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Abstract: Previous studies have confirmed the inextricable connection between meteorological factors
and air pollutants. This study presents the complex nonlinear relationship between meteorologi-
cal variables and four major air pollutants under high-concentration air pollution in Beijing. The
generalized additive model combined with marginal effects is used for quantitative analysis. Af-
ter controlling the confounding factors such as long-term trends, seasonality and spatio-temporal
deviation, the final fitting results exhibit that temperature, relative humidity and visibility are the
most significant meteorological variables associating with PM2.5 concentration, and the marginal
effect reaches 80%, −23% and 270%, respectively. Temperature and relative humidity are the most
significant variables for SO2, and the marginal effect reaches 15% and 7%. The most significant
variables for O3 are temperature and solar radiation, with marginal effect of up to 70% and 8%.
Atmospheric pressure and temperature results in a positive effect on CO, and the marginal effect can
reach 18% and 80%. All these indicate that local meteorological variables are a significant driving
factor for air quality in Beijing. Other variables, such as wind speed, visibility, and precipitation,
display some influence on air pollutants, but have less explanatory power in the model. Overall, our
study provides a better understanding of the relationship between local meteorological variables and
air quality, as well as an insight into how climate change affects air quality.

Keywords: meteorological factors; air pollutants; marginal effect; generalized additive models

1. Introduction

It is well known that air quality can be influenced by meteorological factor variables
in the atmosphere [1–3]. Meteorological factors play an important role in air quality
both in terms of chemical reactions and physical changes [1,4,5]. Various meteorological
variables in the atmosphere have an inherent relationship with each other [6]. Previous
studies have confirmed that the increase in CO2 content has a promoting effect on the
greenhouse effect, leading to a rise in temperature [7]. At the same time, high temperature
and low wind speed will affect air pollutant in reverse [5,8]. The increase in solar irradiance
will accelerate the production of photochemical smog, which in turn increases the ozone
content in the air [4]. Therefore, when dealing with the outcome variables associated
with meteorological factors, the internal connection between them is a factor that cannot
be ignored. Limited by external objective experimental conditions, previous studies on
air quality and meteorological variables have mainly focused on the stage of low air
pollution concentration [1]. Research on air quality and meteorological variables under
high pollution conditions has been insufficient. The increased scrutiny of air quality
suggests that many aspects of the meteorological variables associated with air pollution
remain difficult to understand, especially during periods of high pollution. One aspect is to
estimate the sensitivity of air pollutants to individual meteorological parameters. This has
been proved particularly challenging for several reasons. First, meteorological parameters
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are intrinsically linked, leading to strong interdependence. These linkages make the task of
isolating the effects of individual parameters highly complex [1]. Secondly, meteorological
variables affect pollutants through direct physical mechanisms [3]. To complicate matters
further, these effects can be influenced by seasonal and long-term temporal trends [1,6].
Therefore, it is very important and necessary to adopt effective methods to understand the
nature of the relationship between meteorological variables and air pollution. Beijing has a
variable terrain and a wide range of air quality conditions across time and space scales, in
addition to higher air pollution compared with developed countries [9,10]. Previous studies
have shown that meteorological factors such as low temperature, atmospheric pressure,
relative humidity and solar radiation are associated with the concentration of particulate
matter [11–14], sulfur dioxide [15,16], and ozone [17]. The diversity of topography, spatial
and temporal differences lead to great variations in air pollution in Beijing [9,18], which
also provides the necessary conditions for this study. The influence of meteorological
variables on high concentration air pollution is still unclear. To address this, we focused on
air pollution data of Beijing in the past 6 years and conducted a series of investigations on
the relationship with meteorological variables.

Statistical methods have proven to be effective in investigating the relationship be-
tween meteorological variables and air quality [19], especially in quantifying and visualiz-
ing the relationship between individual meteorological variables and air pollutants [20].
Generalized additive model (GAM) is a flexible and effective analytical method to evaluate
the nonlinear regression of time series [21]. It can be used to identify and describe the
nonlinear relationship between independent variables and covariates in the model [22].
Previous studies based on GAM exhibit how meteorological conditions such as relative
humidity and wind speed affect air pollution levels [23].

