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Abstract: This paper provides an Extreme Value Analysis (EVA) of the hourly water level record at 
Fort Denison dating back to 1915 to understand the statistical likelihood of the combination of high 
predicted tides and the more dynamic influences that can drive ocean water levels higher at the 
coast. The analysis is based on the Peaks-Over-Threshold (POT) method using a fitted Generalised 
Pareto Distribution (GPD) function to estimate extreme hourly heights above mean sea level. The 
analysis highlights the impact of the 1974 East Coast Low event and rarity of the associated 
measured water level above mean sea level at Sydney, with an estimated return period exceeding 
1000 years. Extreme hourly predictions are integrated with future projections of sea level rise to 
provide estimates of relevant still water levels at 2050, 2070 and 2100 for a range of return periods 
(1 to 1000 years) for use in coastal zone management, design, and sea level rise adaptation planning 
along the NSW coastline. The analytical procedures described provide a step-by-step guide for 
practitioners on how to develop similar baseline information from any long tide gauge record and 
the associated limitations and key sensitivities that must be understood and appreciated in applying 
EVA. 
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1. Introduction 
The threat of rising mean sea-level (MSL) associated with climate change will be 

profound, with extensive biophysical, ecological, social, and economic impacts forecast. 
From a purely asset and infrastructure-based perspective, it has been estimated that some 
$226 billion in commercial, industrial, road, rail, and residential assets are likely at risk 
around Australia from sea level rise alone by 2100, if greenhouse gas emissions continue 
at high levels [1]. 

It has been estimated that historical greenhouse gas emissions between 1750 and 2016 
will result in a committed global mean sea-level (GMSL) rise of around 1 m between the 
present and 2300 [2]. The recently released forecasts from modelling provided by the 
Intergovernmental Panel on Climate Change (IPCC), suggest that under a high emission 
scenario (e.g., SSP5-8.5), GMSL rise could be of the order of a metre this century alone [3]. 

Over the past decade, planning and adaptation to respond to current and projected 
climate change induced rises in GMSL have taken on greater prominence and 
sophistication at increasingly localised scales. Not only have techniques advanced to 
isolate the low-frequency MSL signal with improved temporal resolution from tide gauge 
records (e.g., [4]), but considerable research effort has improved understanding of the 
associated impacts of higher frequency, dynamic sea level extremes [5]. Extremes can be 
considered as a combination of a wide variety of largely unrelated dynamic 
oceanographic effects over differing timescales, from shorter duration storm surges, shelf 
waves, inverse barometer effect, etc., through to longer timescale influences including 
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fluctuations in ocean currents, density, salinity and temperature changes in sea water, 
through to even longer timescale influences including climate modes (such as ENSO, 
PDO, IOD, etc.) superimposed on predicable tidal responses. 

Understanding the statistical likelihood of extreme water levels driven by high 
predicted tides coinciding with these more dynamic influences that can drive ocean water 
levels higher at the coast, is of primary interest for coastal design, planning and 
engineering purposes. Integrating this information with future projections of sea level rise 
provides some assurance that adequate design parameters can be applied to the proposed 
lifecycle of the task at hand. 

The scale of these high frequency dynamic influences can vary considerably from 
location to location, dependent primarily on relevant regional scale oceanographic and 
storm system drivers. For example, along the NSW coastline, the principal influences 
elevating ocean waters above the predicted tide include barometric and wind setup as 
well as coastally trapped waves which migrate south to north along the coast over 
generally 2–3 days. These combined influences have been measured in the order of up to 
0.8 m [6]. Further north in the state of Queensland, high frequency influences associated 
with tropical cyclone activity can elevate the ocean water levels several metres above the 
predicted tide due to storm surge driven by extreme winds and low central pressures. In 
2011, Tropical Cyclone “Yasi” devastated large stretches of the Queensland coast where 
the maximum recorded storm surge exceeded 5 m [7]. 

Studies over more recent years have become more nuanced around integrating 
projected sea level rise with these more dynamic influences to highlight the increasing 
risks associated with tidal flooding phenomena. Various studies highlight the influence 
of longer period tidal variations for localised flooding around the USA (e.g., [8,9]), whilst 
other studies note the more regionally specific dynamic influences affecting extreme sea 
levels in various locations [10–12]. Numerous studies advise the intensification in the 
frequency of oceanic inundation events anticipated by sea level rise projections over 
various time horizons (e.g., [13,14]). 

This study looks specifically at the long Fort Denison tide gauge record at Sydney, 
Australia (refer Figure 1) with high frequency (hourly) data available from 10 June 1914 
(0400 h) for analysis. This paper is focused on understanding the peak heights (or 
extremes) measured above MSL resulting from the coincidence of predictable tides and 
high frequency dynamic influences. 
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Figure 1. Locality Plan (Fort Denison, Sydney). 

