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Abstract: Ground-level ozone is a pollutant that is harmful to urban populations, particularly in
developing countries where it is present in significant quantities. It greatly increases the risk of
heart and lung diseases and harms agricultural crops. This study hypothesized that, as a secondary
pollutant, ground-level ozone is amenable to 24 h forecasting based on measurements of weather
conditions and primary pollutants such as nitrogen oxides and volatile organic compounds. We
developed software to analyze hourly records of 12 air pollutants and 5 weather variables over the
course of one year in Delhi, India. To determine the best predictive model, eight machine learning
algorithms were tuned, trained, tested, and compared using cross-validation with hourly data for a
full year. The algorithms, ranked by R2 values, were XGBoost (0.61), Random Forest (0.61), K-Nearest
Neighbor Regression (0.55), Support Vector Regression (0.48), Decision Trees (0.43), AdaBoost (0.39),
and linear regression (0.39). When trained by separate seasons across five years, the predictive
capabilities of all models increased, with a maximum R2 of 0.75 during winter. Bidirectional Long
Short-Term Memory was the least accurate model for annual training, but had some of the best
predictions for seasonal training. Out of five air quality index categories, the XGBoost model was
able to predict the correct category 24 h in advance 90% of the time when trained with full-year data.
Separated by season, winter is considerably more predictable (97.3%), followed by post-monsoon
(92.8%), monsoon (90.3%), and summer (88.9%). These results show the importance of training
machine learning methods with season-specific data sets and comparing a large number of methods
for specific applications.

Keywords: ozone prediction; pollutant forecasting; machine learning; atmospheric monitoring;
air quality

1. Introduction

According to the World Health Organization, air pollution is a leading cause of pre-
mature deaths, responsible for approximately 4.2 million deaths annually worldwide due
to lung cancer, heart disease, respiratory diseases, and more [1]. One of these harmful
pollutants is tropospheric ozone (O3), or “ground-level ozone”, which is produced when
nitrous oxides (NOx) and volatile organic compounds (VOCs) undergo chemical reactions
with sunlight and heat. These pollutants are emitted from a combination of anthropogenic
(cars, power plants, etc.) and biogenic (soil and vegetative) sources. In addition to causing
heart and lung diseases, tropospheric ozone is a general throat and lung irritant, causing
coughing, wheezing, and difficult breathing [2]. Ozone also damages plant leaves and can
harm agricultural crops [3].

As a secondary pollutant, tropospheric ozone is a candidate for accurate forecasting
on the time scale of hours to days. Unlike the primary pollutants that are directly emitted
by human activities, such as carbon monoxide (CO), NOx, and VOCs, secondary pollutants
cannot be directly reduced or appropriately regulated. Ozone production also depends on
environmental conditions, particularly sunlight, but also air temperature inversions that
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inhibit convection. The combination of precursor pollutants and the influence of varying
environmental conditions make ozone prediction difficult with traditional approaches;
hence, this is an excellent potential application for machine learning (ML) methods, which
can provide both forecasting capabilities and deeper insights into the causes of high ozone
levels. This information can help regulatory agencies to limit emissions of NOx and VOCs
during high-risk periods. Machine learning methods can improve the accuracy of predictive
warning systems of pollutants so that residents may avoid outdoor activity, particularly
the elderly and those with respiratory problems.

ML methods differ fundamentally from more traditional modeling of physical systems
using conservation laws in the form of partial differential equations (PDEs). ML algorithms
are trained purely on historical data and incorporate no information on the underlying
physical laws. PDE-based models are useful where these laws are known, e.g., in atmo-
sphere and ocean modeling [4,5], compressible turbulence [6], and protein folding [7],
to name a few. However, most data-driven applications lack fundamental prognostic
equations, or the models are too idealized for practical use—consider stock market prices,
consumer purchase preferences, or facial recognition. In the past ten years, ML meth-
ods have proven so useful that they are being incorporated into model parametrizations,
i.e., the parts of physical models that are unresolved or not easily expressed by PDEs [8,9].
Indeed, combining PDE-based weather forecasting systems with ML-based methods for
the prediction of air pollutants may combine the best of both approaches [10].

Machine learning methods may be classified into supervised (where input variables
map to output variables) and unsupervised (where only input data exists and the algorithm
models the underlying data structure) methods [11]. Further, supervised methods are split
into classification problems, where the output is a category, or regression problems, where
the output is a real value. All methods discussed here are supervised regression methods,
as the output data are the future ozone concentrations, a real-valued field used for training
and prediction.

This study compares eight machine learning algorithms, which are representative of
the categories of ML methods and are those in popular use: linear regression, KNN, SVM,
Decision Trees, Random Forest, AdaBoost, XGBoost, and LSTM. The simplest method is
linear regression, which computes the coefficients of a hyperplane to best fit the data. This
method typically has the highest errors because it does not account for local variations and
nonlinearities in the data, but it remains a baseline for comparison in many studies [12–14].
Instance-based algorithms create a database of specific instances and rely on local relations
rather than global rules or generalizations [15], and they include K-Nearest Neighbor (kNN)
and Support Vector Machines (SVM). In kNN [16], output values are simply averaged from
the nearest neighbors, as measured in some distance norm in the input space. SVM [17]
constructs hyperplanes between classes of input data, which maximize the separation space
between the two classes. For regression problems with real-valued output, the hyperplane is
approximated as a nonlinear function [18]. Decision Tree Regression (DTR) [14] algorithms use
a forking tree structure to classify data and can be sensitive to small changes in the training
data. DTRs are very popular for classification, such as product recommendations, but may
also be applied to regression predictions, including environmental forecasting [19,20].
Artificial neural networks (ANN) model complex connections between input and output
data sets with a middle “hidden layer” analogous to biological neurons. There are a large
variety of neural network methods [21], and many have been successfully applied to air
pollution prediction [22–25]. Here, we test the Long Short-Term Memory (LSTM) neural
network method, which is well-suited to time-dependant data sets such as air pollution
and weather measurements [26–28].