This study aims to provide an observational study of meteorological variables and air
pollutants under air pollution of high concentration. The study area is Beijing, the capital
of China, located at 116◦20′ E and 39◦56′ N. Beijing has a warm temperate semi-humid
and semi-arid monsoon climate, high temperature and rainy in summer, cold and dry in
winter, with a short spring and autumn. The diversity of its meteorological environment
provides the necessary objective conditions for this research. The city is famous for its
extensive meteorological conditions and diverse climates [24,25]. In recent years, with
the rapid development of the economy and the surge in vehicle ownership, Beijing’s air
pollution has been under severer pressure [26,27]. Therefore, the overall objective of this
study is to investigate the characteristics of local meteorological variables in Beijing, and to
quantitatively analyze the nonlinear relationship between meteorological variables and air
pollutants in combination with the generalized additive model (GAM).

2. Data
2.1. Local Meteorological Data

The meteorological data of the Capital Airport weather station near Beijing’s southwest
Fourth Ring Road were obtained every 3 h from June 2014 to December 2020. Detailed
characteristics of the data are shown in Table 1. These data were monitored and saved by
the monitoring station of the China Meteorological Administration (CMA). The data of this
station were reported to the World Meteorological Organization and were preserved by
the National Environmental Information Center (NOAA NEIC) of the National Oceanic
and Atmospheric Administration of the United States. The location of the meteorological
station was shown in Figure 1. This site was located at 39.48◦ N, 116.28◦ E with an elevation
of 31.3 m. Variables provided by CMA included: Atmospheric pressure (hPa), temperature
(◦C), relative humidity (%), precipitation (mm), visibility (km), solar irradiance (w/m2),
zonal (u) wind (km/h) and meridional (v) wind (km/h).
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Table 1. Detailed characteristics of the data used in the model.

Variable Units Mean Median SD Min Max Definition

PM2.5 µg/m3 80.05 59.41 71.08 4.29 516.23 Daily Avg
SO2 µg/m3 13.8 8.25 15.03 1.98 97.87 Daily Avg
CO mg/m3 1.25 0.95 1.04 0.10 9.03 Daily Avg
O3 µg/m3 60.65 55.04 39.78 2.00 183.13 Daily Avg

Atmospheric
pressure hPa 1011.39 1012.5 29.24 142 1040.5 Daily Avg

Zonal (u)
wind km/h −1.72 −3.03 13.35 −18.52 391.99 Daily Avg

(N+, S−)
Meridional

(v) wind km/h 1.99 2.68 8.63 −20.37 214.61 Daily Avg
(E+, W−)

Temperature ◦C 55.8 56.24 19.91 9.17 97.43 Daily Avg
Relative

humidity % 13.62 15 11 −15.38 32.5 Daily Avg

Visibility km 11.68 9.73 7.23 0.64 30 Daily Avg
Solar

irradiance w/m2 249.6 246.07 79.42 80.52 392.77 Daily Avg

Precipitation mm 17.8 12.39 14.6 0 68.18 Daily Avg
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2.2. Air Pollutant Monitoring Data

Hourly air pollutant data from 34 air pollution monitoring stations in Beijing released
by the Ministry of Ecology and Environment (MEE) were obtained from June 2014 to
December 2020 (Table 1). The distribution of monitoring sites was shown in Figure 1. PM10,
PM2.5, SO2, CO, NO2 and O3 were included in the recorded observations. Due to the
limitation of measurement method, NO2 monitoring value was susceptible to interference
by other nitrides, so NO2 data were not involved in this study. Since there were numerous
missing PM10 monitoring values, PM10 data were also excluded here.

Due to observation, record and other reasons, air pollution or meteorological data at a
certain moment were missing. Therefore, in this study, three linear interpolation methods
were used to interpolate the missing air pollution or meteorological data; a similar solution
was found in our previous study [9]. In general, the interpolation for air pollution data and
meteorological data did not exceed 6% and 3%, respectively.
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3. Methods
3.1. General Form of Generalized Additive Models

Generalized additive models are a flexible and effective method for evaluating nonlin-
ear regression analysis of time series related to air quality [21]. It can be used to identify
and describe the nonlinear relationship between each individual independent variable and
covariates in the model [15]. The general form of the model can be written as:

g(E(Y)) = β0 +
n

∑
j=1

sj
(

xij
)
+ εi (1)

where g is the link function, E(Y) is the mathematical expectation of Y, β0 is the intercept,
sj
(

xij
)

is the smooth function of the ith value of the covariate j, n is the total number of
covariates, and εi is the random error term. In this study, four air pollutants concentration
approximately obeys the normal distribution, and the link function is an identity link [22].

