. Assume that a
lidar emits the linearly polarized light

I0 = (1, 1, 0, 0)T, (3)

then the backscattered light Iπ = (Iπ , Qπ , Uπ , Vπ) is equal to

Iπ = (M11, M22, 0, 0)T. (4)

In polarization lidars, the backscattered intensity Iπ = M11 can be divided into two
intensities I‖ and I⊥ corresponding to orientations of the detector polarizer either parallel
or perpendicular to polarization of the incident light. By definition, we obtain

M11 = I‖ + I⊥,M22 = Qπ = I‖ − I⊥. (5)

This is the ratio
δ =

I⊥
I‖

(6)

that is conventionally called the depolarization ratio. In notation of the scattering matrix,
the depolarization ratio is equal to

δ =
M11 −M22

M11 + M22
. (7)
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3. Depolarization Ratio vs. Crystal Size

While the depolarization ratio for ice crystals of small sizes where x < 100 is more
or less described in the literature [1], only a few papers considering the large crystals
with x > 100 have been published [27,29–31]. In this paper, the improved data of the
papers [30,31] are presented.

The backscattering matrix for a randomly oriented crystal of Equation (2) is character-
ized by two quantities M11 and M22 or, equivalently, by the backscattering cross section
M11 and the depolarization ratio ¦Ä of Equation (7). These values as functions of the
droxtal size are shown in Figure 1a,b. The droxtal shape is drawn in Figure 1a. The droxtal
parameters are described in detail in Ref. [32].
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presented for R > 10 µm at the wavelength λ = 1.064 µm and for R > 20 µm at the wave-
length λ = 2 µm. 

Figure 1. Depolarization ratio δ (a) and backscattering cross section M11 (b) for droxtals at the
conventional lidar wavelengths.

The main feature seen in Figure 1a is that the depolarization ratio has weak dependence
on particle size.

However, this feature is valid only for transparent particles, i.e., if the absorption of
light determined by the imaginary part of the refractive index n is negligible. Otherwise,
absorption leads to a fast decrease of both the depolarization ratio and the backscattering
cross section that is demonstrated in Figure 1 for the wavelength of 2 µm.

It is worthwhile to note that Figure 1a also shows small fluctuations of the depolariza-
tion ratio. These fluctuations are explained by the interference of the backscattered waves
and this phenomenon will be discussed in detail later.

Note, the backscatter has been calculated by our physical-optics approximation. We
consider that this approximation is applicable if the particle size is larger than 20 wave-
lengths of the incident light. In the case of droxtals, the particle size is equal to 2R. Con-
sequently, the curves of Figure 1, calculated in the physical-optics approximation, are
presented for R > 10 µm at the wavelength λ = 1.064 µm and for R > 20 µm at the wave-
length λ = 2 µm.

We used realistic refractive indices for the calculations presented in Figure 1 [33]. For
an explanation of the results shown in Figure 1, we have calculated the scattering matrix for
the droxtal with some arbitrary magnitudes of the refractive index. The results are shown
in Figure 2.
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Figure 2. Depolarization ratio δ (a) and backscattering cross section M11 (b) for droxtals at the
arbitrary magnitudes of the refractive index.

In Figure 2a we see the previous regularities. Namely, the depolarization ratios
are the functions with weak fluctuations about constants. Moreover, these constants are
determined by the real part of the refractive index. The larger the real part of refractive
index, the smaller the magnitude for the depolarization ratio. This result is demonstrated
in Figure 2a.

Thus, we obtain two important results. First, the depolarization ratio for transparent
crystals approaches some constant if crystal size is increasing. Second, this constant
decreases for increasing refractive index.

These important results have the following qualitative explanation. Let us remind that
the backscattered light within the physical-optics approximation is a set of outgoing spher-
ical waves, where every wave is associated with a geometric-optics plane-parallel beam
propagating inside the crystal. Every beam is characterized by its trajectory, describing
a succession of reflections by crystal faces. When a crystal size increases, the transverse
size of any beam increases too, but the shape of the trajectory remains the same. The
depolarization ratio of Equation (6) depends only on the trajectory shape. Consequently,
the depolarization ratio does not change at increasing crystal size. On the contrary, a change
of the refractive index leads to new geometries of the beam trajectories. It is obvious that
the higher the number of reflections along the backscattered trajectories (i.e., the less is the
refractive index), the higher the depolarization ratio. This fact is demonstrated in Figure 2.

These conclusions are also supported by our calculations for a crystal with the shape
of an arbitrary polyhedron, that are presented in Figures 3 and 4.

Here, the depolarization ratios for transparent crystals become practically some con-
stants at Dmax > 30 µm. For the large sizes Dmax > 30 µm, the interference fluctuations
of the depolarization ratio are smaller, as compared to Figure 1a. It is explained by the
fact that the number of backscattered waves contributing to the total light is more for the
arbitrary polyhedron, as compared with regular shapes, like the polyhedron.
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4. Depolarization Ratio for Hexagonal Columns and Plates

Ice crystals with shapes of hexagonal columns and plates are common models for
cirrus clouds. Their heights L and diameters D are not independent; they obey the empirical
equations [34]

D = 0.7L, for L < 100 µm, (8)

D = 6.96L0.5, for L ≥ 100 µm, (9)

L = 2.0202D0.449, (10)

where Equations (8) and (9) are valid for columns and Equation (10) is used for plates.
Backscattered light consists of a lot of outgoing spherical waves associated with the

geometric-optics beams inside the crystals. The trajectories of the beams for hexagonal ice
columns and plates have been well studied earlier [35]. It was shown that the backscatter
by the hexagonal ice columns and plates is determined mainly by the so-called corner-
reflection trajectories.