Statistical techniques associated with Extreme Value Analyses (EVA) have been well 
developed in the literature (e.g., [15–23]) with the ‘Block Maxima’ (BM) and ‘Peaks-Over-
Threshold’ (POT) approaches being the most popular. Both parametric modelling 
approaches involve the fitting of continuous probability distribution functions based on 
variations of asymptotic tails which are used to predict rare (or extreme) phenomenon 
often well beyond the boundary of the measured data. The earliest application of the POT 
approach can be traced to work in the hydrology sector [24]. The POT approach is 
considered more advantageous in fitting natural phenomena as it includes all 
independent events above a prescribed threshold, whereas the alternative BM approach 
is based on selection of a single maxima per equidistant time segments, ignoring other key 
rare events occurring within the same time segment [20]. By virtue, The BM method has 
often been considered a wasteful approach to EVA if other data on extremes are available 
[25]. Hence this study uses the POT approach. 

The POT method consists of fitting the Generalised Pareto Distribution (GPD) to the 
peaks of declustered excesses over a defined threshold [26]. The GPD contains a family of 
probability distribution functions which converge to one of three separate asymptotic 
tailed solutions, namely: a heavy tail; light tail; or bounded tail approximation. The 
optimum distribution is selected by means of fitting the empirical data with the use of 
shape and scale parameters. Whilst the POT offers advantages over the BM approach, the 
reliance of the technique on selection of an appropriate threshold above which to analyze 
extreme measured data has been considered a limitation. However, several works in the 
literature provide outstanding guidance on best practice applications for the POT 
technique (e.g., [26–28]) for natural phenomena. 

Whilst this guidance has been observed, this paper offers two important 
improvements. Firstly, the necessary detrending of the source data takes advantage of 
recent advancements in estimating and removing the MSL trend from long tide gauge 
records (e.g., [4,29]). Secondly, this study proposes the application of an improved 
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diagnostic approach to selection of an optimised threshold level for POT based on the 
consideration of several independent tests and analytical outcomes. These approaches 
have been largely automated using the ‘extRemes’ extension package in R [30–32]. 

The optimal fitted GPD function has been used to estimate design peak water level 
heights above MSL, for return periods ranging from 1 to 1000 years. These estimates have 
been integrated with the most up to date sea level projections from the IPCC (AR6), to 
provide improved design still water levels (SWLs) for planning, design, and climate 
adaptation purposes for Sydney to 2100. The underpinning methodology has useful 
application for practitioners at any coastal location where lengthy high frequency (hourly) 
data is available. 

The paper is structured with a detailed explanation of the analytical methodologies 
applied and the data used (Section 2), leading into a presentation of the results of the updated 
analysis (Section 3), a discussion section including key thoughts regarding sensitivity 
analyses (Section 4), and finally, conclusions are provided (Section 5). 

2. Materials and Methods 
Various data sources and methodologies have been applied in the study and are 

described in detail in the following sections. 

2.1. Data Sources Used in the Study 
A range of data sources have been used to facilitate different parts of the analysis. 

Annual average time series data for Fort Denison from the public archives of the 
Permanent Service for Mean Sea Level (PSMSL) [33,34] (Station ID = 196) have been used 
in the MSL analysis spanning the period from 1915 to 2020 (inclusive). 

Hourly tide gauge observations for Fort Denison spanning the period from 10 June 
1914 (0400 h) to 31 December 1994 (2300 h) have been made available by the National 
Operations Centre (NOC) Tidal Unit, Australian Bureau of Meteorology. Hourly 
observations spanning the timeframe from 1 January 1965 (0100 h) to 30 June 2021 (2300 
h) have been sourced from the University of Hawaii, Sea Level Centre (UHSLC) [35,36] 
(Station ID = 333). 

Sea level projections for a range of Shared Socioeconomic Pathway (SSP) scenarios 
have been sourced directly from the IPCC [3]. Specifically, data for Figure SPM8 (Panel d: 
Global mean sea level change relative to 1900) provide global averaged sea level 
projections at decadal intervals between 2020 and 2100 for the five modelled SSPs (SSP1-
1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) as summarised in Table 1. 

Table 1. Summary of Projected Sea Level Rise under Different SSP Scenarios (mm). 

Year 
IPCC (AR6) Sea Level Rise Scenarios 

SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 
2020 208 208 (198, 218) 208 208 (198, 218) 208 
2030 248 248 (238, 278) 248 248 (238, 278) 258 
2040 288 298 (268, 328) 298 298 (278, 338) 318 
2050 338 348 (318, 408) 358 368 (338, 428) 388 
2060 368 388 (348, 468) 418 438 (398, 518) 468 
2070 418 448 (388, 548) 488 528 (468, 638) 558 
2080 458 498 (428, 628) 558 618 (538, 758) 668 
2090 508 548 (458, 698) 638 718 (618, 898) 788 
2100 538 598 (478, 768) 718 838 (798, 1058) 928 

All figures advised are central estimates with 83% confidence levels advised for SSP1-2.6 and 
SSP3-7.0. 