Ensemble methods are composed of a number of underlying models that are individually
trained, and their results are combined to produce a final prediction [11]. In this study,
ensemble methods include Random Forest, Adaptive Boosting (AdaBoost), and extreme
gradient boosting (XGBoost). Random Forest constructs a large number of decision trees
and returns the average prediction from individual trees. AdaBoost and XGBoost add other
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learning methods, and the tree-growing process is adaptive in that each stage classifies
the hardness of training samples, and later stages focus on harder-to-classify samples [18].
XGBoost, in particular, is highly optimized for speed, is designed to handle missing data,
and supports regularization to reduce the potential of over-fitting [29]. Ensemble methods
have gained popularity in recent years, including in air pollution forecasting, because they
often outperform single-algorithm methods of machine learning [14,30]. However, results
vary by application and even data set, so it is best to test and compare a suite of ML methods
for each new project [13,18]. When counting all variations, there are easily 70–100 ML
algorithms [11].

A number of studies have compared machine learning methods for urban air pollution
prediction, including ozone, in recent years. Elkamel et al. [12] compared Artificial Neural
Networks to both non-linear and linear regression models to predict current ozone levels
based on meteorological conditions and precursor concentrations for a period of 60 days
in Kuwait. Capilla [31] predicted ozone 1, 8, and 24 h in advance in an urban area on
the eastern coast of the Iberian Peninsula and compared multiple linear regression with a
Multi-Layer Perceptron network. Aljanabi et al. [13] predicted ozone in Amman, Jordan,
one day in advance, comparing a Multi-Layer Perceptron neural network (MLP), SVM,
DTR, and the XGBoost algorithm, and found that MLP performed the best. They applied
feature selection to reduce the run time by 91% by only using the previous day’s ozone,
humidity, and temperature. Jumin et al. [14] predicted 12 and 24 h ozone concentrations in
Malaysia and found that Boosted Decision Tree outperformed linear regression and neural
network algorithms for all stations. They obtained R2 values up to 0.91 for the 12 h dataset.
Ozone prediction is not limited to ground measurements and may incorporate satellite
data in remote areas [32].

We chose the city of Delhi, India, for this study on ozone prediction. India has some
of the world’s highest levels of air pollutants, resulting in increased risks of respiratory
diseases for its large, densely populated urban populations. The country includes more
than half of the 50 most polluted cities in the world (based on the most harmful pollutant,
PM2.5) [33]. Delhi reports some of the highest ground-level ozone concentrations in the
world, with values regularly exceeding 100 micrograms/m3, the 8 h Indian National Air
Quality Standard set by the Central Pollution Control Board [34]. This makes air quality
research an urgent priority.

High-quality data are a prerequisite for this type of study. Critically, the Central
Pollution Control Board of India reports hourly measurements of 12 pollutants in Delhi,
including tropospheric ozone, with limited interruptions (approximately 96.4% complete),
and these are freely available online [35]. Regular, consistent measurements of past weather
data are also readily available for Delhi [36].

There has been other research on machine learning applications for air pollution
prediction specifically in Delhi. Generally, most studies tested either one or two methods
over the course of 1–2 years. Several have had a focus on predicting Particulate Matter
2.5 due to its extreme toxicity. SVM is a commonly used machine learning method for
studies based in Delhi [37,38], perhaps due to its robustness to outliers and relatively
flexible implementation. Studies by Sinha et al. [39,40] compared several machine learning
algorithms for the daily prediction of several pollutants in Delhi. Shukla et al. [41] tested
linear regression and Random Forest regression for the prediction of the pollutants NO,
NO2, and O3, in which site-specific predictions using Random Forest had the best results.
Krishan et al. [26] predicted one-hour forecasts of O3, PM2.5, NOx, and CO in Delhi using
LSTM, and included vehicular emissions and traffic data, as well as the more typical
pollutant levels and meteorological conditions, in their training sets. They found that LSTM
is quite efficient at capturing most aspects of air quality prediction for a one-hour forecast,
with R2 values ranging from 0.92 for ozone to 0.98 for PM2.5.

This research differs from other studies in several ways. This is one of the first studies
to split the training data sets across India’s four meteorological seasons, resulting in large
improvements for winter forecasts and smaller improvements for the other three seasons.
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Eight machine learning methods were analyzed and tuned for optimal performance in this
study, as compared to 2–3 methods in most other studies, offering more robust analyses for
comparing models for real-world implementation [12,26,31,41]. For ozone prediction in
Delhi in particular, this work provides a useful comparison with previous work [26,40,41].
XGBoost, a relatively new algorithm that has not been as widely used in pollutant forecast-
ing, is one of the methods tested here. A time-series analysis is also compared to current
popular regression models with LSTM. Details of the selection of useful variables and their
initial linear correlations with the target pollutant are also provided in this study.

This paper is organized as follows: Section 2 introduces the methods of data collection,
preparation, and analysis. Section 3 describes the results, with daily averages and corre-
lations of fundamental variables and the application and comparison of seven machine
learning methods. Section 4 compares our results against past research. Finally, Section 5
concludes with remarks on the advantages of relevant methods and the prospects for
machine learning for ozone forecasting.

2. Methods and Experimental Design

The goal of this experiment is two-fold. Firstly, we compare the predictive skill of
a number of machine learning methods in the application of urban ozone forecasting.
Secondly, we measure the improvement of seasonal training and prediction over annual
training and prediction. Specifically, the experimental design is to train eight machine
learning methods on a standard set of air quality and weather data and then predict the
ozone concentration 24 h into the future. Feature selection was used to reduce the total
available training data set to 12 pollutant and 4 weather variables. Parameter tuning was
then used to optimize the performance of each method individually. Experiments were
run for one year (2015) for the annual comparisons and five years (2015–2019) for the
four seasonal-focused experiments, making a 24 h ozone prediction for every hour in that
time span (Figure 1). Each of these experiments was repeated ten times for each machine
learning method, where the training data were randomly assigned into 10 partitions
and each experiment trained with 90% of the data and tested with the remaining 10%.
The skill of the machine learning methods was assessed by computing various error metrics
between the predicted ozone concentration and the actual concentration observed 24 h later.
The details of the experimental design and the reasoning for these choices are explained in
the following two sections. LSTM is a special case because it is trained with sequences of
time-dependant data, and the experimental design is given in Section 3.4.