The results of our calculations of the scattering matrix for randomly oriented hexagonal
ice column and plates, are shown in Figures 5 and 6. It is known that the backscattered light
fluctuates because of phase difference among the waves. These fluctuations also remain
after averaging over crystal orientations that is shown in Figure 5a at L < 100 µm. Then,
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these fluctuations have been smoothed at L > 100 µm by a procedure of moving average.
Note that the fracture of the curve of Equation (9) at L = 100 µm is well manifested in
Figure 5b, and weakly manifested in Figure 5a.

Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 9 
 

 

Backscattered light consists of a lot of outgoing spherical waves associated with the 
geometric-optics beams inside the crystals. The trajectories of the beams for hexagonal ice 
columns and plates have been well studied earlier [35]. It was shown that the backscatter 
by the hexagonal ice columns and plates is determined mainly by the so-called cor-
ner-reflection trajectories. 

The results of our calculations of the scattering matrix for randomly oriented hex-
agonal ice column and plates, are shown in Figures 5 and 6. It is known that the 
backscattered light fluctuates because of phase difference among the waves. These fluc-
tuations also remain after averaging over crystal orientations that is shown in Figure 5a at 

100 µmL . Then, these fluctuations have been smoothed at 100 µmL  by a procedure 
of moving average. Note that the fracture of the curve of Equation (9) at 100 µmL  is 
well manifested in Figure 5b, and weakly manifested in Figure 5a. 

  
(a) (b) 

Figure 5. Depolarization ratio δ (a) and backscattering cross section 11M  (b) for hexagonal column 
at the conventional lidar wavelengths. 

The case of the hexagonal plate presented in Figure 6 leads to more complicated 
results. Here, the main peculiarity seen in Figure 6a is that the small-scale fluctuations 
caused by interference among the backscattered waves are added to the large-scale 
fluctuations. These large-scale fluctuations of the depolarization ratio in Figure 6a are 
accompanied by the same large-scale fluctuations of the backscattering cross section in 
Figure 6b. 

  
(a) (b) 

Figure 6. Depolarization ratio δ (a) and backscattering cross section 11M  (b) for hexagonal plate at 
the conventional lidar wavelengths. 

Figure 5. Depolarization ratio δ (a) and backscattering cross section M11 (b) for hexagonal column at
the conventional lidar wavelengths.

The case of the hexagonal plate presented in Figure 6 leads to more complicated results.
Here, the main peculiarity seen in Figure 6a is that the small-scale fluctuations caused
by interference among the backscattered waves are added to the large-scale fluctuations.
These large-scale fluctuations of the depolarization ratio in Figure 6a are accompanied by
the same large-scale fluctuations of the backscattering cross section in Figure 6b.
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It is known that the backscattering cross section fluctuates at increasing diameter
D because of changing the aspect ratio of the hexagonal plate A = L/D according to
Equation (10). These fluctuations of the backscattering cross section are similar to the
well-known fluctuations of light intensity inside a planar waveguide. Consequently, the
large-scale fluctuations of the depolarization ratio in Figure 6a are caused by the varying
aspect ratio.

In nature, the crystal sizes in clouds are distributed according to some probability
laws. A calculation of the backscatter, taking into account such distributions, is a subject of
our next paper. Nevertheless, we believe that the small-scale fluctuations will be smoothed
after such averaging over size, while the large-scale fluctuations will remain.
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Figures 1–6 show that the depolarization ratio for transparent ice crystals weakly
fluctuates, but it approaches the value that can be assumed as a constant. The magnitudes
of the constants are different for different crystal shapes. This fact can be used for inferring
crystal shapes from the data of lidar measurements.

Additionally, it is seen that the appearance of light absorption inside crystals at
λ = 2 µm leads to the essential decrease of the depolarization ratio (see in the cyan-color
curves in Figures 1–6). In its turn, this fact can be used for inferring the crystal sizes.

5. Conclusions

In this paper, we have presented the depolarization ratio and backscattering cross
sections calculated for the typical ice crystal shapes of cirrus clouds and the wavelengths of
conventional lidars. An advantage of these calculations is that they are valid for large crystal
sizes up to 1000 µm. Such data are important for the development of algorithms interpreting
lidar signals from space-borne lidars such as CALIPSO, EarthCARE, and others.

Additionally, the physical interpretation of the calculated data has been obtained. We
show that the depolarization ratio for transparent ice crystals weakly oscillates about a
value that can be assumed as a constant. We believe that these oscillations will be smoothed
in lidar measurements. However, the fluctuations are considerable for the hexagonal
plates. These properties can be used for inferring the shapes of transparent crystals. If the
lidar radiation is absorbed by ice crystals at some wavelengths, the depolarization ratio is
decreased. This decrease could be used in the lidar study of cirrus clouds for inferring the
size of ice crystals, too.
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