2.2. Step by Step Methodology 
The analytical steps involved in estimating extreme sea levels at Sydney for design 

and planning purposes over differing planning horizons are detailed in the following 
sections. All analysis and graphical outputs have been developed by the author from 
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customised scripting code within the framework of the R Project for Statistical Computing 
[30]. 

Step 1: Determination of MSL trend. This is a critical initial step as the fitting of a 
GPD function to estimate extreme values is based on the statistical principles of 
stationarity. The key task with this step is to isolate the comparatively small, non-
stationary, non-linear MSL signal from the significant and substantial dynamic inter-
decadal (and other) influences and noise. This is achieved through the application of 
Singular Spectrum Analysis (SSA) techniques adapted specifically for MSL research 
[29,37] which have been further refined and applied to large regional studies of long tide 
gauge records [4,38]. The process uses annual average MSL time series data from the 
PSMSL, where the data time series has been adjusted to reflect the midpoint of each year. 

The SSA procedure requires a complete time series, therefore the three missing 
annual average values at Fort Denison (1930, 1941 and 2000) have been filled using an 
iterative SSA procedure [39] which has an (assumed) advantage in preserving the 
principal spectral structures of the complete portions of the original data set in filling the 
gaps. 

The complete time series is then decomposed using one-dimensional SSA to isolate 
components of slowly varying trend (i.e., MSL) from oscillatory components with variable 
amplitude, and noise. A technique known as frequency thresholding [40] is then used to 
aggregate components from the SSA decomposition that have “trend-like” characteristics. 
In general, the trend of MSL associated with external climate forcing can be considered to 
comprise components in which more than 50% of the relative spectral energy resides in 
the low-frequency band between 0 and 0.02 cycles per year, which accord with the 
findings of Mann et al. [41]. 

The isolated MSL signal is then fitted with a cubic smoothing spline model to permit 
prediction of MSL at each hourly time step over the time span of the data (1915.5 to 2020.5). 
More specific detail on the parameterisation of SSA and spline fitting adopted can be 
found in Watson (2021) [4]. 

Step 2: Detrending of hourly tide gauge measurements. The available hourly tide 
gauge measurements span the timeframe from 1914 to present, split across two 
overlapping timeframes and sources (NOC and UHSLC). The overlapping portion of the 
data (January 1965 to December 1994) have firstly been compared and confirmed to be 
consistent, having used the same datum (tide gauge zero). Thus, the more recent portion 
of available data (UHSLC) have been added to the NOC data to provide a continuous time 
series of hourly measurements from 10 June 1914 (0400 h) to 30 June 2021 (2300 h). These 
measurements have been converted to millimetres and adjusted to the same datum as the 
MSL data for Fort Denison from the PSMSL (used in Step 1). 

The actual detrending of the hourly tide gauge measurements is a very 
straightforward step involving the subtraction of the MSL value (Step 1) at every common 
time step. Only time steps containing hourly tide gauge measurements are retained for 
EVA. 

Step 3: Declustering input data. Declustering procedures (i.e., making use only of the 
single highest exceedance within a cluster) are routinely employed in applications of the 
POT approach to avoid the effects of dependence [42]. Along with stationarity, statistical 
independence is the other key requirements for fitting a GPD to data for estimating 
extremes. The clustering influence of hourly tide gauge measurements were examined by 
Arns et al. (2013) [27], concluding no discernible influence from clustering on return 
interval water levels when the time span between specified events was set at >24 h. It has 
been demonstrated that with either the BM or POT approach there is strong dependency 
on the clustering time, leading to significant over-estimation of the extreme return water 
level if the clustering time is short (<24 h) [27]. 

The ‘decluster’ function in the ‘extRemes’ package has been used to decluster the 
data, by setting 25 h as the minimum time span between successive peaks above the 
notional threshold [20,32]. Hourly measurements of extremes separated by fewer than 25 
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non-extremes are therefore considered to belong to the same cluster (or event). The 
sensitivity of the setting of the time span between events in declustering the data is 
considered in further detail in the Discussion section, confirming the utility of the 25 h 
selected. 

Step 4: Selection of threshold level for EVA. This is a central consideration for the 
POT approach, occupying much of the literature with accepted conventions ranging from 
expert model fitting judgement to more analytically derived metrics. The approach 
advocated by Arns et al. (2013) [27], which is based on significant optimised testing, 
recommends the threshold be set at the 99.7th percentile of hourly measurements. Other 
approaches rely on fitting GPD models over a range of thresholds using various 
optimisation techniques for parameter estimation (e.g., Maximum Likelihood Estimation 
(MLE), Generalised Maximum Likelihood Estimation (GMLE), linear combinations of 
order statistics (L-Moments) and Bayesian). 

