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Abstract: Air pollution is one of the most pressing modern-day issues in cities around the world.
However, most cities have adopted air quality measurement devices that only measure the past
pollution levels without paying attention to the influencing factors. To obtain preliminary pollution
information with regard to environmental factors, we developed a variational autoencoder and
feedforward neural network-based embedded generative model to examine the relationship between
air quality and the effects of environmental factors. In the model, actual SO2, NO2, PM2.5, PM10, and
CO measurements from 2016 to 2020 were used, which were assembled from 15 differently located
ground monitoring stations in Ulaanbaatar city. A wide range of weather and fuel measurements
were used as the data for the influencing factors, and were collected over the same period as the
air pollution data were recorded. The prediction results concerned all measurement stations, and
the results were visualized as a spatial–temporal distribution of pollution and the performance of
individual stations. A cross-validated R2 was used to estimate the entire pollution distribution
through the regions as SO2: 0.81, PM2.5: 0.76, PM10: 0.89, and CO: 0.83. Pearson’s chi-squared
tests were used for assessing each measurement station, and the contingency tables represent a high
correlation between the actual and model results. The model can be applied to perform specific
analysis of the interdependencies between pollution and environmental factors, and the performance
of the model improves with long-range data.

Keywords: air pollution; embedded generative model; environmental factor effect; latent variable

1. Introduction

Serious environmental issues are common in densely populated large cities in devel-
oping countries. There are many factors contributing to this, starting with climate change;
however, urbanization is a global problem [1]. In the past two decades, the number of
inhabitants in Ulaanbaatar city has increased more than three times. The capital city of
Mongolia sits on the Tuul River, the third-longest river in Mongolia, in a valley surrounded
by large mountains, the geographical map of which is shown in Figure 1a. As the city was
built in large river watershed lowland between mountains, the temperature is often inverse
during the wintertime [2]. Moreover, the city’s geographical and climate features, as well
as its poor heating system infrastructure, make the city one of the most air-polluted cities
in the world today. The standard sewerage and pure water supply systems were initially
designed for 400,000 inhabitants 46 years ago, but now around one 1.4 million people live
in Ulaanbaatar, [3]. Some of these 1.4 million citizens are living in the boundary areas of
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the city, called ger districts in some reports, which are suburbs that are not connected to the
main heating supply. In these suburbs, every family has its stoves and brick stoves as their
heat source. Figure 1 shows two neighboring districts: one comprises standard heating-
supplied buildings, and the other is a suburb with traditional heating stoves. Unfortunately,
the suburban area increases every year [4]. Figure 1 also illustrates the suburban area and
the area of standard heated buildings, with the ger district area being 6–7 times larger
than the area with apartments. In the warm season, wood is the most commonly used
material in traditional stoves, but in the cold season, coal is used. Furthermore, in the
outer boundary areas of the ger districts, other materials are sometimes used to reach the
minimum warm temperature for living, such as tires, bones, old clothes, etc.
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Figure 1. Infrastructure of Ulaanbaatar (UB). (a) Geographical map of Ulaanbaatar (UB) and suburban
areas. (b) Apartment area vs. ger district area.

Hence, the smoke from coal and other materials resulted in a horrifying situation
in winter, as reported in some earlier works [5,6]. Before the government standardized
fuel in Ulaanbaatar, in one example, the harmful dust level was 6–7 times higher than the
most lenient World Health Organization standards, according to the World Bank Report in
2012 [7].

From 15 May 2018, the Government of Mongolia strictly banned the import and use
of raw coal in Ulaanbaatar, and issued an order for the use of improved fuel instead.
Hence, the air-quality index (AQI) has improved, and there was a big difference in the AQI
between 2019 and 2020, especially in the wintertime. Consequently, the AQI is influential
in addressing air-quality improvement because climatology contributed to improving
fuels. However, the role of the AQI measurement network needs to be clarified. To be
precise, even devices that accurately measure air quality are only informed by values of
measurement from the past, with very few cases in real-time. Alternatively, the tools are
simply about listening, i.e., how harmful the AQI was. In this situation, a predictive method
may be the solution regarding the historical data information of the AQI, climatology, and
improved fuel. Thus, we developed an embedded generative model for the AQI that
depends on the environmental factor effect (EFE) influencing the AQI, which is a result
of the city’s geographical features, such as temperature, wind, atmospheric pressure, etc.,
including improved and raw fuel measurement quantities.