In order to determine the most suitable location for this study, we first evaluated
daily air quality data from 25 Indian cities [35]. Delhi, Mumbai, Patna, and Amaravati
reported the highest number of days over the acceptable pollutant limits, as defined by the
NAAQS [42], making these cities the best candidates to evaluate the accuracy of forecasting
methods. Out of these, Delhi was chosen due to the quality of its data, having close to 99%
availability for most variables.

Hourly pollutant levels in Delhi were obtained for January 2015 to June 2020 from
the Central Pollution Control Board of India [35], which is freely available for download,
for station DL007 at latitude and longitude coordinates (28°33′06.2′′ N 77°16′22.2′′ E).
In order to prepare the data fields for the regression models, invalid values with not-a-
number (nan) entries were replaced with a linear interpolation between the surrounding
valid values. These interpolated values were tracked, and never exceeded 3% of the full
data. For future studies having data sets with a larger percentage of missing data, it is
advisable to apply a data decomposition method to fill missing values [43].
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Annual experiments

Seasonal experiments

annual data
16 variables, 2015

exp. 1
exp. 2

exp. 10

…

90-10 train/test split

Annual error metrics from 
hourly 24-hour ozone 
prediction

Summer: 
March, April, May
16 variables, 2015-2019

exp. 1
exp. 2

exp. 10

…

90-10 train/test split

Summer error metrics 
from hourly 24-hour 
ozone prediction

Monsoon: June, July, 
August, September
16 variables, 2015-2019

exp. 1
exp. 2

exp. 10

…

Monsoon error metrics 
from hourly 24-hour 
ozone prediction

Post-Monsoon (Fall): 
Oct., Nov., Dec.
16 variables, 2015-2019

exp. 1
exp. 2

exp. 10

…

Post-Monsoon error 
metrics from hourly 
24-hour ozone prediction

Winter: 
January, February
16 variables, 2015-2019

exp. 1
exp. 2

exp. 10

…

Winter error metrics from 
hourly 24-hour ozone 
prediction

Figure 1. Diagram of the experimental design. This process was repeated for all machine learning
methods tested in this study.

The meteorological data were obtained from the Visual Crossing Weather applica-
tion program interface [36], using weather station GK2 with coordinates (28°31′12.0′′ N
77°15′00.0′′ E). The weather station was chosen to be within a 10 km radius of the station
recording pollutant levels. The data were downloaded as a comma-separated values (CSV)
file of hourly weather data in Delhi for the years 2015–2020, and the same interpolation
process was applied for invalid values. The final data set included 12 pollutant variables
and 5 weather variables, shown in Table 1, which were compiled into a single CSV file and
manipulated using the Python library Pandas (Figure 2).

Eight machine learning algorithms were applied to the pollutant and weather data
in order to predict ozone concentrations from 1 to 24 h in the future. Table 2 shows the
parameters chosen from the Python scikit learn library. For each algorithm, each possible
combination of hyperparameters was tested on a smaller sample of the first 4 months of
data (to reduce training time), and the R2 values were compared. The best combinations
were recorded and later used when training and testing the models on the entire data set.
For the algorithms that required it (KNN and SVM), three scaling methods (StandardScaler,
MinMaxScaler, RobustScaler) were tested, with RobustScaler being chosen for reasons
discussed later. Further methodological details are also provided, with the corresponding
results, in the next section.
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Figure 2. Flow chart of input data processing and analysis of the results.
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Table 1. List of ozone correlations for the year 2015 of pollutant and weather variables used in this
study. Asterisk indicates that the variable was excluded from ML models affected by multi-collinearity
(linear regression, SVM, KNN).

Variable Abbv. Units Corr. w/
Current O3

Corr. w/
O3 in 24 h

Used
in ML?

Ozone (current) O3 µg/m3 1.000 0.579 Yes
Ozone (in 24 h) O3P24 µg/m3 0.579 1.000 N/A
Particulate matter
(<10 microns)

PM10 µg/m3 0.390 0.271 Yes

Particulate matter
(<2.5 microns)

PM2.5 µg/m3 0.170 0.125 Yes *

Nitrogen oxide NO µg/m3 0.298 0.145 Yes *
Nitrogen dioxide NO2 µg/m3 0.473 0.357 Yes
Any nitric x-oxide NOx ppb 0.331 0.202 Yes
Ammonia NH3 µg/m3 −0.044 −0.088 Yes
Carbon monoxide CO µg/m3 −0.320 −0.281 Yes
Sulfur dioxide SO2 µg/m3 0.448 0.352 Yes
Benzene Benzene µg/m3 0.093 0.046 No
Toluene Toluene µg/m3 0.228 0.099 Yes
Xylene Xylene µg/m3 −0.108 −0.175 No
Temperature Temp deg C 0.242 0.224 Yes
Cloud cover Cloud % cover −0.123 −0.065 No
Humidity Humid % humidity −0.253 −0.221 Yes
Sea level pressure Press Millibars −0.102 −0.112 No

Table 2. Machine learning algorithm parameters used in Python scikit-learn and keras.