The optimum-fitted GPD model is considered the one in which all points from a plot 
of empirical vs. modeled outcome sit on a 45-degree line [42]. Other approaches suggest 
adopting the lowest threshold for which the predicted extreme outputs remain stable and 
consistent [20], noting a threshold set to low will encompass significant irrelevant data 
whilst a threshold that is too high produces unstable results from too few data points to 
train a GPD model. 

The approach adopted in this study uses elements of all the above. Firstly, a central 
point for threshold testing is established around the 99.7th percentile of hourly 
measurements. A threshold range of ±200 mm of the 99.7th percentile is tested using 5 
mm increments across the range. 

At each threshold increment, the detrended hourly measurements are then 
declustered (Step 3) and fitted with a GPD based on separate parameter optimisation 
using MLE, GMLE, L-Moments, and Bayesian approaches using the ‘extRemes’ extension 
package in R [30–32]. For each of the four parameter optimisation approaches at each 
threshold value, the root mean square error (RMSE) is separately calculated for the fitted 
model and the predicted extreme values are determined for 1-, 10-, 100- and 1000-year 
return periods. With all the results plotted, the optimum threshold and fitted model can 
be readily identified from the stability and consistency in predicted extreme values in 
combination with the lowest RMSE. 

Step 5: Estimated prediction of extreme heights above MSL. Predicted extreme water 
level heights above MSL are readily determined from the optimum threshold and fitted 
model (Step 4) for a range of return periods (i.e., 1, 2, 5, 10, 20, 50, 100, 200, 500 and 1000 
years). 

Step 6: Integration of extreme predictions with sea level rise projections. Global 
averaged sea level rise projection data from Figure SPM8 [43] have been normalised to a 
start date of 2020 for each of the modelled SSP scenarios (SSP1-1.9, SSP1-2.6, SSP2-4.5, 
SSP3-7.0 and SSP5-8.5). 

These normalised projections of sea level rise for each SSP scenario are simply added 
to the predicted extreme water level heights above MSL (Step 5) to derive relevant extreme 
predictions for future planning horizons in 2050, 2070, and 2100. 

Step 7: Predicted extreme SWLs at 2050, 2070, and 2100 corrected to Australian 
Height Datum (AHD). The last estimated MSL data point from Step 1 (which occurred in 
2020) is simply converted from the PSMSL datum to AHD and then added to the values 
derived in Step 6. 

3. Results 
Figure 2 summarises the result of the MSL analysis (Section 2.2, Step 1). The rise in 

relative MSL at Fort Denison between mid-1915 and mid-2020 is estimated at 115 mm. 
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Figure 2. Mean Sea Level (Fort Denison, Sydney). Refer Section 2.2 (Step 1) for more details. 

Figure 3 summarises the hourly water level heights both above and below MSL over 
the same time frame, noting these measurements are the key artefact of interest for EVA. 
Some 903,659 hourly measurements spanning 105 years are available for analysis. The 
largest hourly water level height above MSL of +1456 mm was recorded on 25 May 1974 
(1300 h) whilst the largest measurement below MSL of −1150 mm was recorded on 24 
December 1999 (0600 h). 

 
Figure 3. Hourly measurements above and below MSL (Fort Denison, Sydney). Refer Section 2.2 
(Step 2) for more details. 
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Table 2 summarises the largest hourly measurements above MSL determined from 
the analysis over the 105 years of hourly records available. Table 3 summarises the results 
of a linear regression analysis applied to the hourly measured water level above MSL 
across a range of cut-off heights to determine if there is any evidence of these extreme 
heights increasing (or decreasing) over time that might result from climate change (or 
other) influences. There is no evidence from the analysis that the slope of the linear 
regression of extreme heights against time are statistically different to zero (95% CI). The 
slope coefficient for the linear regression analyses for cut-off levels involving more than 
100 data points are generally contained between ±0.3 mm/yr. Only the analysis above a 
cut-off level of 900 mm above MSL indicates a slope statistically different to zero (95% CI) 
and the slope is negative, inferring a small lowering in the extreme measured heights 
above MSL over the record length. 

Table 2. Summary of Largest Hourly Measurements above MSL (>1280 mm). 

Measurements above MSL (mm) Date (Time) 
1456 25 May 1974 (13:00) 
1396 10 June 1956 (11:00) 
1395 27 April 1990 (12:00) 
1348 3 August 1921 (10:00) 
1326 10 July 1964 (11:00) 
1319 30 June 1984 (12:00) 
1305 12 December 1950 (0:00 h) 
1301 19 June 1947 (11:00 h) 
1300 19 August 2001 (10:00 h) 
1293 22 July 1978 (12:00 h) 
1281 6 December 2017 (0:00 h) 

Summary based on declustered results. Refer Section 2.2 (Step 3) for further details. 