3.2. Model Construction

Based on model (1), we further constructed the following GAMs to evaluate the
relationship between the concentration of each individual air pollutant and local meteoro-
logical variables.

g(u) = β0 + s(TIME, d f1) + s(SEASON, d f2) + s(DOW, d f3) + s(long, lat) + εi (2)

where is the mathematical expectation of the variables x(x1, x2, . . . , xp). TIME is the long-
term trend, SEASON is seasonality to account for the seasonal trend, long and lat are
longitude and latitude longitude to represent the influence of spatial distribution and
autocorrelation. DOW is the day of the week, represented by 1–7. df is the degree of
freedom (df ), which is used to control the influence of each variable in the model. We used
Akaike’s Information Criteria (AIC) [28] to evaluate each variable and its df in the model.
When the AIC value was the lowest, it was the most appropriate fit and the corresponding
df value was selected. Additionally, we substituted various meteorological variables into
the model, and fitted the AIC value of the model. When the model yielded a lower AIC
value, the variable was remained in the model, otherwise it was eliminated. The final fitting
model can be written as

g(u) = β0 + s(TIME, d f1) + s(SEASON, d f2)+
s(DOW, d f3) + s(T, d f4) + s(RH, d f5)

+s(VISIB, d f6) + s(IRRADI, d f7) + s(U, d f8)+
s(V, d f9) + s(P, d f10)

+s(PRCP, d f11) + s(long, lat) + εi

(3)

where T is temperature, RH is relative humidity, VISIB is visibility, IRRADI is solar ir-
radiance, U is the zonal wind component, V is the meridional wind component, P is
atmospheric pressure, PRCP is precipitation. Other variables and symbols represent the
same meanings as model (2). Subsequently, we assessed the relationship between each
air pollutant and meteorological factors using model (3). The quantitative analysis results
were visualized using partial residual plot and marginal effect [1]. The marginal effect ME
can be written as

ME= 100× [exp (s(x))− 1] (4)

where x is the meteorological variable of interest, and s is the corresponding smooth
function in model (3). The partial residual plots reflect the influence of each meteorological
factor on different air pollutants [1,9]. The marginal effect is above 0, indicating that the
meteorological variable has a positive effect on air pollutants, and the marginal effect is
below 0, indicating that the meteorological variable has a negative effect on air pollutants.
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4. Results and Discussion
4.1. PM2.5

As shown in Figure 2, atmospheric pressure was found to have the maximum impact
on PM2.5 at 1040hpa with a 20% increase. When atmospheric pressure exceeds 1020 hPa, it
has a significant and positive effect on PM2.5. Temperature was found to have the greatest
impact on PM2.5 around 35 degrees, with an approximate increase of 80%. This result
indicated that the relationship between temperature and PM2.5 was positively correlated.
The impact of zonal (u) wind on PM2.5 generally showed a trend of gradually decreasing
and then increasing, indicating that it could promote the elimination of particulate matter
under strong winds. Similar results were obtained for meridional (v) wind. As the wind
speed increased, the impact on PM2.5 gradually decreased with a minimum effect of 10% at
26.4 km/h. This result was related to the decrease in particulate matter concentration due
to higher wind speed. Relative humidity was found to have a relatively stable effect on
PM2.5 below 40%, which was a positive promoting effect. Above 45%, the marginal effect
gradually decreased to the minimum of −23% with a relative humidity value of 97%. The
main reason might be that higher relative humidity accelerated the secondary formation
of the particulate matter of gas-phase chemical pollutants, and it is not conducive to the
diffusion of fine particles simultaneously. The relationship between visibility and PM2.5
showed a gradual downward trend, which was a negative correlation. Solar irradiance
was found to promote an increase in PM2.5 concentration. The marginal effect approached
the maximum of 3% when it reached about 350 w/m2. There was a negative correlation
between precipitation and PM2.5 in general with a decrease of −20% at 53 mm. This was
because a greater degree of precipitation could promote the deposition of particulate matter,
thereby reducing the concentration of particulate matter in the atmosphere.