Machine Learning Method Parameters

Linear Regression n/a
KNN n_neighbors = 4, metric = ‘minkowski’, p = 1
SVM C = 10, gamma = 0.1, kernel = ‘rbf’
Random Forest max_depth = 50, random_state = 0, n_estimators = 250
Decision Tree random_state = 0, max_depth = 6
AdaBoost random_state = 0, learning_rate = 0.1, n_estimators = 100
XGBoost learning_rate = 0.1, max_depth = 10, n_estimators = 300,

random_state = 0, silent = True
BD-LSTM batch_size = 72, epochs = 25,

n_neurons = 256 (first layer), 128 (second layer),
dropout = 0.2, n_hours = 8, n_steps = 3
optimizer = ‘adam’, loss = ‘mse’

3. Results
3.1. Data Exploration and Correlations

The first step in creating a predictive model is to explore the data for quality, coherence,
and agreement with expected correlations. In order to elucidate the relationships between
a variety of meteorological and pollutant variables with ozone, we created scatter plots of
these correlations (Figure 3). Correlations were computed with hourly data for the full year
of 2015 and are shown in Table 1.
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Figure 3. Individual correlations between variables and ozone, with best fit line and correlation in
label. Each point is a single hour, and data for the year 2015 are shown.

The pollutants involved in the chemical formation of ozone are carbon monoxide
and nitrogen dioxide (Figure 4). Nitrogen dioxide is positively correlated with ozone
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at 0.5, while carbon monoxide is negatively correlated at −0.3. Some other noteworthy
correlations occurred with particulate matter 10 (R = 0.41), sulfur dioxide (R = 0.42), and tem-
perature (R = 0.23). Although their individual correlations with ozone are rather weak, they
can be combined to train predictive models to achieve the best possible results. Particulate
matter 10 and sulfur dioxide are not directly involved in the chemical equations of ozone
production, so this appears to be an example of correlation rather than causation, where
pollutants exist together because they are emitted together, while atmospheric conditions
can remove the pollutants as a group. The weak positive correlation with temperature is
likely due to the role of direct sunlight in ozone production and the correlation between
sunlight and air temperature. Variables with low correlations and variables with a majority
of data missing were discarded in this step. This includes benzene, precipitation, wind
speed, and sea level pressure.

 •OH +  CO  → •HOCO 
 •HOCO + O  2  → HO  2  • + CO  2 

 HO  2 
 •  + NO →  •  OH +  NO  2 

 NO  2  + hv → NO + O(  3  P), λ<400nm 
 O(  3  P) + O  2  → O  3 

 CO  + 2O  2  → CO  2  + O  3 

Figure 4. Ground ozone chemical equation [44]; highlighted chemicals were involved in this study.

In order to further explore the temporal relationship between ozone and the other
pollutants involved in its formation, we created plots of the hourly concentrations against
one another. The strongest correlating variable, nitrogen dioxide, showed a time lag
of approximately 5 h between the primary and secondary pollutants (Figure 5). These
preliminary results show that the precursor constituents will likely have predictive power,
but it is not clear from mere visual inspection that a 24 h forecast will be possible.

Figure 5. Hourly pollutant levels of ozone (blue) and nitrogen dioxide (orange) in a week in January
2015. Note that peaks in ozone lag nitrogen dioxide by approximately 5 h.

In order to predict future ozone levels, this project used regression analysis (as well as
a time-series analysis, detailed in Section 3.4). Regression analysis is a type of predictive
modeling in which a relationship is determined between one dependent variable (ozone)
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and one or more independent variables (weather and pollutant data). There are different
algorithms by which this process can be done, and the simplest one is multiple linear
regression. In linear regression, as well as some other algorithms (SVM, KNN), multi-
collinearity can be an issue. This arises when there are strong correlations between the
independent variables, diminishing the statistical significance of each variable. Since linear
regression analyzes the relationship between each independent variable and the dependent
variable, multi-collinearity blurs which variable a change in the dependent variable can be
attributed to. In order to avoid this, it is important to analyze the relationships between
each independent variable before attempting any linear regressions. To do so, we used the
Seaborn Python library to generate a heat map of the correlation between each variable in a
data frame (Figure 6). This chart was also used to see which variables could potentially
cause difficulties later on.

Figure 6. Correlation of each variable with all others for the year 2015. Some high values denote
causal relationships, such as O3 and NO2, while many others are simply emitted in tandem.

Feature selection was then used to choose the most relevant variables for the machine
learning algorithms in order to maximize the computational efficiency. The original data
frame included 13 pollutant and 14 weather variables, which had been reduced to 12
pollutant and 4 weather variables after removing variables that were missing over 10%
of data, including precipitation, dew point, and wind variables. Next, the variables were
evaluated for their usefulness in explaining ozone concentrations using a significance level
of 0.05 with ANOVA. Variables with p-values greater than 0.05 were removed. To reduce
the impact of multi-collinearity, the variance inflation factor (or VIF) of each variable was
determined. If the VIF was equal to or greater than 10, the variable was either removed or
other less relevant variables that it correlated with were removed.

Another step in the initial data exploration was the creation of the average ozone
concentration at each hour during the seasons to see potential patterns and cycles that ozone
goes through over a day. As seen in Figure 7, the post-monsoon (fall) season generally had
the highest ozone concentrations throughout the day, and winter had the lowest. During all
seasons, there was also a notable increase during sunlight hours, followed by a decrease in
the night, most likely due to the amount of solar radiation causing the formation reaction
of the secondary pollutant ozone to take place. The size and timing of the peak ozone
concentration varies substantially by season. This could be influenced by the timing and
location of the emissions, the wind direction, and the timing and intensity of clouds and
rainfall, all of which vary by season.
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Figure 7. Average hourly O3 concentration over one day for all seasons, showing elevated ozone in
the fall and low values in winter. Ozone production requires solar radiation, which causes peaks
during the day and a drop at night.

3.2. Ozone Forecasting Results

The first step in ozone forecasting was to determine how many hours in advance an
accurate forecast could be made. Generally, a longer lead time results in a drop in accuracy.
Figure 8 shows this relationship, where the R2 value was determined for forecasts with 1 to
24 h of lead time, by season. As expected, there is a decrease in predictive ability the more
hours in advance that the forecast predicts, leveling off slightly at around the ten-hour
mark. However, it is notable that, although it dips slightly, the significance of the model
increases by the 24 h mark to be almost equal to the 10 h mark. This increase in predictive
ability may have been due to more consistent 24 h cycles in air pollution and weather
factors. Taking this into consideration, it was decided that the models would aim to predict
the tropospheric ozone concentration in 24 h, since its predictive ability is similar to that in
10 h, yet is over double the lead time.