Table 3. Summary of Linear Regression Analysis for Hourly Measurements above MSL. 

Cut-off Hourly Height above MSL 
(mm) 

Slope (mm/yr) 
Slope Error (95% CI) 

(mm/yr) 
Data Points for Analysis 

850 −0.03 (−0.07, 0.01) 11,504 
900 −0.08 (−0.14, −0.02) 5549 
950 0.05 (−0.05, 0.15) 2440 
1000 −0.02 (−0.20, 0.16) 696 
1050 0 (−0.22, 0.22) 441 
1100 0.12 (−0.12, 0.36) 264 
1150 0.02 (−0.27, 0.31) 146 
1200 −0.09 (−0.48, 0.30) 69 
1250 0.03 (−0.64, 0.70) 31 
1300 0.18 (−1.45, 1.81) 9 
1350 0.04 (−4.00, 4.08) 3 

Analysis based on declustered results. 

Figure 4 summarises the sensitivity analysis to select the optimum-fitted GPD for 
extreme value prediction, based on the four separate parameter optimisation approaches 
(i.e., MLE, GMLE, L-Moments, and Bayesian). Results are presented for threshold values 
ranging from 800 to 1200 mm based on analysis at 5 mm increments. 

The analysis clearly highlights the improved utility of the MLE and Bayesian 
approaches to GPD parameter optimisation for extreme value predictions using this data 
set. Both approaches exhibit consistency in prediction of extreme water levels across each 
return period depicted and across a wide range of thresholds. By contrast, the GMLE and 
L-Moments approaches prove overly sensitive to the threshold selection, in turn resulting 
in more erratic predictive capability with increasing return period (refer Figure 4, central 
panels), and therefore limited utility for robustly predicting extreme levels. 

The key area of interest is denoted by the grey shaded regions in the top and bottom 
panels in Figure 4. The 99.7th percentile of hourly measurements (1017 mm) advocated by 



Atmosphere 2022, 13, 95 9 of 19 
 

 

Arns et al. (2013) [27] as the optimal threshold setting, is denoted by vertical dashed lines 
for reference. These key areas of interest have been superimposed upon each other in 
Figure 5 to highlight key features. 

 
Figure 4. Summary of sensitivity testing to optimise GPD model fit for EVA. Optimal model fitting 
denoted by grey shaded regions. Refer Section 2.2 (Step 4) for details. Vertical dashed line represents 
99.7th percentile recommended by Arns et al. (2013) [27] for threshold setting. 
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Figure 5. Summary of optimal GPD model fitting range based on MLE and Bayesian approaches. 
Derived from Figure 4. Refer Section 2.2 (Step 4) for further details. 

Firstly, from Figure 5, both the MLE and Bayesian approaches produce 
overwhelmingly consistent, robust predictive models for extreme value application, 
notably in the threshold range between 970 and 1015 mm as denoted by the lower RMSE’s. 

The computationally expensive Bayesian approach, however, offers improved 
resilience against threshold sensitivity issues as evident from the anomalous MLE 
parameter optimisation approach at threshold 995 mm. Excluding this anomaly, the 
RMSE of the MLE is marginally improved by comparison to the Bayesian approach (≈3%). 

The optimum-fitted GPD for estimating extreme water levels from the Fort Denison 
data set can be estimated via the MLE parameter fitting approach using a threshold set at 
970 mm (which has the smallest RMSE at <4.6 mm). This visual summary of diagnostic 
analysis results enables sound EVA model fitting to confirm robust predictive capacity. 

Table 4 summarises extreme hourly heights above MSL for a range of return periods 
using the optimum-fitted GPD function (Figure 6). The significant East Coast Low event 
in May 1974 dominates the extreme analysis with the recorded anomaly above MSL (1456 
mm) estimated to have a return period exceeding 1000 years (1395). Such is the dominance 
of this event on the record, that the second and third highest hourly measurements (1396 
and 1395 mm) recorded in 1956 and 1990, are estimated to have return periods of 100 and 
97 years, respectively. 

Table 4. Predicted Extreme Hourly Height above MSL (Fort Denison, Sydney). 

Return Period (Years) Height (mm) 
1 1173 
2 1221 
5 1275 
10 1310 
20 1340 
50 1374 
100 1396 
200 1415 
500 1436 

1000 1450 
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Figure 6. EVA return periods for Fort Denison, Sydney. Based on optimal-fitted GPD model with 
parameters optimised using MLE approach and threshold level of 970 mm. Confidence intervals 
determined using a normal approximation approach provided by the extRemes package [31,32]. 