Therefore, studying the interdependence between AQI and EFE with fuel measurement
quantities is the purpose of this work. The variational autoencoder (VAE) and multilayer
perceptron methods were used to develop an embedded generative approach. From the
VAE learning, we produced new data based on its latent variables. Latent variables play
a crucial role in VAE generation, highlighting data and reducing its dimensionality in a
shallow space. The EFE with fuel measurement quantities was measured simultaneously
with the AQI. The dimensions of the latent variables and the EFE with fuel measurement
quantities were the same size. Hence, to discover the relationship between the AQI and the
EFE data’s latent variable, a multilayer perceptron was used. Thirty-two variables were
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gathered in the EFE data, such as ambient temperature, pressure, and wind speed, as well
as the impact of raw coal and improved fuel information. For the VAE learning process, a
four-year period from 11 of Ulaanbaatar’s (UB’s) air-quality measurement networks were
used. The proposed method’s results were evaluated by a Pearson chi-squared test and
compared with a non-linear regression prediction in the final step.

The measurement quantities of raw coal and improved fuels in three different labora-
tories are shown in Table 1. The items in Table 1 are as follows: Q1—received basis refers to
the moisture content of the coal (maximum percentage of water); Q2—dry basis ash content
(maximum percentage of dry); Q3—dry basis volatile matter (maximum percentage of dry);
Q4—total dry basis sulfur content (maximum percentage of dry); Q5—lower caloric value
(kcal/kg min); Q6—percentage of carbon; Q7—percentage of hydrogen; Q8—percentage
of nitrogen; and Q9—percentage of oxygen.

Table 1. Fuel quality comparison.

Fuel Type Measured Laboratory Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Improved
Fuel

Southwest region, Russia 2.4 22.2 19.6 0.89 6374 67.63 3.81 1.83 3.68
Central Geological Laboratory 1.9 22.7 19.8 0.87 6984 - - - -

Laboratory of Mineral Resources and
Petroleum Authority 2.7 23.3 19.3 0.86 6334 65.1 5.4 1.32 7.57

Institute of Chemistry and Chemical
Technology 0.8 22.9 18.68 0.89 5918 63.86 3.76 1.69 -

National standard MNS 5679:2019 ≤10 ≤29 ≤22 ≤1.0 ≤4200 - - - -

Raw Coal

National standard MNS 3818:2011 37.5 17.5 44.8 0.38 3360 - - - -
National standard MNS 6226:2011 6 28 26 1.3 5500 - - - -

CRRI China - - - - - 67.3 4.2 0.95 17.2
CRRI China - - - - - 69.3 3.8 3.8 3.1

Related Work on ANN and Deep Learning for Ambient Air Pollution Estimation

The application of a neural network (NN) for air pollution is associated with the
development of an artificial neural network (ANN), with mainly machine learning and
VAE being applied in prediction works. For instance, in early works, the ANN technique
was applied for pollution prediction: Reich et al. used 24 h SO2 data for simple ANN
architecture and discussed some of the limitations of the approach [8]. Moustris et al. used
much larger meteorological and air pollution data to predict the pollution index of NO2, CO,
SO2, and O3 three days ahead in seven different places in Greece [9]. For urban air pollution
prediction, an ANN was applied and compared with multiple time series methods, such as
ARIMA, fuzzy time series, and principal component analysis (PCA), using 7–10 years of
Malaysian air pollution measurement data [10–12]. A more expanded description of the
ANN-based approach can be found in the review work in [13–15]. Furthermore, an ANN
was used for the integrated assessment modeling of global climate change and ecological
research [16,17].

