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Abstract: The effects of different modeling and solving approaches on the simulation of a steam
ejector have been investigated with the computational fluid dynamics (CFD) technique. The four most
frequently used and recommended turbulence models (standard k-ε, RNG k-ε, realizable k-ε and SST
k-ω), two near-wall treatments (standard wall function and enhanced wall treatment), two solvers
(pressure- and density-based solvers) and two spatial discretization schemes ( the second-order
upwind scheme and the quadratic upstream interpolation for convective kinematics (QUICK) of
the convection term have been tested and compared for a supersonic steam ejector under the same
conditions as experimental data. In total, more than 185 cases of 17 different modeling and solving
approaches have been carried out in this work. The simulation results from the pressure-based
solver (PBS) are slightly closer to the experimental data than those from the density-based solver
(DBS) and are thus utilized in the subsequent simulations. When a high-density mesh with y+ < 1 is
used, the SST k-ω model can obtain the best predictions of the maximum entrainment ratio (ER) and
an adequate prediction of the critical back pressure (CBP), while the realizable k-ε model with the
enhanced wall treatment can obtain the best prediction of the CBP and an adequate prediction of the
ER. When the standard wall function is used with the three k-ε models, the realizable k-ε model can
obtain the best predictions of the maximum ER, and the three k-ε models can gain the same CBP value.
For a steam ejector with recirculation inside the diffuser, the realizable k-ε model or the enhanced wall
treatment is recommended for adoption in the modeling approach. When the spatial discretization
scheme of the convection term changes from a second-order upwind scheme to a QUICK scheme, the
effect can be ignored for the maximum ER calculation, while only the CBP value from the standard
k-ε model with the standard wall function is reduced by 2.13%. The calculation deviation of the ER
between the two schemes increases with the back pressure at the unchoked flow region, especially
when the standard k-ε model is adopted. The realizable k-ε model with the two wall treatments
and the SST k-ω model is recommended, while the standard k-ε is more sensitive to the near-wall
treatment and the spatial discretization scheme and is not recommended for an ejector simulation.

Keywords: steam ejector; turbulence model; near-wall treatment; solver; spatial discretization

1. Introduction

The continuous increase in energy consumption and the decrease in natural resources
require a more efficient use of energy. The worldwide increase in air conditioning ap-
plications is one of the main reasons for today’s electricity consumption patterns [1] and
necessitates more efficient refrigeration systems. Steam ejector refrigeration systems (SERSs)
utilizing low-grade thermal energy to drive environmentally friendly refrigerants can be an
attractive technology for the efficient use of available energy (e.g., solar energy, geothermal
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energy, industrial waste heat) [2,3]. These systems have many advantages, such as relia-
bility, limited maintenance needs and low initial and operational costs [4]. Nevertheless,
SERSs have not been able to penetrate the market due to their low coefficient of perfor-
mance (COP) and severe degradation in performance when not operating under idealized
design conditions [5].

SERS performance depends greatly on the behavior of the ejector, the heart of the
overall system [6]. Two important parameters used to describe ejector performance are the
entrainment ratio (ER) and the critical back pressure (CBP). The former is defined as the
mass flow ratio of the secondary flow (ms) to the primary flow (mp), and the latter indicates
the final pressure with the ejector working at its maximum capability. A well-designed
ejector with high efficiency (efficiency here refers to the ratio of the increase of exergy of
secondary flow to the decrease of exergy of primary flow) can improve the overall system
performance and consequently make SERSs economically more attractive [6].

Numerous theoretical and experimental studies have been carried out over the last
decades to understand not only the fundamentals but also ejector operation behavior con-
sidering a wide range of various geometries and operation parameters, leading to better
ejector design and optimization. The reader can refer to the review of Tashtoush et al. [7]
for a recent overview of theoretical and experimental works on ejectors. Most theoret-
ical studies have relied on semi-empirical or lumped parameter models [5]. Given the
small dimensions of ejectors and the need for thermal insulation, experimental studies are
frequently limited to global measurements: mass flow rates, temperature and pressure
at the inlets and the outlet and the ejector wall [8–10]. Only a few experimental works
have focused on the shock wave structure using local methods with air as the working
fluid [11–14]. However, both theoretical and experimental methods remain unable to com-
prehensively reproduce or describe the various flow phenomena (shock waves, mixing
process, boundary layer, phase change, compressibility, supersonic flow, etc.) that take
place inside an ejector [15,16].

For many years, the computational fluid dynamics (CFD) technique has proven to be
the most reliable and efficient tool for flow analysis and ejector performance predictions.
A number of CFD investigations have been carried out, and most of their modeling ap-
proaches can be characterized with common features such as the steady compressible flow
hypothesis, the pressure inlet and outlet boundary with known operating pressures and
temperatures, and the adiabatic ejector wall. However, there are differences in other nu-
merical modeling and solving choices, e.g., turbulence models, near-wall region treatments,
density- or pressure-based solvers, and spatial discretization schemes for the convective terms.

Bartosiewicz et al. [15] compared the performance of six RANS turbulence models,
namely, the standard, realizable and RNG k–εmodels (SKE, RKE and RNG, for short), the
standard and SST k-ω models (SKW and SST, for short), and the Reynolds stress model
(RSM), with a standard wall function when appropriate. For all equations, convective terms
were discretized using a second-order upwind scheme. The RNG and SST models best
predicted the shock phase, strength, and the mean line of pressure recovery. The validated
model was used to reproduce different operation modes of a supersonic ejector [16].