Table 5 provides a summary of estimated extreme hourly water levels for planning 
and design purposes over various planning horizons (2020, 2050, 2070, and 2100) 
incorporating sea level rise. 
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Table 5. Predicted Extreme Hourly SWLs (Fort Denison, Sydney). 

Year Return Period 
(Years) 

IPCC (AR6) Sea Level Rise Scenarios (mm Australian Height Datum) 
SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

2020 

1 1242 1242 1242 1242 1242 
2 1290 1290 1290 1290 1290 
5 1344 1344 1344 1344 1344 
10 1379 1379 1379 1379 1379 
20 1409 1409 1409 1409 1409 
50 1443 1443 1443 1443 1443 
100 1465 1465 1465 1465 1465 
200 1484 1484 1484 1484 1484 
500 1505 1505 1505 1505 1505 

1000 1519 1519 1519 1519 1519 

2050 

1 1368 1383 1392 1401 1422 
2 1416 1431 1440 1449 1470 
5 1470 1485 1494 1503 1524 
10 1505 1520 1529 1538 1559 
20 1535 1550 1559 1568 1589 
50 1569 1584 1593 1602 1623 
100 1591 1606 1615 1624 1645 
200 1610 1625 1634 1643 1664 
500 1631 1646 1655 1664 1685 

1000 1645 1660 1669 1678 1699 

2070 

1 1452 1482 1522 1561 1592 
2 1500 1530 1570 1609 1640 
5 1554 1584 1624 1663 1694 
10 1589 1619 1659 1698 1729 
20 1619 1649 1689 1728 1759 
50 1653 1683 1723 1762 1793 
100 1675 1705 1745 1784 1815 
200 1694 1724 1764 1803 1834 
500 1715 1745 1785 1824 1855 

1000 1729 1759 1799 1838 1869 

2100 

1 1578 1635 1753 1872 1962 
2 1626 1683 1801 1920 2010 
5 1680 1737 1855 1974 2064 
10 1715 1772 1890 2009 2099 
20 1745 1802 1920 2039 2129 
50 1779 1836 1954 2073 2163 
100 1801 1858 1976 2095 2185 
200 1820 1877 1995 2114 2204 
500 1841 1898 2016 2135 2225 

1000 1855 1912 2030 2149 2239 
All levels advised are in millimetres to Australian Height Datum (AHD). MSL in 2020 at Fort 
Denison is estimated at +69 mm AHD. 
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4. Discussion 
Whilst employing state-of-the-art analytical techniques for MSL and extremes, this 

study gives rise to various discussion points, highlighted in the following sections. 

4.1. Potential Future Changes to Storm Drivers That Could Influence Extreme Water Levels 
along the NSW Coast 

The NSW coastline is affected by various storm typologies but East Coast Lows 
(ECLs), also known as east coast cyclones, are considered a dominant driver of climate for 
the region [44]. ECLs are driven by the temperature gradient between the Tasman Sea air 
and cold air in the high levels of the atmosphere over the continent and can produce gale 
to storm-force winds, coupled with very heavy rainfall [45]. ECLs are intense low-
pressure systems that occur, on average, several times each year off the eastern coast of 
Australia, in particular southern Queensland and NSW [46]. 

The postulated climate change related influences on these weather systems, however, 
are not altogether clear. Although there is consensus from climate modelling on generally 
fewer ECLs occurring by the end of the century [46,47], some studies suggest that their 
intensity is also likely to weaken [46], whilst others suggest an increase in their intensity, 
and that these changes are strongest in spring and summer [47]. The lowering of 
atmospheric pressures during these events and potential increases to wind speeds (and 
therefore wave generating capacity) increases the likely storm surge characteristics under 
extreme conditions. 

Tropical cyclones are a dominant and powerful storm system that features more 
prominently along the Queensland coastline generating over very warm tropical waters 
[45] where the sea surface temperature is greater than 26 °C [48,49]. They have relatively 
long-life cycles, typically about a week, and severe tropical cyclones (category 3 or greater) 
can produce wind speeds over 180 km/h near the centre, very heavy rainfall and large 
associated storm surges [45]. 

Laffoley and Baxter (2016) [50] indicate there is likely to be an increase in mean global 
ocean temperature of between 1 and 4 degrees Celsius by 2100. Under these conditions, 
tropical cyclones will be able to generate and migrate considerable distances further to the 
south to impact the NSW coastline more directly. The larger storm surges generated by 
these systems would, by consequence, increase the dynamic portion of extreme water 
levels experienced. 

4.2. Sensitivity of EVA to Declustering 
The application of GPD for POT EVA is underpinned by key assumptions of 

stationarity and independence. The stationarity protocol has been addressed through the 
removal of the MSL trend increasing over time (refer Section 2.2, Steps 1 and 2) and 
subsequent test results (refer Results and Table 3). 