Machine learning (ML) approaches have been applied for more automatic and accurate
air pollution predictions from a large amount of input data with numerous outputs. Zhang
et al. studied the superior predictive ability of ML methods based on six years of Hong Kong
air-quality index measurements [18]. Moreover, the special gradient-boosting ML approach
was applied for predicting the PM2.5 concentration in China [19]. Delavar et al. used an
autoregressive non-linear neural network with an external input for improving air pollution
prediction in the case of Tehran city [20]. The research of Ly et al. considered the dependence
between the pollution index and the sources obtained from multisensory measurements
and weather data in air pollution predictive analysis-based ML approaches [21]. Similar
work was reported by Arnaudo et al. in the urban area of Milan city using different
configurations employing machine and deep learning models, such as a linear regressor, an
artificial neural network using Bayesian regularization, a random forest regressor, and a
long short-term memory network [22].
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Lee et al. presented a gradient boosting–based machine learning approach for pre-
dicting PM2.5 concentration based on a large-scale data set in Taiwan city [23]. For UB city,
PM2.5 concentration prediction has been studied using two different ML approaches, and
high-performance results have shown the spatiotemporal variations in the high-emission
areas [24]. Moreover, Meredith et al. compared several machine learning methods for
ground-level pollutant mixtures of particulate matter with a diameter smaller than PM2.5
for air-quality assessment in Mongolia [25]. The survey works of ML methods for ambient
air pollution assessment are summarized in [26–30].

Among the generative models for air contamination, deep learning methods are a
more recently developed approach. Tien et al. worked on air-quality inference based
on a graph-based matrix completion problem, and applied a variational model on graph
convolutional autoencoders [31]. Additionally, they used a mobile Internet of Things sensor
for fine-grained air quality in deep learning inference [32]. The spatiotemporal prediction of
air pollution based on deep learning approaches has been studied widely for many different
purposes. Li et al. studied the spatiotemporal deep learning–based air-quality prediction
method that inherently considers the spatial and temporal correlations and prediction
results of all stations compared with traditional time series prediction models [33].

Li et al. introduced the advantage of using two-stage models in geographically
weighted machine learning [34], and deep learning to robustly impute a long time series
of multi-angle implementation of atmospheric correction aerosol optical depth [35]. The
achievements of embedded methods with deep learning approaches were considered
in [36,37], and the high performance of autoencoder-based residual networks consisting of
learning models is analyzed in [38].

Fan et al. studied the framework and feasibility of an idea based on deep RNN [39],
whereas improved feature analysis was considered in [40] based on fine-grained air quality.

2. Methodology
2.1. Area of Study and Data Collection

The capital city UB has a history spanning more than 360 years and is currently home
to 50% of the country’s population. This population is continuously growing; therefore, the
most significant problem is in an urban ecological context, with environmental pollution
also dramatically increasing. In addition, the city has a harsh and unique climate, and its
geographical location behavior is the main cause of this air pollution. The city is located in
a large valley surrounded by mountains, at an elevation of approximately 1580 m above
sea level. Due to the elevation and being located far from the sea, the city has a very
long-lasting winter, making UB one of the coldest capital cities in the world. Ulaanbaatar
receives an average of 239 mm of precipitation per year, of which 1 mm or more falls in
39 days, and 5 mm or more of rain falls in 15 days. Generally, this area is arid, with the
humidity sometimes decreasing to 4% per year. The wind comes mainly along the valley,
but the strength of the wind is low throughout the year, with 10% of the wind observed in
the spring months.

The average annual surface air temperature is −0.7 ◦C, dropping to −45 ◦C in the
winter and warming up to +59 ◦C in the summer. Sudden frosts occur on the surface of the
soil in all months except July. Therefore, the ground freezes to a considerable depth of 4–8 m.
The average wind speed for the country is less than 2 m/s, which affects the air pollution
levels, making them more constant for an extended time. Additionally, the average wind
speed of the capital city is primarily 0.5 m/s from the northern and northwestern areas,
which means that there is not much air circulation. Thus, air pollution remains stable for
long periods around the center of the city. Figure 2 shows the wind information maps
across four years.
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The National Agency for Meteorology and Environmental Monitoring (NAMEM)
established the first air-quality monitoring station in Ulaanbaatar in 1977. This was the
foundation for the establishment of an air-quality monitoring network in Mongolia. Until
2008, there were four permanent air-quality monitoring stations in Ulaanbaatar, which mea-
sured only two indicators, sulfur dioxide and nitrogen dioxide. There was no continuous
air-monitoring system built on the outskirts of Ulaanbaatar city.