Hemidi et al. [17] compared the SKE and SST models for supersonic air ejectors. The
convection term was discretized with a second-order upwind scheme. Over the whole
range of operating conditions, the overall deviation was below 10% for the SKE model,
while the results for the SST model were in less agreement. In addition, Hemidi et al. [18],
in the second part of their study, found that good predictions of the entrainment rate, even
over a wide range of operating conditions, do not necessarily mean a good prediction of
the local flow features.

Yang et al. [19] compared the operating curve of a 3D steam ejector simulated using
the three k-ε models: the SKE, RKE and RNG models, with the standard wall function.
The QUICK scheme was adopted for spatial discretization of the convection terms. A
density-based implicit solver was used in the simulation. It was found that both ER and
CBP were best predicted by the RKE model.
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Ruangtrakoon et al. [20] investigated the effect of the primary nozzle geometries
on the performance of an ejector. A density-based implicit solver was selected to solve
the governing equations, and the convective terms were discretized with a second-order
upwind scheme. The RKE model with the standard wall function and the SST model were
chosen. The simulated results based on the SST model more closely corresponded to the
experimental values than those based on the RKE model.

Gagan et al. [11] used the PIV technique for supersonic ejector flow visualization and
compared it with numerical results obtained from the same six turbulence models used by
Bartosiewicz et al. [15] with the standard wall function. The discretization scheme was set
to a second-order upwind scheme. They recommended the SKE model.

Zhu and Jiang [14] investigated the entrainment performance and the shock wave
structures in a 3D ejector. Four turbulence models were used: the SKE, RNG, RKE and
SST models. The near-wall treatment for the three k-ε models used the standard wall
function. The governing equations were solved using a pressure-based solver. A second-
order upwind scheme was used to discretize the convective terms. The working fluid was
N2 using the ideal gas relationship. The results showed that the RNG model agreed best
with measurements for predictions of both the mass flow rate and shock wave structures.

Mazzelli et al. [21] investigated a rectangular cross-section ejector and compared four
different turbulence models (SKE, RKE, SST, and stress-ω RSM model). A density-based
solver was used for all calculations. The spatial discretization of both the conservation and
turbulence equations was set to be a second-order upwind scheme. They found that the
SST model performed the best, whereas ε-based models were more accurate at low motive
pressures. The stress-ω RSM model showed predictions comparable to those of the SST
model, but the model suffered from numerical stiffness and convergence issues that made
its use inconvenient.

Croquer et al. [22,23] investigated an R134a ejector and compared the same four tur-
bulence models used by Zhu and Jiang [14]. A pressure-based solver was used for all
calculations. A second-order upwind scheme was used to discretize the convective terms
of each equation except for the pressure equation. They concluded that the SST model
showed the best performance.

Besagni et al. [24] compared seven turbulence models: Spalart-Allmaras and the
six turbulence models used by Bartosiewicz et al. [15] and Gagan et al. [11]. The standard
wall function, the non-equilibrium wall function and the enhanced wall treatment were
used for the near-wall treatment sensitivity analysis. A density-based solver was applied.
A second-order upwind scheme was used for the spatial discretization. It was found that
the use of non-equilibrium wall function instead of standard wall function had little effect
on the numerical results, and the differences between the standard wall function and the
enhanced wall treatment were negligible in most cases. The SST model showed the best
agreement for the ER evaluations and local flow phenomena.

Wang et al. [25] proposed an adaptive nozzle exit position ejector to enhance ejector
performance by self-adjusting the position of the primary nozzle. The three k-ε models
noted in Ref. [19] were used with a scalable wall function. A segregated implicit solver was
adopted to solve the governing equations. A second-order upwind scheme was applied
to discretize the convective terms. The maximum relative error of both the ER and CBP
produced by the SKE model was closer to the experimental results than RKE or RNG in the
cases tested.

Han et al. [26] studied the boundary layer separation inside the ejector, and four
turbulence models used by Croquer et al. [22,23] and Zhu and Jiang [14] were tested and
compared. A standard wall function and an enhanced wall treatment were applied to the
near-wall treatment. The convection terms were discretized by a second-order upwind
scheme. The SKE and RKE models with the enhanced wall treatment and the SST model
were in good agreement with the experimental results. The average relative error of the
RKE model with the enhanced wall treatment was the lowest.
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However, all these works did not reach a consensus about the selection of numerical
modeling approaches to investigate the flow and heat transfer in an ejector. Moreover,
no particular attention was given to the influence of the solver or the numerical schemes
on the predicted results [22]. In some cases, even if some experimental validations were
performed, only the ER values were dealt with, and no local validations or the CBP was
achieved. In fact, the modeling approaches showing good agreement with the ER value
may not provide reasonable flow details or accurate CBP values.

Consequently, this work aims to determine the best modeling and solution approaches
composed of appropriate turbulence models, near-wall treatments, solvers and spatial
discretization schemes for steam ejector simulations by considering both global and local
flow features. Four turbulence models (SKE, RKE, RNG and SST model, which are most
frequently used and recommended), two near-wall treatments (standard wall function and
enhanced wall treatment), two solvers (density- or pressure-based solvers) and two spatial
discretization schemes (second-order upwind scheme and QUICK scheme) have been
tested for a supersonic steam ejector and compared with the experimental data of the global
quantities: the ER, and the CBP and the local quantities: wall static pressure [3].