To satisfy statistical independence protocols between extreme events, the data must 
be carefully declustered. Following considerable sensitivity testing, Arns et al. (2013) [27] 
recommended that hourly tide gauge measurements used for EVA could satisfy 
independence requirements by setting a minimum of 25 h between separate extreme 
events. Figure 7 provides the results of sensitivity testing for extreme return periods, using 
three separate thresholds, by varying the delustering time between extreme events from 
0 to 100 h. Similar to the results of Arns et al. (2013) [27], there is limited influence on the 
predicted extreme return periods once the time between successive extreme peaks 
increases to 25 h. This is to be expected with the lunar day being 24 h and 50 min; thus, by 
setting the declustering limit between peaks to at least 25 h, successive tidal peaks will be 
considered within the same extreme event, which is a key consideration when extreme 
events coincide with high spring tidal phenomena. When the declustering of events is set 
at a threshold less than 25 h, successive large tidal peaks which form a significant portion 
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of the peak water level for the same extreme event will be considered separate extreme 
events, violating the independence assumptions underpinning GPD and POT theory. 

 
Figure 7. Sensitivity analysis for declustering time spans. The vertical dashed line at 25 h represents 
the minimum hourly time frame to decluster events. 

4.3. Sensitivity of EVA to Length of Dataset 
It is important to understand the limitations of any EVA without diminishing the 

obvious utility of providing scientifically derived estimates of natural phenomena that 
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often lie beyond the physical time scale of measurements experienced to date. In this 
regard, the long hourly time series of measurements extending from 1915 to 2020 provide 
the means to test the importance of both the length of the data set and dominant measured 
events contained within. 

Figure 8 summarises outputs from one-third portions of the data set (1915–1950, 
1950–1985, 1985–2020) compared to the full data set (1915–2020) and the full data set with 
the exclusion of the 1974 event which dominates the record. Using the full data set and 
excluding the 3 hourly water levels measured around the peak of the event on 25 May 
1974 reduces the predicted hourly peak above MSL for 10, 100, and 1000-year return 
period events by some 12 mm (1%), 28 mm (2%), and 42 mm (3%), respectively. This 
analysis provides some guide to the sensitivity of the results to such a pivotal event on 
the record, noting it is not uncommon for measurement system malfunction during very 
extreme natural events. 

 
Figure 8. Sensitivity analysis on length of data set for EVA (Fort Denison, Sydney). 

However, as might be expected from EVA, the results are more critically affected by 
the length of the dataset available. Analysis of the three 35-year portions of the full dataset 
increases the sensitivity of the predicted hourly peak above MSL for 10, 100 and 1000-year 
return period events by a maximum of 29 mm (2.2%), 58 mm (4.2%) and 82 mm (5.7%), 
respectively, compared to the results from the full data set. 

These differences are put into some perspective when one considers only 54 mm 
distinguishes between the 100 and 1000-year return period extreme water level for the 
optimally fitted GPD for the full data set. 

4.4. Threshold Selection and GPD Fitting for POT Analysis 
Based on sensitivity testing, Arns et al. (2013) [27] provided a range of 

recommendations for EVA using hourly tide gauge records, including setting the 
threshold for POT analysis at the 99.7th percentile of hourly measurements and 
optimizing the selection of parameters for GPD fitting using an MLE approach. The 
determination of the optimal threshold level to adopt when applying the POT approach 
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dominates much of the contemporary literature around EVA. The testing and selection 
approach by Arns et al. (2013) [27] to recommend use of the 99.7th percentile of hourly 
measurements was based on a rational desire to seek a less subjective approach. However, 
the approach advocated in this paper to consider various key metrics, graphically 
represented across a range of thresholds and parameter optimisation approaches (Figures 
4 and 5), provides a more robust and objective methodology given any overly sensitive 
artefacts of parameter optimisation fitting are immediately apparent (and therefore 
avoided). This is enhanced by the ready availability of diagnostic tools available in 
modern EVA software. It is acknowledged in this case that the selection of the of 99.7th 
percentile of hourly measurements (1017.1 mm) would have resulted in a near identical 
outcome for the model fit and predicted extreme values (refer Table 6), only that the RMSE 
for the model fit improves slightly from 5.46 mm to 4.59 mm for the threshold of 970 mm 
adopted in this study. 

Table 6. Comparison of Predicted Extreme Hourly Height above MSL. 

Return Period (Years) Height (1) (mm) Height (2) (mm) 
1 1173 1175 
2 1221 1223 
5 1275 1276 
10 1310 1311 
20 1340 1340 
50 1374 1374 
100 1396 1395 
200 1415 1414 
500 1436 1435 

1000 1450 1448 
(1) Model fit based on threshold of 970 mm (this study); (2) Model fit based on threshold of 1017.1 
mm (99.7th percentile). 