Due to Ulaanbaatar’s air pollution issues, there is a need to expand the network
by equipping it with automatic, continuous measurement capabilities and improving
its capacity. The air-quality monitoring network consists of the Air Pollution Reducing
Department of Capital City (APRD) Network and the NAMEM Network. A German grant
established the APRD Network with five stations in 2008, and the NAMEM Network, with
10 stations, was established by means of a French loan in 2010. Currently, 12 automatic
stations are measuring sulfur dioxide, nitrogen oxides, carbon monoxide, ozone, PM10,
and PM2.5 every 15–30 min, and 3 non-automatic controls of sulfur dioxide and nitrogen
dioxide (Figure 3). The concentration is determined using a chemical solution.
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2.2. VAE for Embedded Generative Method

Let y = {y1, y2 . . . yn} be the AQI measurements collected from measurement net-
works at different locations in the city. Furthermore, x = {x1, x2 . . . xn} represents the
EFE of the air quality, which is measured at the same time as y. Next, the purpose is to
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understand the relationship between those two quantities; F : x→ y . In the case of air
quality, the relationship is completely unknown; generally, it is assumed to be a system
of highly non-linear maps. Moreover, data of x and y raw and sampling methods are
very different in each measurement. In this situation, a variational autoencoder (VAE) has
the benefit of representing the data in low dimensional continuous latent variables with
intractable posterior distributions [41].

The VAE method optimizes the weight parameters W and bias

1 

 

𝕓 

 

𝔀 

 

𝓫 

of the function:
F(W,

1 

 

𝕓 

 

𝔀 

 

𝓫 

, x), which is a non-linear approximation of the relation map, as follows:

F = argmin
W,

1 

 

𝕓 

 

𝔀 

 

𝓫 

1
N

N

∑
i=1
‖ yi − F(W,

1 

 

𝕓 

 

𝔀 

 

𝓫 

, xi)) ‖2 (1)

where {yi, xi}N
i=1 is the data set provided and stored from the relation map F. The optimiza-

tion process of F(W,

1 

 

𝕓 

 

𝔀 

 

𝓫 

, xi) consists of two maps, encoder Φ and decoder Ψ. The encoder
reduces the dimension of y into dimensionally reduced space, Φ: y → h, and then the
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where KL is the Kullback–Leibler (KL) divergence loss between N(µ, σ) and N(0, I) (along
with this formulation, we refer [42,43]). KL measures how the distribution of N(µ, σ)
associated with data y is different to the normal distribution, defined as:

KL(N(µ, σ), N(0, I)) =
1
2

l

∑
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(
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s

)
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where l is the dimension of dimensionally reduced space h, called latent space. To obtain
the latent space from the data, the multilayer perceptron (MLP) is the advised method. The
map of reducing dimension consists of several hidden layers, and every layer has finite
nodes. In the encoder process, the number of nodes in the steps of layer is conventional
in reducing the order. wk

ij is denoted as the weight parameters of the layers between kth
and (k + 1)th, whereas i and j are node positions, respectively. Then, the kth layer weight
parameters can be represented in the following matrix form:

W(k) =

 wk
1,1 · · · wk

m,1
...

. . .
...

wk
1,n · · · wk

m,n

 (4)

where m is the number of notes in the kth layer, and n is the number of nodes in the (k +
1)th layer. To curtail the dimension of input that the number of nodes in the layer satisfies:

N > · · · · · · >︸ ︷︷ ︸
k−1

k︷ ︸︸ ︷
m > n> · · ·︸ ︷︷ ︸

k+1

· · · > l

In recurrent form, this can be described as:

h(1) = W(1)y + b(1) (5)

h(k) = W(k)h(k−1) + b(k) (6)
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where b(k) =
[
b(k)1 , b(k)2 , . . . , b(k)n

]ᵀ
refers to the bias parameters and ᵀ is the matrix trans-

pose operation. Every h(k) =
{

h(k)1 , h(k)2 , . . . , h(k)n

}
retains the key feature of the previous

steps, and the final space h is considered to be the feature space. Then, the encoder function
is represented as:

Φ(y) = ς
(

W(k) . . . ς
(

W(2)ς
(

W(1)y + b(1)
)
+ b(2)

)
+ . . . + b(k)

)
(7)

where ς is the sigmoid function. The main feature that distinguishes a VAE from other
generating models is its latent space. If we look at latent space alone, its actual value is a
quantity that cannot be measured directly. However, it contains the core of the essential
information in the data, determining in the latent space the KL-divergence loss and repa-
rameterization trick is vital. In the process of optimization, Equation (3) provides a close
distribution to normal with µ and σ expressed as:

µ = WµΦ(y) + bµ (8)

σ = WσΦ(y) + bσ (9)

where Wµ, Wσ, bµ, and bσ are the weight and bias for µ and σ. Then, the latent variable is
described as:

h = µ + σ
⊙

ε (10)

where ε is the normally distributed auxiliary noise variable and
⊙

is the element-wise
product. Figure 4 shows the reparameterization trick on h, the difference with and without
ε is intractable posterior distributions.
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More precisely, the latent space is centered at the coordinate and distributed in a
bounded interval in any direction; thus, any linear combination between two points of
the space belongs to its space (for more detailed properties of this phenomena, refer to
Section 3.4 of [42]).

When h variables are found, the decoder function is defined as:

Ψ(h) = ς
(

W2k . . . ς
(

Wk+2ς
(

W(k+1)h + b(k+1)
)
+ b(k+2)

)
+ . . . + b(2k)

)
(11)

Then, the entire process of VAE is to determine the parameters of W and b, where:

W =
{

W(1), . . . , W(k), W(µ), W(σ), W(k+1), . . . , W(2k)
}

(12)

1 

 

𝕓 

 

𝔀 

 

𝓫 

=
{

b(1), . . . , b(k), b(µ), b(σ), b(k+1), .., b2k
}

(13)
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The process of optimizing those parameters is based on backpropagation and a gra-
dient descent algorithm. Initially, it starts with random choice in W and

1 

 

𝕓 

 

𝔀 

 

𝓫 

, then the
sensitiveness of training errors in little changes in those parameters, and the derivative of
the training error leads to the chain rule and backpropagation. The network architecture is
represented in Figure 5, and the architecture of the VAE, and the algorithm of optimizing
the parameters, are described in the next section, along with the embedded network.
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2.3. Embedding Network for the Relationship between EFE and AQI

The formulas described in Equations (2)–(13) are basic VAE methods for generating
new AQI values from the latent variables obtained in the learning process. In order to
approximate the function F, whereby W,

1 

 

𝕓 

 

𝔀 

 

𝓫 

, and x are as described in Equation (1), we
need different approaches to the typical VAE approach. However, the method defined in
Equations (2)–(13) determines the vital space of the AQI, which is the latent variable h. To
find the relationship between latent space data and the EFE, we use the feedforward neural
network approach, as the period of sampling time is equal.

Expressly, the first column of Equation (14) represents n daily measurements of AQI,
and the next column is the latent variables obtained through the algorithm applied to daily
measurements of the AQI. Additionally, EFEs were also measured on the same day with y:

y1 =
{

y(1)1 , . . . , y(1)m

}
h1 =

{
h(1)1 , . . . , h(1)l

}
x1 =

{
x(1)1 , . . . , x(1)l

}
y2 =

{
y(2)1 , . . . , y(2)m

}
h2 =

{
h(2)1 , . . . , h(2)l

}
x2 =

{
x(2)1 , . . . , x(2)l

}
. . . . . . . . . . . . . . . . . . . . . . . . . . .

yn =
{

y(n)1 , . . . , y(n)m

}
︸ ︷︷ ︸

y

hn =
{

h(n)1 , . . . , h(n)l

}
︸ ︷︷ ︸

h

xn =
{

x(n)1 , . . . , x(n)l

}
︸ ︷︷ ︸

x

(14)