2. Numerical Modeling
2.1. Geometry and Operating Conditions

A schematic view of an idealized process in a steam ejector is shown in Figure 1. A
typical ejector mainly comprises four distinct parts: a primary nozzle, a mixing chamber,
an ejector throat and a subsonic diffuser. High-pressure steam, known as the “primary
fluid”, is expanded and accelerated by the primary nozzle and leaves the nozzle exit plane
at a supersonic speed and a very low pressure. Subsequently, the secondary fluid at a lower
pressure is entrained into the mixing chamber by the shear layer between the primary and
secondary fluids and accelerated to sonic velocity. The two fluids are completely mixed
at some location in the constant area duct (throat) and undergo a series of shock waves
induced by the high pressure of the subsonic diffuser, resulting in a major compression
effect and a sudden drop in velocity from supersonic to subsonic. The pressure is then
further increased in the subsonic diffuser.
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Figure 1. Schematic of the idealized process in a steam ejector.

The geometry and operating conditions adopted in our simulation were based on
the experimental setup developed by Sriveerakul et al. [3]. They experimentally tested
nozzles and mixing chambers and throats with different structures to investigate the effect
of geometry on ejector performance. As in the Yang et al. [19] study, nozzle No. 1, mixing
chamber No. 1 and throat No. 3 were chosen, and the primary nozzle exit position was
placed at 35 mm. The main geometrical characteristics of the ejector are listed in Table 1.
The work conditions were a primary fluid saturated temperature Tp of 130 ◦C, a secondary
fluid saturated temperature Ts of 10 ◦C and a back pressure Pb of 3–5.5 kPa.
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Table 1. Main geometrical parameters of the steam ejector.

Geometry Value

Nozzle throat diameter 2 mm

Nozzle outlet diameter 8 mm

Expand angle of nozzle 10◦

Nozzle exit position 35 mm

Mixing chamber inlet diameter 24 mm

Throat diameter 19 mm

Throat length 95 mm

Diffuser length 180 mm

2.2. Calculation Domain and Mesh Generation

Pianthong et al. [27] performed 3D numerical simulations for a supersonic steam
ejector and found that there was no apparent 3D effect. An axisymmetric assumption for
simplification is reasonable [28], and 2D axisymmetric calculations may be sufficient to
investigate such flow configurations. The ejector structure used in this work is similar to
that adopted in the Pianthong et al. [27] study; therefore, the model and mesh were created
in a 2D domain with an axisymmetric solver.

Gambit version 2.4.6 was used to create the calculation domain and meshes of the
model. The concentration of mesh density was focused on the areas where significant phe-
nomena or high pressure/velocity gradients were expected, e.g., the mixing layer, boundary
layer and structure transition. Six meshes were compared for a mesh independency study,
and the final meshes were composed of approximately 59,840 and 192,375 quadrilateral
elements for different simulation approaches (Table 2). The calculation domain and mesh
system of the CFD model of the ejector are shown in Figure 2. The results of the mesh
independence study are presented in Section 3.1.

Table 2. Meshes for mesh independency.

Mesh Number Number of Cells

Mesh01 39,150 cells

Mesh02 59,840 cells

Mesh03 72,060 cells

Mesh04 153,447 cells

Mesh05 192,375 cells

Mesh06 394,300 cells

2.3. Numerical Setting
2.3.1. Common Setting

The flow pattern inside a steam ejector is considered to be steady, compressible, and
controlled by Reynolds averaging Navier-Stokes equations together with the continuity
equation and energy equation. The equations are given as follows.

∂

∂xi
(ρui) = 0 (1)

∂

∂xi
(ρuiuj) = −

∂p
∂xi

+
∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
δij

∂uk
∂xk

)]
+

∂

∂xj

(
−ρu′iu

′
j

)
(2)
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∂

∂xi
(ρcpuiT) =

∂

∂xj

(
λ

∂T
∂xi
− ρcpu′iT′

)
+ µφ (3)

µφ is the viscous dissipation and λ is the heat conductivity. The terms of ρu′iu
′
j and

ρcpu′iT
′ represent the Reynolds stresses and turbulent heat fluxes, respectively. These two

terms need be modeled properly for a turbulent flow.
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Pressure boundary conditions were applied on the inlets and outlet boundaries. Heat
transfer through the walls was neglected due to the rapid mixing process. These are all
common numerical settings used in ejector simulations. The CFD code ANSYS-Fluent 15.0
was employed in all the simulation works.