Figure 9 displays the strength of the linear correlations between the input variables
with the ozone concentration 24 h later. The strongest relationships with future ozone con-
centration were with current ozone, nitrogen dioxide, sulfur dioxide, particulate matter 10,
and carbon monoxide pollutant concentrations. Some of these correlations may result from
different pollutants tending to rise and fall together or indicate some causal relationship
such as an increase in precursor chemicals driving an increase in ozone concentration.

An important part of some machine learning models involves scaling the data. This is
done to place all independent variables into a fixed range so that different variables with
varying units can be handled appropriately. There are different methods of scaling, as
mentioned in the Methods Section, and RobustScaler was found to have the best results,
likely due to its use of statistics that are robust to outliers when scaling the data. Outliers
often occur in air pollution data due to sudden changes, such as precipitation temporarily
removing air pollutants through wet deposition, or the appearance of nearby sources
of smoke.
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Figure 8. Accuracy of ozone forecast with varying lead time. Prediction skill drops from 0 to 10 h out,
but then recovers out to 24 h. This makes it possible to forecast ozone 24 h in advance.

Figure 9. Correlations between variables and ozone 24 h later, ordered by correlation. The two
chemical precursors of ozone, NO2 and CO, have some of the highest correlations (positive and
negative), along with the current ozone concentration.

3.3. Tuning, Training, and Testing

The final step was to tune, train, and test the machine learning models. These models
included linear regression, K-Nearest Neighbors (KNN), Support Vector Machine (SVM),
Random Forests, Decision Tree, AdaBoost, and XGBoost. Bidirectional Long Short-Term
Memory (LSTM) has a different training process, as explained in Section 3.4. Excluding
linear regression, these models have a variety of hyperparameters that can be adjusted to
improve model performance. In order to determine the best combination of parameters,
the Python Sklearn library’s function called GridSearchCV was used for each machine
learning model. This function evaluates each combination of parameters using the cross-
validation method (detailed below). Some of these parameters were also adjusted and tested
manually to verify that they returned the highest accuracy scores. Each of the hypertuned
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test models was trained on one year of data (2015). An algorithm was created to try different
combinations of parameters and return the best ones, also being adjusted and tested manu-
ally (see Table 2). Following standard metrics for air pollution evaluation [13,14,18,25,45],
the regression models were evaluated with R-squared (R2), adjusted R-squared, Root Mean
Square Error (RMSE), and Mean Absolute Error (MAE). R-squared, also known as the
coefficient of determination, is a measure of how closely data fit the fitted regression line;
it is the proportion of variance in a dependent variable explained by the independent
variables in a regression model. The adjusted R-squared is similar, but it takes into account
the variables that do not help the model by lowering the score. If the adjusted R-squared
value is similar to the R-squared value, it means that the input variables are useful and
contribute to the model. The Mean Absolute Error (MAE) represents the absolute value of
the average difference between the expected and predicted values. The Root Mean Square
Error is a measure of the standard deviation of residuals and is more affected by outliers
than the MAE. Generally, lower RMSE and MAE scores and higher R-squared scores imply
better models.

Regression analysis with machine learning was done by randomly splitting the data
set into 90% for training and 10% for testing. The testing portion is the data that the model
has not yet seen, and the model attempts to predict the dependent variable for this portion.
The predicted and actual results are then compared to assess the accuracy of this model,
conveyed through the aforementioned metrics. In order to reliably evaluate the accuracy of
each model, we trained and tested each model 10 times, repeating the 90–10 split 10 times
to test all of the data at a certain point. This was done in order to eliminate the possibility
that the random 10% of data simply happened to match the predicted values more than
in another round, giving this model an arbitrarily higher accuracy score for a particular
trial. This process of repeated training and testing is called cross-validation and was done
to fairly evaluate the performance of each model. The average performance of each model
is listed in Table 3, from highest to lowest R-squared values, and shown graphically in
Figures 10 and 11, and time taken in Figure 12. Table 3 also provides the statistics from
cross-validation, and the correlation coefficient was calculated from the linear relationship
between actual versus predicted ozone values. Taylor diagrams [46] were used to compare
model skill, where each model’s standard deviation was plotted against its correlation with
observations (Figure 13). All models presented here under-predict the standard deviation.
This is a common problem for forecasting models, because extremes are harder to reproduce
than events near the mean. This can be seen directly in Figure 14, where KNN, XGBoost,
and Random Forests, with higher standard deviations, span nearly the same range of ozone
predictions as the observations, whereas AdaBoost has the lowest standard deviation and
the predicted values fall within a narrow range from 30 to 110.

Table 3. Average performance of the 24 h ozone prediction from each machine learning model, tested
for every hour for the full year of 2015.

Model Name Correlation
Coefficient R2 R2

Adjusted
RMSE
µg/m3

MAE
µg/m3

Time
s

XGBoost 0.784 0.6161 0.6156 20.78 13.67 315.6
Random Forest 0.782 0.6041 0.6035 21.11 13.99 740.1
KNN 0.739 0.5126 0.5120 23.41 15.55 1.9
SVM 0.695 0.4633 0.4626 33.96 25.76 172.7
Decision Tree 0.656 0.4032 0.4023 25.91 17.54 1.8
Linear Regression 0.626 0.3937 0.3929 26.12 18.06 0.3
AdaBoost 0.623 0.3523 0.3514 26.99 20.70 91.5
LSTM 0.393 0.1550 NA 44.5 33.70 429.8

Computing times varied widely across the seven methods (Figure 12). XGBoost and
Random Forest obtained nearly identical fit and error scores, but XGBoost was 2.3 times



Atmosphere 2022, 13, 46 14 of 26

faster. Surprisingly, KNN obtained a slightly lower fit score than the top two methods,
but was 170 times faster than XG boost.