4.2. SO2

As shown in Figure 3, the influence of atmospheric pressure on SO2 reached its maxi-
mum at 1040 hpa with an increase of 13%. Atmospheric pressure presented a promoting
effect on SO2 generally. This was related to higher pressure, which enhanced the increase in
SO2 concentration. The response of SO2 to temperature exhibited that the effect gradually
decreased and was a negative correlation with SO2, reaching a minimum decrease of −10%
at 32.5 ◦C. This might be related to the fact that high temperature could enhance the insta-
bility of SO2. Zonal (u) wind and meridional (v) wind were found to have similar effects
on SO2. When the wind speed increased from a negative value to 0 km/h, the marginal
effect increased slightly. As the wind speed exceeded 0 km/h, the marginal effect gradually
decreased. This was mainly related to strong winds that could strengthen the dispersion
of SO2 in the atmosphere; it could be clearly seen that relative humidity had a negative
effect on SO2. As relative humidity increased, the SO2 level gradually decreased. The
increase in relative humidity meant the increase in water content in the air, which promoted
the water solubility of SO2. Visibility was found to have a negative correlation with SO2,
which was related to the fact that SO2 could promote the formation of sulfate aerosols.
Aerosols were considered to negatively correlated with atmospheric visibility. Therefore,
as the visibility increased, the SO2 concentration decreased. The response of SO2 to solar
irradiance exhibited a positive correlation with a maximum increase of 5% at 392.8 w/m2.
It was found that the impact of precipitation on SO2 exhibited a decreasing trend, indicating
a negative correlation. As the precipitation approached 54 mm, the marginal effect on SO2
decreased to −5%, which was the minimum value. This result could be attributed to the
fact that SO2 was easily soluble in water. The increase in precipitation directly increased
the water content in the air and thus reduced the concentration of SO2 in the atmosphere.
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Figure 2. Partial residual plot for PM2.5. (a) atmospheric pressure; (b) temperature; (c) zonal (u) wind;
(d) meridional (v) wind; (e) relative humidity; (f) visibility; (g) solar irradiance; (h) precipitation.
The abscissa represents the magnitude of each meteorological variable. The ordinate represents the
marginal effect, which is the impact of various meteorological variables on air pollutants. The dashed
line is the 95% confidence interval and the short line perpendicular to the abscissa represents the
distribution frequency of each meteorological variable.
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4.3. O3

As shown in Figure 4, the influence of atmospheric pressure on ozone appeared
to increase first and then decrease. The overall performance was a downward trend,
indicating a negative correlation. With the increase in atmospheric pressure to 1040.5 hPa,
the marginal effect decreases to the minimum value of −27%. This result was related
to the fact that the influence of atmospheric pressure on ozone is a relatively negative
effect. Temperature was found to exert a promotional effect on ozone, indicating a positive
correlation with a maximum increase of 75% at 32.5 ◦C. Temperature could be involved
in the physical process of ozone formation, and high temperatures contributed to the
accumulation of ozone concentrations. The response of ozone to zonal (u) wind and
meridional (v) wind exhibited a similar variation pattern. The wind speed in the middle
had less effect, while lower or higher than the middle part had more obvious effect on
ozone. Slight winds were found to associate with the increase in ozone concentration
elsewhere. Relative humidity was found to have a negative weakening effect on ozone with
a decrease of −17% when it approached 97.4%. The response of ozone to visibility showed
a negative correlation with a decrease of −3% at 30 km. Photochemical smog could reduce
atmospheric visibility and enhance the increase in ozone concentration, which explained
the negative correlation between ozone and visibility. Solar radiation was found to be
positively correlated with ozone, reaching the maximum effect of 8% when it increased
to 392.8 w/m2. This result represented that solar irradiance exerted a positive effect on
ozone. The influence of precipitation on ozone fluctuated greatly, and it could be seen that
the influence of slight rainfall on ozone was different from that of heavy rainfall. This had
been reported in other studies, implying that wet deposition during heavy rainfall reduced
ozone concentration, and a certain degree of moisture in the atmosphere was conducive to
the formation of ozone [8].