2.3.2. Solver

Selecting a solver is the first step in beginning a simulation, and many of the subse-
quent settings will correspond to the solver because each solver approach used to linearize
and solve the discretized equations is different. In a density-based solver, the continuity
equation is used to obtain the density field, while the pressure field is determined by
the equation of state. On the other hand, in a pressure-based solver, the pressure field is
extracted by solving the pressure or pressure correction equation obtained by manipulating
the continuity and momentum equations. Both density- and pressure-based solvers are
available in Fluent software. Historically, density-based solvers have been mainly used
for high-speed compressible flows. However, both solvers have been recently extended
and reformulated to solve for and operate under a wide range of flow conditions beyond
their traditional or original intent [29]. Pressure-based solvers have demonstrated the capa-
bility to address highly compressible flows with shock waves in ejectors [14,22,23,30–32]
and have usually provided more computational stability than density-based solvers. In
this work, both solvers were used and compared. When the pressure-based solver was
used in the simulation, the SIMPLE algorithm was employed to solve the pressure and
velocity coupling.
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2.3.3. Turbulence Model

Turbulence modeling is one of three key elements in CFD [33]. Very precise mathe-
matical theories have evolved for the other two elements: grid generation and algorithm
development, while far less precision has been achieved in turbulence modeling due to the
complex behavior of turbulent flows. No single turbulence model is universally accepted
as being suitable for all classes of problems. For the various flow phenomena (supersonic
jet flow, shock wave, mixing layer, boundary layer under strong adverse pressure gradi-
ents, possible recirculation, etc.) that can occur inside an ejector, it is difficult to predict
in advance which turbulence model is most suitable. It is usually necessary to judge the
applicability and accuracy of a turbulence model by comparing it with the experimental
data of global or local parameters.

Four turbulence models (SKE, RKE, RNG and SST models) have been frequently
used to govern the turbulence characteristics and have been recommended by different
authors [3,11,12,14–28] and adopted in this paper to test and compare their performances
under different numerical settings. The four models belong to the Reynolds-averaged
Navier-Stokes (RANS) turbulence models, and the Boussinesq hypothesis is used in each
of them relating the Reynolds stresses to the mean velocity as,

− ρu′iu
′
j = µt

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
(ρk + µt

∂ui
∂xi

)δij (4)

where k is the turbulent kinetic energy and µt is the turbulent viscosity. Correspondingly,
the turbulent heat fluxes can be modeled with the turbulent heat conductivity (λt) as
given by,

ρcpu′iT
′ = −λt

∂T
∂xi

= −cp
µt

Prt

∂T
∂xi

(5)

where Prt is the turbulence Prandtl number.
The Boussinesq hypothesis assumes that turbulent viscosity µt is an isotropic scalar

quantity, which is not strictly true. However, the assumption works well for shear flows
dominated by only one of the turbulent shear stresses covering many flows, such as wall
boundary layers, mixing layers and jets. These flow phenomena can be found in the ejector
flow; therefore, the four models are expected to be suitable for the turbulent flow simulation
in an ejector.

The SKE model proposed by Launder and Spalding [34] was widely used in engneeing
and developed many different variants. The SKE model is as follows.

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Gk − ρε (6)

∂(ρε)

∂t
+

∂(ρεui)

∂xi
=

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ C1εGk

ε

k
− C2ερ

ε2

k
(7)

µt = ρCµ
k2

ε
(8)

Gk = µt

(
∂ui
∂xj

+
∂uj

∂xi

)
∂ui
∂xj

(9)

where, the turbulent kinetic energy generation term Gk is generated by average velocity
gradient. The model constants have the default values Cµ = 0.09, C1ε = 1.44, C2ε = 1.92,
σk = 1.0, σε = 1.3.

The SKE model is a fully developed turbulence model for high Re flow. For the flow
with low Re near the wall, the turbulence pulsation may be less than the influence of
molecular viscosity. At this time, the use of SKE model may cause problems. Therefore,
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the calculation near the wall must be properly handled. The wall function method is
usually used.

The SKE model can be well applied to most turbulent flow phenomena, but because
it is assumed to be an isotropic scalar, it will produce some distortion when used in non-
isotropic turbulence, such as strong swirl and curved wall flow. In view of this, many
scholars have proposed corresponding correction schemes, such as RNG and RKE model.

Yakhot and Orzag [35] derived the RNG model from the instantaneous N-S equation
by using the renormalization group theory. The model systematically removes the small-
scale motion from the governing equation by reflecting the influence of small-scale motion
in the large-scale motion and the modified viscosity term. The equations of RNG model are
similar to that of the SKE model.

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=

∂

∂xj

[
αkµe f f

∂k
∂xj

]
+ Gk − ρε (10)

∂(ρε)

∂t
+

∂(ρεui)

∂xi
=

∂

∂xj

[
αεµe f f

∂ε

∂xj

]
+ C1ε

∗Gk
ε

k
− C2ερ

ε2

k
(11)

µe f f = µ + µt (12)

C1ε
∗ = C1ε − η(1− η

η0
)/(1 + βη3) (13)

η =
√

2SijSijk/ε (14)

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(15)

With αk = αε = 1.393, C1ε = 1.42, C2ε = 1.68, η0 = 4.377, β = 0.012.
Compared with the SKE model, the RNG model takes into account the time average

strain rate of the mainstream, and takes into account the rotating and swirling flow by
modifying the turbulent viscosity. Therefore, the model performs well in flows with high
strain rate and large streamline bending. The RNG model is still a turbulence model
established for fully developed high Re flow. The solution of near wall region also needs to
be combined with wall function or other methods.