Hence, the data are available to learn the relationship between h and x. Apply the feed-
forward neural network to approximate the function f : h→ x ; indeed, it is the universal
approximation theorem for f . Thus, it gives the f (000000, 33333333; x) function, which is
an approximation function as f ∼ f (000000, 33333333; x) with weight and bias parameters
corresponding to network nodes. Then, the new generating AQI values can be described
through the embedding as: {

f : x→ h
Ψ : h→ ŷ

(15)

The architecture of the two combined networks is represented between y, h, and x in
Figure 6.
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The Algorithm 1 for the embedded generative model:

Algorithm 1: embedded modeling algorithm
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Result: find the relation map ƒ;
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𝕓 

 

𝔀 
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,

1 

 

𝕓 

 

𝔀 

 

𝓫 )-initialization; ζ-step size hyperparameter; set error estimation;
set algorithm for (

1 

 

𝕓 

 

𝔀 

 

𝓫 

,

1 

 

𝕓 

 

𝔀 

 

𝓫 ) same with (W,

1 

 

𝕓 

 

𝔀 

 

𝓫 

);

Result: embedding of Ψ, ƒ;
Generate new AQI values based on the embedding;
Ψ: (ƒ: x→ h)→ ŷ
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3. Experiment
3.1. Data Expression

To validate the proposed method of illustrating the interdependency between AQI
and EFE, we used four years of air pollution concentration measurements and four years of
weather data. The correlation between AQI and pollution concentration is defined as:

AQI =
(Ihigh − Ilow)

(Chigh − Clow)
(C− Ilow) + Ilow (16)

where C is the amount of pollutant concentration per cubic meter of air, Clow and Chigh
are the lowest and highest breakpoints of C, and Ilow and Ihigh are the index breakpoints
corresponding to Clow and Chigh. However, the AQI is designed to disseminate air-quality
information using color coding as it is accessible to the general public, normalizing the
measurement into world standards, with the relationship between AQI and C being direct
one-to-one. Furthermore, the pollutant concentration is available from measurement
stations, with most of them even working automatically, and we used C instead of AQI. In
addition, the pollution concentration data that were assembled between 1 January 2016 and
1 June 2020 from 15 pollution measurement stations and positions are shown in Figure 3.
Three of them determined the pollution concentration based on active sampling tests,
and the remaining stations automatically measured the concentration. The automatic
stations used the light source to obtain the signal difference between the reference and
the incoming air in sampling manifolds. This working principle analyzed the amount
of different pollution concentrations by micrograms per cubic meter in a minute and
eliminated rotation for optic adjustment. Related to the working principle and purpose,
each station had different measuring capabilities, namely SO2 measured from 15 stations,
NO2 measured from 13 stations, PM10 measured from 14 stations, PM2.5 measured from
8 stations, and CO measured from 10 stations, with a total of 60 pollution concentrations
gathered for the experiment. As in the example, the daily concentration of SO2 in 2016 is
expressed in Figure 7, which was measured by UB-2, with the tolerable content level being
50 µg/m3.
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Figure 7. The daily concentration of SO2 in 2016, measured by UB-2, tolerable content level is
50 µg/m3.

The EFE data were composed of measurements of a comprehensive range of weather
data sampled from five automatic weather measurement stations in UB. Weather data
involve various levels of wind speed, wind direction, temperature, relative humidity, and
the most crucial information for the fuel period. Furthermore, weather information was
collected within the same period as the air pollution concentration measurement.

Surface wind regimes depend on local climatic conditions and atmospheric circulation.
Each season, the average wind speeds are very different in UB, 1.8–6.3 m/s in spring,
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−2.5 m/s in winter, and 1.2–5.4 m/s in other seasons. In winter, due to the strong anti-
cyclones, the prevailing wind speed slows down, whereas in other seasons, the west,
northwest, and north winds prevail along the prevailing air flow. Depending on the
location of the weather stations in UB, the wind direction, speed, and frequency are quite
varied. For example, in the station at the airport, the east wind is predominant in all seasons
except spring, different to the station at the university. The four years of the probability
distribution of the direction and wind speed are visualized in Figure 8. The degree of wind
direction is defined in cardinal degrees as compass points.
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Figure 8. The distribution of wind with respect to direction and speed in 2016–2019. (a) The station
at the university. (b) The station at the airport.