4.4. CO

As shown in Figure 5, atmospheric pressure was found to have a positive effect on CO,
especially at high pressure above 1020 hPa. The marginal effect approached the maximum
value of 20% at 1040.5 hPa. This might be related to the enhancement of CO stability under
high pressure. The response of CO to temperature exhibited a gradually ascending trend
with an increase of 80% at 32.5 ◦C. This was consistent with our knowledge that a higher
temperature suggested that more carbon compounds were converted or formed into CO.
Zonal (u) wind and meridional (v) wind were found to have a similar influence on CO,
exhibiting that high wind speed could reduce CO concentration. This might associate
with strong wind contributing to the diffusion of traffic-related CO in city, which reduced
CO concentration to a low extent. The response of CO to relative humidity exhibited
a relatively stable curve, and the marginal effect hovered around 0. This agreed with
our understanding that CO was less soluble in water and less susceptible to the effect of
moisture in the air. Visibility was found to be negatively correlated with CO in general.
As visibility approached 30 km, the marginal effect reached the minimum value of −7%.
The increase in atmospheric visibility reflected a significant improvement of air quality,
implying that CO concentration had decreased in the air. This led to a negative correlation
between visibility and CO. Solar radiation was found to have various effects on CO with
respect to different intensities of radiation. The marginal effect increased slightly to 5%
at 140 w/m2 and then decreased with a fluctuation. The response of precipitation to CO
exhibited that the effect was not significant with a maximum increase of 0.3% at 8mm and
a minimum decrease of −0.6% at 56 mm, respectively. This might be caused by the reason
that CO was insoluble in water.
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As visibility approached 30 km, the marginal effect reached the minimum value of −7%. 
The increase in atmospheric visibility reflected a significant improvement of air quality, 
implying that CO concentration had decreased in the air. This led to a negative correlation 
between visibility and CO. Solar radiation was found to have various effects on CO with 
respect to different intensities of radiation. The marginal effect increased slightly to 5% at 
140 w/m2 and then decreased with a fluctuation. The response of precipitation to CO ex-
hibited that the effect was not significant with a maximum increase of 0.3% at 8mm and a 

Figure 4. Partial residual plot for O3. (a) atmospheric pressure; (b) temperature; (c) zonal (u) wind;
(d) meridional (v) wind; (e) relative humidity; (f) visibility; (g) solar irradiance; (h) precipitation.
The abscissa represents the magnitude of each meteorological variable. The ordinate represents the
marginal effect, which is the impact of various meteorological variables on air pollutants. The dashed
line is the 95% confidence interval and the short line perpendicular to the abscissa represents the
distribution frequency of each meteorological variable.
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4.5. Discussion

The generalized additive models (GAMs) proved to be effective in quantifying the
complex nonlinear relationship between multiple independent variables and covariates.
In this study, we combined GAMs with marginal effect to assess the impact of individual
meteorological variables on four major air pollutants in Beijing. This provided us with a
visual and intuitive way to better understand the relationship between local meteorological
variables and air pollutants. In the process of GAMs establishment, Akaike Information Cri-
terion (AIC) was used to control the individual meteorological variables and confounding
factors in the model, which could minimize the model deviation and improve the prediction
accuracy to a greatest extent. Although our method did not take into account the chemical
reaction and physical change process of meteorological factor variables, our results were
reliable compared with other studies [1]. At the same time, the modeling and prediction
analysis based on observed values proved to be reliable according to previous studies [1].
Beijing, with its adjacent areas, has a high level of air pollution compared to developed
countries and regions [9,18]. The high concentration in Beijing provided a fruitful insight
into the relationship between air pollution and meteorological variables, which could be
seen as a reference and supplement to the research in other regions of the world.