Shih et al. [36] thought that Cµ should not be a constant, but should be related to the
strain rate in the flow field, so they proposed the RKE model. Its k equation is the same as
that in the SKE model, but where Cµ is defined as,

Cµ =
1

A0 + As
kU∗

ε

(16)

with A0 = 4.0, As =
√

6 cos ϕ, φ = 1
3 cos−1(

√
6W), W =

SijSjkSki

(SijSij)
1/2 , U∗ ≡

√
SijSij + Ω̃ijΩ̃ij,

Ω̃ij = Ωij − 2εijkωk, Ωij = Ωij − εijkωk
The ε equation is also different from the SKE model.

∂(ρε)

∂t
+

∂(ρεui)

∂xi
=

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ ρC1Sε− ρC2

ε2

k +
√

νε
(17)

with σε = 1.2, σk = 1.0, C2 = 1.9, C1 = max
[
0.43, η

η+5

]
, η = Sk/ε, S = (2SijSij)

1
2 .

Compared with the SKE model, the RKE model introduces the contents related to
rotation and curvature in the calculation of turbulent viscosity, which can more accurately
predict the expansion rate of flat and cylindrical jet. At the same time, it is easier to catch
the boundary layer flow, flow separation and secondary flow with strong inverse pressure



Atmosphere 2022, 13, 144 9 of 26

gradient than the SKE model. Therefore, the RKE model can more accurately calculate
various flows including jet and mixed flow in free flow and boundary flow.

The shear stress transport model (SST) was developed by Menter [37] by efficiently
integrating the robustness and accuracy of the standard k-ω model in the near wall region
and the independence of k-ε model in the far field. SST model has a similar form to the
standard k-ω model.

∂(ρk)
∂t

+
∂(ρuik)

∂xi
= G̃k − β∗ρωk +

∂

∂xj

[
(µ + σkµt)

∂k
∂xj

]
(18)

∂(ρω)

∂t
+

∂(ρuiω)

∂xi
=

γω

k
G̃k − βρω2 +

∂

∂xj

[
(µ + σωµt)

∂ω

∂xj

]
+ 2(1− F1)

ρσω2

ω

∂k
∂xj

∂ω

∂xj
(19)

where the production of turbulence kinetic energy G̃k is different from Gk in k-ε models.

G̃k = τij
∂ui
∂xj

(20)

Each of the constants is a blend of a k-ω (1) and k-ε model (2) constant, blended via:

φ = F1φ1 + (1− F1)φ2 (21)

where φ1 represents constant 1 and φ2 represents constant 2, F1 is blending function.
The SST model introduced an upper limit for the turbulent shear stress in boundary

layers in order to avoid excessive shear-stress levels typically predicted with Boussinesq
eddy-viscosity models. The eddy viscosity µt is defined as,

µt =
a1ρk

max(a1ω, SF2)
=

ρk
ω

1

max
(

1, SF2
a1ω

) (22)

where S is the invariant measure of the strain rate and F2 is a second blending function.
The SST model is considered to be more accurate and reliable for a wider class of flows
(for example, adverse pressure gradient flows, airfoils, transonic shock waves) than the
standard k-ω models.

These models are well known, and the reader can easily find related summaries of
these turbulence models [34–37] and can refer to studies by Mazzelli et al. [21] or Cro-
quer et al. [22], which include brief and complete summaries of the four turbulence models.

The three k-ε models were used as high-Reynolds turbulence models requiring a
near-wall treatment, while the SST model was used as a low-Reynolds turbulence model
requiring no near-wall treatment.

2.3.4. Near-Wall Treatment

An accurate representation of the flow in the near-wall region can determine successful
predictions of wall-bounded turbulent flows. Traditionally, there are two approaches used
to model the near-wall region: wall functions and near-wall models. Wall functions do
not resolve the viscosity-affected inner region (viscous sublayer and buffer layer). Instead,
semiempirical formulas are used to bridge the viscosity-affected near-wall region and
the fully turbulent region. Near-wall models based on modifying the turbulence models
enable the viscosity-affected region to be resolved with a mesh all the way to the wall,
including the viscous sublayer. In the present study, two near-wall treatments, standard
wall functions and enhanced wall treatments [29], were adopted and compared.

The standard wall function has been most widely used in steam ejector simulations
and is defined in Equations (23) and (24):

U+ = y+; y+ < 5 (23)
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U+ =
1
κ

log
(
Ey+

)
; 30 < y+ < 300 (24)

where U+ and y+ are the dimensionless velocity and wall normal distance, κ is the von
Kármán constant and E is the empirical constant (0.4187 and 9.793, respectively). When the
standard wall function is used, the first near-wall node should be in the log-law layer for
the best results, where 30 < y+ < 300, and Equation (24) is used; thus, less mesh is needed
in the near-wall region. The first near-wall node should not be placed in the buffer layer,
where 5 < y+ < 30.

In highly compressible flow, the temperature T+ distribution near the wall is obviously
different from that in low subsonic flow due to the heating effect of viscous dissipation.

T+ =
(Tw − TP)ρcpC1/4

µ k1/2
P

.
q

(25)

where kP is turbulent kinetic energy at the wall-adjacent cell centroid, cp is specific heat,
.
q

is wall heat flux, TP is temperature at the wall-adjacent cell centroid, Tw is temperature at
the wall.