In order to determine the performance of each model on an actual prediction sample,
the models were run on a 90–10% split once, and the results were plotted and explored
more deeply (Figure 14). Each plot displays the relationship between actual vs. predicted
values—the closer to the line of the perfect fit, the better. As mentioned earlier, some models
simply happened to perform better on different sections, and, in this case, KNN gave the
best results. When tested, the KNN model could predict O3 concentrations 24 h in advance,
where 68% of the predictions had a percentage error of less than 25%.
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Figure 10. Model fit (R2) scores, showing that XGBoost and Random Forest produce the best forecasts.
The models were tested for hourly predictions over the full year of 2015.
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Figure 14. Actual versus predicted results of each model, with best-fit line and correlations.
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3.4. Long Short-Term Memory (LSTM)

The set-up for LSTM differs substantially from the seven models presented above.
Three types of LSTM models were tested: a simple LSTM network model, a bidirectional
LSTM (BD-LSTM), and an encoder–decoder LSTM (ED-LSTM). LSTM models are trained to
predict a target variable based on historical sequence data for a given number of previous
hours (the n_hours variable) [11]. They are a type of recurrent neural network (RNN),
but have the advantage of learning more long-term patterns by solving the issue of van-
ishing gradients, a difficulty that arises when the error signals that are used to train the
network decrease exponentially. LSTM was created to overcome this challenge, making
use of memory cells with forget gates, which determine whether previous step information
is needed or should be forgotten. Because of this, LSTM models are able to store longer
time steps in memory by regulating how much previous data is used for each time step.

While simple LSTMs are unidirectional and use only data from previous sequences
to predict future time steps, bidirectional LSTMs use data from the past in the forward
direction (as with LSTM) as well as from the future in the backward direction. Bidirectional
LSTMs put together two independent RNNs of backward and forward information in order
to update weights in both directions, giving the network more thorough knowledge of the
relationships between previous/current and future values [47,48].

Another type of RNN is the encoder–decoder LSTM network. ED-LSTM was created
specifically to address sequence-to-sequence predictions, in which a model converts an
input sequence to an output sequence with differing numbers of items. ED-LSTM consists
of two LSTM models: an encoder, which processes an input sequence to an encoded state,
and a decoder, which produces an output sequence from the encoded state [49,50].

LSTM models have been used in past air pollution studies, especially for producing
real-time predictions, which are also called one-step predictions. For instance, Xaya-
souk et al. [28] used LSTM with a deep autoencoder model to predict current particulate
matter levels based on previous relationships with weather variables such as humidity,
wind speed, wind direction, temperature, and other conditions. Tiwari et al. [51] studied
multi-step-ahead LSTMs and found that multivariate bidirectional LSTM models had the
best performance.

The experimental design for LSTM is as follows:
1. Test three types of LSTM models (LSTM, BD-LSTM, ED-LSTM) and compare their

RMSE scores to determine the best option;
2. Improve the best model by preventing overfitting, hypertuning, using different

training periods (seasons vs. annual), comparing time step lengths (e.g. 24 steps of 1 h
versus 8 steps of 3 h);

3. Choose the best parameters for annual and seasonal predictions, run each model
for ten iterations, and compute average metrics.

In order to compare unidirectional LSTM, BD-LSTM, and ED-LSTM, we evaluated the
RMSE values of each model for predictions from 1 to 24 h in advance, all trained on the
past 24 h of history. Due to the stochastic nature of the LSTM code, each of the models was
run for 10 iterations, and the average RMSEs, MAEs, and R2 values were calculated. It was
found that for longer future prediction times, the BD-LSTM outperformed both LSTM and
ED-LSTM.

Tuning experiments were conducted to adjust BD-LSTM parameters to optimize
performance. The model was first trained to predict 24 h (24 steps) in advance based on
the past 24 h using data from all of 2015, and this configuration was found to have low
performance. This was likely due to seasonal variations in the input variables, so the model
was trained on relationships that were not consistent throughout the year. To address this,
the model was then trained on 4 years of seasonal data (2015–2018) and tested on each
season of the last year (2019). This drastically improved upon annual results, but still gave
ozone predictions that were relatively close to the mean of the data. To reduce overfitting,
dropout layers were added and the number of variables was reduced to ensure that the
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model trained on the most important variables only. This was done using the feature
importance of variables in XGBoost, the highest-performing regression model.

To reduce the complexity of the input data, the model was tested on each season
again with data from once every three hours (as opposed to every hour). This reduced the
number of time steps being predicted in advance from 24 1 h steps to 8 3 h steps, which
improved the results for all seasonal models. The average metrics from 10 iterations are
shown in the BD-LSTM rows of Tables 3–7 and Figure 10. The BD-LSTM’s final parameters
can be found in Table 2. Seasonal predictions from BD-LSTM were more accurate than the
other seven models, showing that the sequential time dependence of the input variables is
an important factor in improving ozone forecasts.

There are numerous extensions of LSTM and machine learning algorithms that could
be added to this evaluation in the future. The ant lion optimizer model (LSTM-ALO)
[52,53] optimizes the number of hidden layer neurons and the learning rate of the LSTM.
The Extreme Learning Machine with Gray Wolf Optimization (ELM-GWO) [54,55] is a
meta-heuristic algorithm that imitates the hunting behavior of wolves, and it uses fewer
adjustment parameters and a powerful global search capability. The adaptive neuro-fuzzy
inference system (ANFIS) [56] creates an input–output mapping based on human knowl-
edge using fuzzy if-then rules and specified input–output data pairs. These methods
have been used for a number of geophysical applications, particularly watershed stream-
flow prediction [57–59], landslide susceptibility [60,61], and agricultural metrics such as
evapotranspiration [62,63].