The final results showed that temperature, relative humidity and visibility were
the most significant meteorological variables associated with PM2.5 concentration, which
was consistent with the results of previous studies [1,29–31]. Temperature influence for
particulate matter was mainly related to stagnation and fronts, excluding the effect caused
by chemical reaction [32]. Higher wind speeds were also shown to be associated with
lower PM2.5 and CO concentrations [33–35]. Solar irradiance was found to promote an
increase in PM2.5 concentration, which was similar to the study of [36] that solar radiation
could increase the photolysis of aerosol-like particulate matter [37]. Precipitation was
found to reduce the concentration of particulate matter in the atmosphere, which was
related to its promotion of particulate matter deposition [38]. Temperature and relative
humidity were found to be the most significant variables of SO2, which were caused by
its water-soluble properties and instability at high temperatures [15,16]. Visibility was
negatively correlated with SO2, which is mainly caused by SO2 promoting the formation
of sulfate aerosols [39,40]. Temperature and solar radiation were found to have the most
significant effects on ozone, which was caused by the promotion of ozone production in the
atmosphere under high temperature and solar radiation [6,41]. The effect of atmospheric
pressure on ozone was consistent with previous studies [42], indicating a relatively negative
effect. Relative humidity was found to have a negative weakening effect on ozone, which
was consistent with previous studies that high relative humidity would promote the
opening of the stomata of trees to absorb ozone and reduce the concentration [43]. Solar
radiation was found to be positively correlated with ozone [44]. Atmospheric pressure and
temperature resulted in a positive effect on CO, which was caused by the increased stability
of CO under high pressure [1]. In order to further reduce the interaction between various
meteorological variables and the model fitting deviation, variance inflation factor was used
to control the multicollinearity effect of each variable. The final results showed that our
research was relatively reliable.

There were still some limitations in our study. We used the average pollution data
of 34 air quality monitoring stations in Beijing and the meteorological data of the capital
airport to establish the connection. Air pollution data were bound to be slightly different
due to the geographical distribution of monitoring stations, which might have led to a
deviation in the averaging process [1]. In this study, we collected various meteorological
factors and air pollution data from the ground monitoring sites and interpolated the
missing data. Missing data affected the fitting and assessment of the model. The inclusion
of more sophisticated emission data would improve the fitting accuracy of the model. High-
precision air pollution data near the meteorological monitoring station could be inversed
from satellite remote sensing image data, which could further improve the accuracy of
the fitting results [25]. The dynamics of concentrations of substances variations in the
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atmospheric boundary layer of the atmosphere are largely determined by the energy of air
currents and thermal stratification. The stratification of the atmosphere and the energy of
the airflow determine the spectral composition of the turbulence and the structure of the
small-scale turbulence, thereby affecting the impurities in the atmosphere, which is also
the source of the deviation of the influence of meteorological factors on air pollutants.

As a responsible developing country, the Chinese government has adopted a series of
policies and measures based on its national conditions and made positive contributions to
the mitigation of global climate change. The air pollution level in Beijing had alleviated
significantly compared with previous years [18]. Previous studies have confirmed that
there is a certain connection between air pollution and meteorological variables. The global
surface temperature is rising at an unprecedented rate, especially in China [25]. The rising
temperature has made an indelible contribution to the deterioration of air quality in Beijing,
based on our research. The variations of temperature can affect the wind speed. The wind
speed has a significant effect on the diffusion of air pollutants. At the same time, the
global sea level rises due to rising temperatures, which will have an impact on atmospheric
pressure and the concentration of air pollutants. According to the results of our study,
the increase in atmospheric pressure will aggravate the severity of air pollution. Changes
in precipitation and relative humidity will also affect the level of air pollutants with the
expansion and intensification of arid regions around the world. This directly reflects the
potential impact of global climate change on air quality.

5. Conclusions

In this study, we found that local meteorological factors could affect the variation of
PM2.5, SO2, O3 and CO concentrations, and the influence was different in Beijing. The
final fitting results exhibit that temperature, relative humidity and visibility are the most
significant meteorological variables associated with PM2.5 concentration, and the marginal
effect reaches 80%,−23% and 270%, respectively. Temperature and relative humidity are the
most significant variables for SO2, and the marginal effect reaches 15% and 7%, respectively.
The most significant variables for O3 are temperature and solar radiation, with marginal
effect of up to 70% and 8%, respectively. Atmospheric pressure and temperature results
in a positive effect on CO, and the marginal effect can reach 18% and 80%, respectively.
The remaining meteorological variables also demonstrated the impact on air pollutants,
and the effects were relatively weak. The global climate is changing under the influence
of human activities and other factors, and meteorological factors such as temperature and
atmospheric pressure are also affected simultaneously. This study provides a deep insight
into the analysis of local meteorological factors and four main air pollutants in Beijing
and provides a supplement to the study of the relationship between high concentration
air pollution and local meteorological factors. It holds significance for other regions of the
world. In addition, by presenting percentage changes in air pollutant responses across a
range of meteorological variables, it provides a clear window into how potential climate
change may affect air quality. This window suggests that necessary climate adjustment
measures should be developed and implemented by policymakers in order to achieve
future air quality goals.
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