In the k-ε models, the k equation is solved in the whole domain including the wall-
adjacent cells with ∂k/∂n = 0 at the wall, where n is the local coordinate normal to the wall.
The ε at the wall-adjacent cells is computed on the basis of the local equilibrium hypothesis
and computed from,

εP =
C3/4

µ k3/2
P

κyP
(26)

where yP is distance from the centroid of the wall-adjacent cell to the wall.
The enhanced wall treatment combines a two-layer model with enhanced wall func-

tions and is identical to the two-layer model when the near-wall mesh is fine enough to
be able to resolve the viscous sublayer (typically y+ ∼= 1). Hence, a much denser mesh is
needed than the mesh for the standard wall function.

The SST model does not need a near-wall treatment because its mathematical structure
already emphasizes the flow close to the wall. Conversely, the three k-ε models were
applied with the two near-wall treatments. Therefore, in this study, a very fine mesh
with y+ < 1 was used for the three k-ε models with the enhanced wall treatment and the
SST model, while a medium mesh with 30 < y+ < 40 was used for the three k-ε models
with the standard wall function. The enhanced wall treatment is actually equivalent to
a two-layer model in this paper. Mesh sensitivity analysis was performed for the two
near-wall treatments, respectively.

2.3.5. Fluid Property

Density was obtained using the ideal gas relationship, as widely used in Refer-
ences [3,14,38–41]. Other properties, such as specific heat, thermal conductivity and viscos-
ity, were derived from real fluid thermodynamic properties of water vapor in IAPWS-IF97
by implementing a piecewise linear function of temperature into the Fluent code instead of
assuming it to be constant, as in references [3,11,23,24,39].

2.3.6. Spatial Discretization Scheme

It is generally believed that as long as the spatial discretization scheme has second-
order accuracy, false diffusion can be effectively suppressed; a sufficiently fine mesh can
also obtain results with a certain accuracy with a lower order scheme, and at the same time,
a higher order discretization scheme will consume more computing resources. Therefore,
in the steam ejector simulation study, the second-order upwind scheme was mainly used,
and less attention was given to whether the spatial discrete scheme has an impact and how
dense the mesh needs to be so that it is not affected by the spatial discrete scheme. This
work studied the influence of two different spatial discretization schemes on steam ejector
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simulation on the scale of commonly used meshes and sufficiently fine meshes to help
select discrete schemes.

Two spatial discretization schemes, the second-order upwind scheme and the QUICK
scheme, were adopted for the spatial discretization of the convection terms and the tur-
bulence quantities. When the QUICK scheme was used, two nodes upstream and one
node downstream were used for interpolation. Therefore, the QUICK scheme contains
information on the flow direction and can reflect the transport characteristics. The QUICK
scheme has third-order accuracy and is considered to be more precise. Consequently, the
QUICK scheme requires more computing resources and introduces higher convergence
difficulties. For the pressure equation, the PRESTO! scheme designed for flows involving
steep pressure gradients was chosen.

2.3.7. Convergence Criteria

The calculation is considered to converge, and the iteration is finished when the
following convergence criteria are met: (1) the residual terms are lower than 10−5 and
stable; (2) the calculated mass flows of each face are stable, and the mass flow difference
between the two inlet flows and the outlet flow of the ejector is less than 10−7 kg/s; and
(3) the maximum velocity value at the ejector throat inlet is stable.

In total, 185 cases of 17 different modeling and solving approaches were examined in
this work, as shown in Table 3.

Table 3. Combinations of turbulence models and near-wall treatments(SKE, standard k-ε model;
RNG, RNG k-ε model;RKE, realizable k-ε model; SST, SST k-ω model; SWF, standard wall function;
EWT, enhanced wall treatment; 2ND, second-order upwind scheme; QUICK, quadratic upstream
interpolation for convective kinematics; DBS, density-based solver; PBS, pressure-based solver).