Furthermore, four years of temperature and relative humidity information are ex-
pressed in Figure 9. For both quantities, the frequency is counted with respect to amounts
of years, and the absolute measurements are represented in a bivariate histogram. In the
illustration of temperature, the higher frequencies appear more often in the cold season
over the four years of data than in the warm season. The amount of relative humidity
is inversely related to air temperature and depends on cloud precipitation. The average
annual relative humidity around Ulaanbaatar is 55–76%.
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3.2. Visualization of the Results

In the VAE-based learning process, to obtain the feature space h of the AQI data,
we need to separate data into two parts, i.e., training and testing. The data size was
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365 × 60 = 87,600 from 8–15 air pollution concentration measuring stations, and the data
were separated into 60,000 and 27,600 for training and testing, respectively. The compu-
tation architecture for the VAE consisted of three hidden layers with nodes 40, 30, and
20, and one input channel had a length of 60. The training epoch was 200,000, the batch
size was 1000, and the learning rate was 0.001. We used an RmsProp optimizer with the
ReLU activation function in the hidden layer and the sigmoid activation function in the
output layer.

Python and TensorFlow were used for the VAE implementation, and a PC equipped
with an Intel(R) Core (TM) i7-2600-CPU@3.40GHz, with an NVIDIA GeForce GTX 1060ti
6GB GPU was used for the computation. The Python plotting tool, MATLAB, and LaTeX
pgfplot packages were used in the data and result visualization. In Figures A1–A3 in the
Appendix A, the typical air pollution measurement of SO2 and the convergence rate of the
VAE computation at a particular epoch are shown.

With this latent space computation, we completed the VAE using the algorithm illus-
trated in pseudocode 1. Next, for the relationship between the EFE data and the latent
variables of the VAE, the development of a feedforward NN for learning was required,
which is observed in the second step of pseudocode 1. The daily measurement of the EFEs
consisted of 32 quantities. Hence, the feedforward NN’s input channel was 32, and it had
one hidden layer with 25 nodes. Along with a training epoch of 10,000, a batch size of 20,
and a learning rate of 0.001, we used the Adam optimizer with the ReLU activation function
in the hidden layer and the sigmoid activation function in the output layer, whereas 70%
and 30% of the data were used for the training and testing sets, respectively.

Finally, to validate our suggested method, the EFE data of the first three months of 2020
were selected for generating the predicted air pollution concentration. With respect to the
first 90 days and the pollution measurement stations, the model provides 90 × 60 = 5400 as
the number of results. This large number of results requires an expression of the outcome
in an optimal way, and we elected a few specific depictions. For this reason, the most
frequently polluted days of each pollution index were chosen to illustrate the results.
Table 2 represents the most frequently polluted dates in the first three months of our four
years of data.

Table 2. The most frequently polluted air pollution dates in 2016–2019.

SO2 NO2 PM10 PM2.5 CO

Jan 12 11 11 11 12
Feb 1 1 3 4 1
Mar 1 1 31 2 1

The coldest days of the year directly affected the reason for representing the same
behavior for gaseous pollution in the first three months of integration in Table 2. By long-
standing average, the coldest days of the year are between 8 and 15 January. Therefore, in
January, SO2, NO2, PM2.5 and CO are formed from fuels burned in home stoves for heating
in the ger districts with high atmospheric pressure and temperature inversion. However,
particular pollution is related to poor infrastructure. When the warm season starts, par-
ticular pollution from the ger districts increases due to the mobility of a large number of
vehicles; consequently, at the end of March, the measurement of PM10 greatly increases.

Furthermore, the inverse distance weight (IDW) interpolation method was used for
the pollution concentration map. The inverse weight is defined as:

ωij =
1/d2

ij

∑n
i=1 1/d2

ij
(17)
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where n is the number of points for interpolation, and dij is distance between the ith inter-
polation point and the jth air pollution measurement station. Then, based on Equations (14)
and (15), the concentration values at the ith interpolation point is estimated as:

yi = ωijΨ
(

f
(
xj
))

(18)