4.5. Spatial Utility of EVA 
The EVA results advised are a combination of predictable tidal behaviours and a 

wide variety of largely unrelated dynamic oceanographic effects occurring over differing 
timescales from high intensity, short duration storm surges to longer timescale climate 
mode influences (such as ENSO). Whilst the high frequency hourly water levels will have 
a distinct spatial signature based on dominant regional scale storm patterns, the more 
predictable tidal characteristics are also spatially dependent. Whilst the tidal range 
increases marginally from south to north along the NSW coastline (≈200 mm), the largest 
offshore wave statistics are evident from measured data at the Sydney and Port Kembla 
waverider buoy systems [51], both of which are situated within 80 km of the Fort Denison 
tide gauge. 

Similarly, the dominance of the 1974 storm event which had its greatest impacts 
across the Greater Metropolitan Region of Sydney were captured in the Fort Denison tide 
gauge record. This record is unique in NSW both due to its length (dating back to 1915) 
and in the fact it captured the full 1974 event. Sensitivity analyses (see Section 4.3) 
highlight the importance of longer records and capturing rare events for improving the 
prediction capability of high frequency extremes. Therefore, the results of the EVA of the 
Fort Denison record are considered to represent a very good proxy for high frequency 
extremes along the NSW coastline for both planning and design purposes. 

5. Conclusions 
The extensive hourly data repository of measured water levels at Fort Denison dating 

back to 1915 provide the basis to consider both high frequency extreme water levels and 
low frequency sea level rise at Sydney. This analysis also integrates recent updated IPCC 
projections of sea level rise to 2100 [3], providing sea level extremes for a range of return 
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periods over future planning horizons for design, planning, and sea level adaptation 
purposes that are relevant for application along the NSW coastline (refer Table 5). 

The largest measured height above MSL at Fort Denson of +1456 mm was recorded 
on 25 May 1974 (1300 h) during an extreme ECL event which resulted in considerable 
damage within the Greater Metropolitan Region of Sydney and adjacent coastlines. From 
the EVA undertaken, this height above MSL is estimated to have a return period of 1395 
years. The next highest measured extremes in 1956 and 1990, respectively (1396 and 1395 
mm) have an estimated return period of ≈100 years. The sensitivity of the extreme tail of 
the fitted GPD is clear with a rise of ≈60 mm increasing the return period from 100 to 
almost 1400 years. 

In this regard, it is important to note that, up until 1999, hourly data at Fort Denison 
was recorded only to the nearest centimetre. In addition, the estimate of MSL at each of 
these respective years has an estimated 95% confidence level of just under ±10 mm, 
highlighting the key sensitivity that measurement accuracy might play in estimating 
extreme return periods at the rare end of the Fort Denison dataset. 

The analysis also provides no evidence (at the 95% CI) at this point in time that 
extreme measured water levels above MSL have been increasing over time at Fort Denison 
due to climate change (or any other factors). 

The analysis permits an understanding of the influence that slow and incremental 
sea level rise plays on the nature of extreme projections for oceanic inundation risk. 
Considering the amount of sea level rise estimated at Fort Denison between 1974 and 2020 
(≈52 mm), a peak hourly height above MSL of 1404 mm in 2020 would be required to reach 
the same measured water level as the peak in 1974, which has an order of magnitude 
reduction in return period to ≈132 years (cf. 1395 years in 1974). Taking this a step further, 
if one considers the amount of sea level rise forecast between 2020 and 2050 under a high 
sea level rise scenario (i.e., SSP5-8.5, 180 mm), the extreme hourly height above MSL 
required in 2050 to reach the same level as the devastating event in 1974, would be 
occurring on average every 2 years. These relatively simple statistical comparisons serve 
to highlight the ongoing and increasing threat of oceanic inundation posed by rising MSL. 

The analysis is based on a POT approach and optimised fitting of the GPD to predict 
extreme values following the recommendations advocated by Arns et al. (2013) [27], but 
with two suggested improvements. Firstly, the estimate of MSL used to de-trend the 
hourly tide gauge data is based on more recent advancements in this area, and secondly, 
this study recommends the use of a slightly improved diagnostic approach to selection 
and optimisation of an appropriate threshold above which the EVA is performed. The 
fitted GPD results in a low RMSE of <4.6 mm, providing some assurance in the utility of 
this tool to predict hourly extremes above MSL from the Fort Denison measured data. 

The analytical procedures described provide a step-by-step guide for practitioners 
on how to develop similar baseline information from any long tide gauge record and the 
associated limitations and key sensitivities that must be understood and appreciated in 
doing so. The analysis and results presented in this paper provide a very good resource 
for coastal zone management, design, and sea level rise adaptation planning along the 
NSW coastline. 
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