No. Mesh Turbulence
Model

Near-Wall
Treatment

Discretization
Scheme Solver Back Pressure

Range/kPa
Number
of Cases

1 Mesh02 SKE SWF 2ND DBS 3–5.1 10

2 Mesh02 RNG SWF 2ND DBS 3–5.3 11

3 Mesh02 RKE SWF 2ND DBS 3–5.3 11

4 Mesh02 SKE SWF 2ND PBS 3–5.1 10

5 Mesh02 RNG SWF 2ND PBS 3–5.3 11

6 Mesh02 RKE SWF 2ND PBS 3–5.3 11

7 Mesh05 SKE EWT 2ND PBS 3–5.1 11

8 Mesh05 RNG EWT 2ND PBS 3–5.3 12

9 Mesh05 RKE EWT 2ND PBS 3–5.3 12

10 Mesh05 SST — 2ND PBS 3–5.0 8

11 Mesh02 SKE SWF QUICK PBS 3–5.1 11

12 Mesh02 RNG SWF QUICK PBS 3–5.3 12

13 Mesh02 RKE SWF QUICK PBS 3–5.3 12

14 Mesh05 SKE EWT QUICK PBS 3–5.1 11

15 Mesh05 RNG EWT QUICK PBS 3–5.3 12

16 Mesh05 RKE EWT QUICK PBS 3–5.3 12

17 Mesh05 SST — QUICK PBS 3–5.0 8

3. Results
3.1. Mesh Sensitivity Analysis

Due to the different requirements of the near-wall treatments on the mesh, a mesh
sensitivity analysis was performed. Six meshes of two sets were used to test and eval-
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uate the mesh independence for the two near-wall treatments: Mesh01 (39,150 cells),
Mesh02 (59,840 cells) and Mesh03 (72,060 cells) for the standard wall function, and Mesh04
(153,447 cells), Mesh05 (192,375 cells) and Mesh06 (394,300 cells) for the enhanced wall
treatment and the SST model. The first three meshes were adjusted to place the first near-
wall nodes of the nozzle wall in the region 30 < y+ < 40, while the first near-wall nodes
of the ejector wall adjacent to the secondary fluid were adjusted to be in the region y+ < 1
because the secondary fluid was actually a low-Reynolds flow with a Reynolds number of
approximately 1000 only, and the first near-wall nodes need to be several millimeters from
the wall for y+ > 30, resulting in extremely sparse meshes. The first near-wall nodes of all
walls of the latter three meshes were set in the region y+ < 1.

The former three meshes were tested under the RKE model with the standard wall
function, while the latter three meshes were tested under the RKE model with the enhanced
wall treatment. All six meshes were tested at a back pressure Pb = 3 kPa. The pressure-based
solver was adopted to solve the governing equations with the QUICK scheme applied to
discretize convective terms.

The Mach number (Ma) distributions of the central axis and the axial velocity (ut) at
the throat inlet radius (Rt) were chosen to be compared for mesh independence, as shown
in Figure 3. For the standard wall function, it can be seen that the trends of Ma, ut and ER
of Mesh01, Mesh02 and Mesh03 are almost the same. For the enhanced wall treatment and
the SST model, the trends of Ma, ut and ER of Mesh05 and Mesh06 are almost the same,
while Mesh04 is slightly different. When the number of meshes is more than 39,150 and
153,447, Ma and ut and ER are approximated, and the fluctuation of the output parameters
is the same. To reduce the computational costs and increase the calculation efficiency, the
medium meshes Mesh02 (59,840 cells) and Mesh05 (192,375 cells) were selected (Figure 2).
It is easy to see that these characteristic parameters were different with near-wall treatments.
The reasons for this result will be discussed in Section 3.3.

3.2. Influence of the Solver

The density-based solver (DBS) and pressure-based solver (PBS) were compared with
the three k-ε models, while the spatial discretization scheme was unchanged as a second-
order upwind scheme and near-wall treatment as a standard wall function, based on
Mesh02 (59,840 cells). Therefore, six combinations were formed, and a total of 64 cases
were calculated.

The experimental data (EXP) in Sriveerakul et al. [3] were used to validate the CFD
results from modeling the ejectors used in their experiments under the same operating
conditions. The error values of the simulation results and experimental data are defined as:

EoE =

(
simulation result
experimental data

−1
)
× 100 (27)

while the deviation values of the calculation results are defined as:

EoC =

(
simulation result

reference simulation result
−1
)
× 100 (28)

In this section, the reference simulation results are from the pressure-based solver.
Figure 4a depicts the ER comparison of the experiment and the three k–ε models under

the two solvers and shows the similarity in the ejector performance characteristics as the
back pressure of the ejector was varied. The ejector operating mode was divided into three
parts distinguished by the CBP and the breakdown back pressure: the choked flow, the
unchoked flow, and the reversed flow of secondary fluid [3]. In the choked flow region,
when the back pressure was lower than the CBP, the secondary flow choking in the mixing
chamber caused the ejector to entrain the same amount of the secondary flow. This kept
the ER of the entire region constant. In the unchoked flow region, when the back pressure
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exceeded the CBP, there was no secondary flow choking. The entrained secondary flow
changed, and the ER began to drop rapidly.
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Figure 4. Comparison of ejector performance from experimental data and CFD results utilizing differ-
ent solvers: (a) Comparison of ejector performance, (b) Comparison of the EoC of ejector performance.

The EoC values remained stable in the choked flow region, and their absolute values
increased with Pb in the unchoked flow region, as shown in Figure 4b. The ER values from
the density-based solver were slightly higher than those from the pressure-based solver
when the RKE or RNG model was adopted until the back pressure reached the CBP; then,
the ER values from the density-based solver are becoming lower with Pb increasing than
that from the pressure-based solver with all three k-ε models. As shown in Table 4, the EoC
values of the maximum ER are in the range of −0.20% to 0.57%, and the CBP values are all
the same.

Table 4. Comparison of the ejector performance with different solvers and turbulence models.

Turbulence Model
and Solver

Maximum ER CBP

Value EoC (%) EoE (%) Value
(kPa) EoC (%) EoE (%)

Experimental data 0.40 — — 5.0 — —

SKE-SWF-2ND-PBS 0.431 — 7.80 4.7 — −6.00

RNG-SWF-2ND-PBS 0.445 — 11.22 4.7 — −6.00

RKE-SWF-2ND-PBS 0.409 — 2.28 4.7 — −6.00

SKE-SWF-2ND-DBS 0.430 −0.20 7.59 4.7 0.00 −6.00

RNG-SWF-2ND-DBS 0.447 0.41 11.68 4.7 0.00 −6.00

RKE-SWF-2ND-DBS 0.411 0.57 2.86 4.7 0.00 −6.00
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Figure 5 illustrates the comparison between the wall static pressure distributions from
the experimental and simulated results. The comparison was conducted when the ejector
was operated at Pb =3.0 kPa in the choked flow region. The figure shows the similarity in
the wall static pressure distributions along the ejector between the experimental and the
simulated results. The two solvers produced wall static pressure values closer to each other
as the ER and CBP in the cases were tested.
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Figure 5. Wall static pressure profile along the ejector at Pb = 3 kPa; effect of different turbulence
models and solvers.