The results of Equation (18) are expressed in Figures 10–12, corresponding to the
integrated values in Table 2; 1 February and March for SO2 and CO, and 11 January for
PM2.5 were selected, respectively.
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For more results, we randomly selected one of the pollution measuring stations for
every five air pollutions, and 90 days of both actual and model prediction results are
compared in Appendix A. To evaluate the performance of the proposed model, the most
commonly used correlation coefficient and Pearson’s chi-squared methods were used. The
positive correlation coefficient indicates higher correlation between testing values. As in
the example, Figures 13 and 14 represent the correlation coefficients between the actual and
predicted values of SO2, PM2.5, PM10, and CO obtained from all measurement stations,
respectively. In the figure, the corresponding correlation coefficients are highlighted in
red in the correlation matrix plot. For more validation purpose, we randomly selected
one measurement station and computed the contingency tables for 90 days of actual
and predicted values, which expressed in Figures A4–A8 in Appendix A. Two of the
corresponding contingency tables for NO2 and PM2.5 are shown in Figure A9.
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For the remaining three air pollution concentrations, the contingency table was similar,
whereas the average chi-squared result was χ2

ave. = 115.14. Thus, the statistics for the
Pearson’s chi-squared test were highly dependent on each other.

4. Conclusions

In this study, a variational autoencoder-based embedded generative air pollution
model was developed. The proposed approach represented substantial progress in the
reliable prediction of five air pollution concentrations. The embedded generative model
consists of a VAE and a feedforward NN to discover the relationship between the air
pollution concentration and environmental factor effects. The convergence of learning
networks based on the gradient descent method with RmsProp and Adam optimizer
techniques were applied, and the convergence rate was 1 × 10−3, consequentially. To
construct the proposed model, we simultaneously assembled four years (2016–2020) of
air pollution concentration measurements and weather data. In addition, information
on improved and raw fuel was involved in the environment factor data. The prediction
values of the model corresponded to all the pollution measurement stations, with a total of
15 × 90 = 1350 prediction values obtained for the test with respect to 15 stations in the first
90 days of 2020. Thus, the results can be visualized in two ways. First, a pollution map can
be created by using the inverse distance weight interpolation throughout the regions of
UB, which expresses a daily pollution map for estimating the pollution concentration for
local coordinates of the city. For instance, the difference between the local measurement
and the prediction results for PM10 in ger district areas located in UB suburbs in four
directions was 21.24 µg/m3, −9.32 µg/m3, 11.05 µg/m3, and −11.87 µg/m3, respectively,
in the Airport, Zuragt, Tolgoit, and Amgalan districts on 16 January 2020. The correlation
coefficient method was applied while constructing the pollution concentration map of the
city for each pollution index, and the average of these indicates the entire performance of
the model as 0.8280. The Pearson’s chi-squared test method was used for testing the second
visualization performance of the individual pollution measuring stations and expressed a
high correlation between actual and predicted. A further aim of considering the VAE and
NN embedding to investigate inversely the interdependencies between the weather and
the fuel conditions, by sampling normal to good days of air pollution, could be considered
for future study.
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Appendix A

The convergence rate of the VAE computation at a particular epoch. We designed
two methods to compare the results of the embedded model with real measurements. The
first way was represented in Figures 10–12, in which we gathered results belonging to all
measurement stations and used the IDW method to construct a concentration map for one
day. For the second way, we chose one station and sampled the results concerning the days
that EFE was applied to the model. In this way, we applied the first 90 days’ data of 2020
for EFE to the (15), the model provided 59 × 90 values.
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From the results of 59 stations, we randomly chose the station and compared the
90 days of results to the actual measurements (Figures A4–A6). In Figure A4, the real
and predictive values of NO2 for the UB-5 station are presented. Meanwhile, Figure A5
shows the graphics of the actual measurement and the predictive results of the embedded
model of SO2 for the UB-7 station. Additionally, in Figure A6, the graphics of the real
measurement and the predictive values of the method for PM10 for the APRD-2 station are
expressed.
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the model for PM10, at the APRD-2 station.

The two graphics in Figures A7 and A8 show a comparison of the real and predicted
PM2.5 values of the method for the UB-1 station, as well as the prediction of CO for the
APRD-4 station, respectively.
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Two of the corresponding contingency tables for NO2 and PM2.5 are shown in the
following figure.
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