3.5. Seasonal Model Evaluation

All of the results so far were obtained by training the models with data over one year
(2015) in Delhi, India. However, as seen in Figure 8, the predictive ability of the model
differed considerably across seasons, performing the lowest during the summer. This
makes sense in the context of India’s unique meteorological seasonal cycles, particularly
including a four-month-long monsoon season. Because of this, we decided to train and
test the models again, but with each of the four seasons separately across five years of
data. The seasonal training and prediction used the same input variables and tuning
parameters as the annual training and prediction. The year-long model contained 8760
hourly entries for the full year of 2015. For the seasonal split, after all 5 years of data
were cleaned, the data were separated into each respective season. Seasons ranged from
two to four months, but they each contained between 7000 to 12,000 time entries, which
was comparable to the 8760 entries in the original annual data. The new data were split
as follows:

• Summer: March, April and May;
• Monsoon: June, July, August, September;
• Post-Monsoon (Fall): October, November, December;
• Winter: January, February.

The results are shown in Tables 4–7, examples of XGBoost correlations in Figure 15, and a
summary of all methods and seasons in Figures 16 and 17. Winter is most predictable
for all methods, with R2 scores typically 0.1 higher than the other seasons, which vary in
predictability by model. Generally, XGBoost and Random Forest are the highest for the
annual prediction and all seasons.
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Table 4. Summer cross-validation results (March, April, and May).

Model Name R R2 R2

Adjusted
RMSE
µg/m3

MAE
µg/m3

Time
s

XGBoost 0.7814 0.6106 0.6102 21.65 14.17 259.6
Random Forest 0.7803 0.6088 0.6084 21.70 14.33 795.1
KNN 0.7469 0.5579 0.5575 22.89 14.82 2.8
SVM 0.7186 0.5164 0.5159 35.20 26.50 262.8
Decision Tree 0.6923 0.4793 0.4787 25.08 16.74 2.0
AdaBoost 0.6626 0.4390 0.4384 25.23 19.27 87.2
Linear Regression 0.6856 0.4700 0.4694 25.79 17.30 0.4
BD-LSTM 0.8805 0.7750 NA 14.79 11.62 618.0

Table 5. Monsoon cross-validation results (June, July, August, September).

Model Name R R2 R2

Adjusted
RMSE
µg/m3

MAE
µg/m3

Time
s

XGBoost 0.7967 0.6347 0.6344 16.02 9.72 306.1
Random Forest 0.7917 0.6268 0.6265 16.03 9.70 1113.1
KNN 0.7469 0.5722 0.5719 17.00 10.14 5.1
SVM 0.7369 0.543 0.5426 25.12 18.01 775.5
Decision Tree 0.7121 0.5071 0.5067 18.18 11.26 2.5
Linear Regression 0.6733 0.4534 0.4530 18.93 12.10 0.3
AdaBoost 0.6602 0.4359 0.4354 19.76 13.41 126.1
BD-LSTM 0.7528 0.5667 NA 11.78 8.27 613.2

Table 6. Post-monsoon (fall) cross-validation results (October, November, December).

Model Name R R2 R2

Adjusted
RMSE
µg/m3

MAE
µg/m3

Time
s

XGBoost 0.798 0.6374 0.6368 25.23 14.65 200.8
Random Forest 0.797 0.6350 0.6344 25.08 14.91 604.3
KNN 0.761 0.5783 0.5777 26.63 15.70 1.9
SVM 0.677 0.4583 0.4575 43.07 30.84 158.2
Decision Tree 0.681 0.4642 0.4633 29.90 17.70 1.9
Linear Regression 0.626 0.3925 0.3916 32.80 20.60 0.6
AdaBoost 0.704 0.4951 0.4942 31.51 20.77 57.9
BD-LSTM 0.8187 0.6703 NA 13.62 10.26 126.9

Table 7. Winter cross-validation results (January, February).

Model Name R R2 R2

Adjusted
RMSE
µg/m3

MAE
µg/m3

Time
s

XGBoost 0.8686 0.7545 0.7542 19.19 10.89 288.6
Random Forest 0.8645 0.7474 0.7471 19.37 11.08 852.7
KNN 0.8389 0.7038 0.7035 21.68 12.35 2.1
SVM 0.7980 0.6368 0.6364 39.17 25.25 247.7
Decision Tree 0.7892 0.6229 0.6224 23.34 13.58 1.9
Linear Regression 0.7622 0.5809 0.5804 24.75 14.82 0.4
AdaBoost 0.7407 0.5487 0.5482 24.13 15.96 288.9
BD-LSTM 0.7235 0.5235 NA 11.98 9.72 497.3
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Figure 15. Actual versus predicted results of XGBoost for each season.
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Figure 17. Model RMSE scores for each season and model.

In order to judge the applicability of this method for an operational 24 h forecast,
we evaluated how accurately the model could predict air quality index classifications
(Figure 18). In practice, the public would modify their behavior based on these warnings,
more so than numerical predictions of ozone concentrations. The best-performing model,
XGBoost, performed quite well, as it was able to predict the exact air quality index 92% of
the time and was able to predict within one index 98% of the time (Table 8). The seasonal
breakdown shows the highest predictive capability in winter, predicting the correct index
97.3% of the time, and lowest for summer, at 88.9%.

Figure 18. Air quality index categories for ozone [64].

Table 8. Percent time each index is correctly predicted in exactly the right air quality index, and within
one index, using the XGBoost method.

Season Correct Index Within 1 Index

Annual 92.0% 98.0%
Winter 97.3% 99.6%
Monsoon 90.3% 98.5%
Post-Monsoon 92.8% 98.8%
Summer 88.9% 97.2%
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4. Discussion

In order to assess the quality of our ozone forecast, we compared our results to a
number of past studies. In the current study, XGBoost and Random Forest scored the
highest, both having an R2 value of 0.61 for annual, followed in order by KNN, SVM,
Decision Trees, linear regression, AdaBoost, and BD-LSTM (Figure 10). XGBoost and
Random Forest scored the highest for winter (R2 = 0.75), while BD-LSTM was best in the
summer and post-monsoon seasons (R2 = 0.77 and 0.82). In previous research, the highest R2

values for ozone have similarly been achieved with non-linear machine learning methods,
including R2 = 0.49 with Neural Power Networking [40]; R2 = 0.72 with Random Forest [41];
R2 = 0.84 with Boosted Decision Tree Regression [14]; and R2 = 0.66 with a Multi-Layer
Perceptron network [31]. Of course, these studies are not directly comparable because they
were carried out at different locations with different data sets. However, the variety in
their best-performing ML methods indicates that there is no clear ”winner” and that many
strategies need to be tested with each new application. The most similar past study to this
one is by Srivastava et al. [65], which compared some of the same methods and found that
SVM and Artificial Neural Networks were best suited for predicting the air quality in Delhi,
over Random Forest (they did not test XGBoost or KNN).

This study is one of the first to design machine learning models of ozone with specific
seasonal training data sets. Each set of seasonal models generally had higher predictive
capability than the year-long models, and, for many cases, the seasonal predictions were
much better. Based on these results, we recommend that this method of seasonal training
be tested in other locations as well. Seasonal training may be particularly helpful in India,
with its strong monsoons, but should be beneficial in temperate climates as well.

There is a noticeably higher predictive capability of the winter seasonal model, which
may be due to the fact that January and February have some of the lowest percentages
of rainfall during the year, only receiving approximately 1.5% of the annual rainfall each
month [66]. The two months also experience some of the lowest temperatures of the year,
perhaps limiting ozone formation and making it more dependent on precursor chemicals
and conditions than in the summer, when temperatures are always high, leading to easier
but less predictable ozone formation. Kumar and Goyal [67] created a forecast of air quality
index (AQI) for Delhi using Principle Component Analysis. AQI includes ozone along with
a number of other pollutant indicators. They found a wide range between seasons, with a
normalized mean square error (NMSE) of 0.0058, 0.0082, 0.0241, and 0.0418 for winter,
summer, post-monsoon, and monsoon, respectively. Their low error in winter agrees with
this study, but the errors for the remaining seasons span a wider range than here (Figure 10).

This project faced several challenges. The low initial R2 values obtained by the year-
long models during the summer may have been due to India’s rainy monsoon season,
which temporarily clears the sky of air pollution but reduces predictability. However, when
trained separately, the R2 values for the same period (June, July, August) during monsoon
season improved considerably, increasing from a maximum R2 of 0.35 to 0.63. Additionally,
there may be other influential variables that are not available in the data, so they are not
included in the model. These include more seasonal weather patterns or factors affecting
the emission of primary pollutants. This points to a direction to improve operational
forecasts—creating ozone prediction models that include meteorological forecasting data.
Indeed, Shukla et al. [41] found this improved pollution forecasts from poor to satisfactory
for the prediction of NO, NO2, and ozone in Delhi.

The direct measurement of solar radiation is an important predictive variable for
ozone because it is required for its chemical formation (Figure 4). Solar radiation was
not available from the weather stations used for this study, so we relied on proxies such
as temperature. Time of day was also tested in the training data, but did not contribute
sufficient predictive power to include. Other studies have found that ozone prediction
has the highest dependence on relative humidity [41,68], followed by solar radiation, NO2,
NO, and benzene. In contrast, this study found current ozone concentration to be the best
predictor 24 h in the future, followed by NO2, SO2, PM10, CO, and then humidity.



Atmosphere 2022, 13, 46 23 of 26

5. Conclusions

Tropospheric ozone has become an increasing cause of premature deaths for the past
several decades in developing countries such as India. In this work, we analyzed eight
machine learning models to predict ozone concentrations 24 h in advance. Beginning
with hourly data for 12 pollutant and 5 meteorological variables, feature selection and
hypertuning were conducted to optimize the performance of each model. As noted with the
similar adjusted R2 values and VIF values below 10, the models were not overfitted or too
complex. The models were validated using cross-validation, with the XGBoost (R2 = 0.614),
Random Forest (R2 = 0.611), and K-Nearest Neighbors Regression (R2 = 0.546) models
performing best with year-long training. The XGBoost model was able to predict the exact
air quality index 92% of the time, and within one index 98% of the time, indicating great
real-world applicability with AQI reporting.

Training the models by separate seasons rather than over an entire year improved
their performance. The most reliable season was winter, where the highest-performing
models were XGBoost (R2 = 0.755), Random Forest (R2 = 0.747), and K-Nearest Neighbors
Regression (R2 = 0.704). Thus, a recommendation from this work is that models should
be trained with seasonal data rather than annual data. The Long Short-Term Memory
model was the worst predictor with annual training but the best model for summer and
post-monsoon with seasonal training.

One of the challenges of pollution prediction is that data from particular observation
stations are often noisy or incomplete. This limits the accuracy of predictions based on a
single station. For this study, Delhi was chosen because of its high-quality measurements,
but this is a major limitation for many other cities. Incorporating a network of pollutant
and weather stations, as well as satellite observations, would add resiliency to the pre-
diction system. Additional preprocessing could also compensate for missing data with
decomposition methods [43].

An important application of machine learning to ozone is to determine whether ozone
production in a particular city is limited by NO2 or VOCs. This would require a combi-
nation of tropospheric chemistry modeling with ground and satellite observations [69],
potentially providing useful guidance for government policies to reduce ozone concentra-
tions. The large swings in emissions during the COVID-19 pandemic provide an important
test case for such studies [70].

The results of this study show that machine learning has great promise for ozone
prediction. Recent advances in machine learning algorithms provide substantial improve-
ments in forecasting skill. XGBoost and Random Forest demonstrated the best forecasting
skill overall. It is worth noting that KNN was a close runner-up, but was hundreds of times
faster, the impacts of which could be considered in future studies when compared to a
slight increase in R2 values. Future work would benefit from more detailed spatial analysis
of emissions sources relative to the pollutant monitoring stations and the integration of
weather forecasting into the training data.
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