From the performance parameters and wall static pressure distribution results, there
is almost no difference between the two solvers in the choked flow region, and there are
significant differences only in the unchoked flow region. On the whole, the performance
parameters from the pressure-based solver are slightly closer to the experimental data
and the pressure-based solver has better calculation convergence. Therefore, it can be con-
cluded that the results calculated by the pressure-based solver are more consistent with the
experimental data, and the pressure-based solver should be utilized in the latter simulation.

3.3. Influence of the Turbulence Model and the Near-Wall Treatment

In this section, four turbulence models and two near-wall treatments were adopted
and compared. The two near-wall treatments, the standard wall function and enhanced
wall treatment, were adopted when the three k-ε models were chosen. The SST model was
used as low-Reynolds-number model, and the meshes were the same as those used for
the three k-ε models with the enhanced wall treatment. In total, seven combinations were
formed, and two meshes with different y+ values were used, i.e., Mesh02 and Mesh05. The
second-order upwind scheme was adopted for the spatial discretization of the convection
terms. The pressure-based solver was adopted, and the SIMPLE algorithm was employed to
couple the solving of pressure and velocity. In total, an additional 43 cases were calculated.

Figure 6 depicts the ER comparison of the experiment and the four turbulence models
and shows the similarity in the ejector performance characteristics when the ejector’s back
pressure was varied. In contrast with the k-ε models, the SST model provided a smooth
transition. As shown in Table 5, taking the last simulation results of Mesh02 with the
standard wall function as a reference, the EoC values of the maximum ER of the simulation
results of Mesh05 were in a range of 9.07–11.26%, and the EoC values of the CBP values
were 6.38%, meaning that both the maximum ER and the CBP values were higher when
the enhanced wall treatment was adopted. The EoE values of the maximum ER were in a
range of 5.63–21.57%, and the EoE values of the CBP values were in a range of −14.0% to 0,
meaning that the maximum ER values were all higher than the experimental values.
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Figure 6. Comparison of ejector performance from experimental data and CFD results utilizing
different turbulence models.

Table 5. Comparison of the ejector performance with different turbulence models.

Turbulence Model
and Solver

Maximum ER CBP

Value EoC (%) EoE (%) Value
(kPa) EoC (%) EoE (%)

Experimental data 0.40 — — 5.0 — —

SST-EWT-2ND-PBS 0.423 — 5.63 4.3 — −14.00

SKE-EWT-2ND-PBS 0.480 11.26 19.94 5.0 6.38 0.00

RNG-EWT-2ND-PBS 0.486 9.31 21.57 5.0 6.38 0.00

RKE-EWT-2ND-PBS 0.446 9.07 11.56 5.0 6.38 0.00

Among the simulation results for Mesh05, the maximum ER value of the SST model
was closest to the experimental value, with an EoE value of 5.63%, while the EoE value
of the CBP was the largest (−14%). Among the three k-ε models, the maximum ER value
of the RKE model was closest to the experimental data, and the CBP values were the
same. The three k-ε models provided better predictions of the CBP than the SST model.
However, the simulation results of Mesh02 showed that the maximum ER value of the RKE
model with the standard wall function was closest to the experimental value with an EoE
value of only 2.28%, while the EoE value of the CBP was −6.0%, as shown in Table 3. The
three k-ε models provided the same predictions of the CBP with the two meshes and the
two near-wall treatments. This implies that when a high-density mesh with y+ < 1 is used,
the SST model can be applied to obtain the best predictions of the maximum ER, and this
conclusion is the same as in References [11,20,23,24]. The RKE model with enhanced wall
treatment can be adopted for the best prediction of the CBP and an adequate prediction of
the maximum ER. When the standard wall function is used with a medium mesh, the RKE
model can be applied to obtain the best predictions of the maximum ER among the three
k-ε models, and this conclusion is the same as in References [19,20]. The RNG and SKE
model with a standard wall function can be adopted for the prediction of the CBP and an
adequate prediction of the maximum ER, while the RNG and SKE models with enhanced
wall treatment can be adopted for the prediction of the CBP only.

Figure 7a illustrates the comparison between the wall static pressure distributions
from the experimental and the simulated results of seven different modeling approaches
at Pb =3.0 kPa. The wall static pressures of the RNG and SKE models almost overlapped
before flowing into the diffuser, regardless of whether a standard wall function or enhanced
wall treatment was used. The performance curves of the two turbulent models also
had high similarity (Figures 4a and 6). The wall static pressure of the RKE model was
significantly different from the RNG and SKE and closer to the test data, whether the
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standard wall function or enhanced wall treatment was used. The performance curves of
the RKE model were also closer to the test data. The wall static pressure of the SST model
almost overlapped with that of the RKE model with SWF in the mixing chamber until
X = 0.105 m and was closest to the experimental data before reaching the point at one third
of the diffuser. Figure 7b depicts the variation of the EoE between the calculated and the
test wall static pressure values along the flow direction under each modeling approach.
On the whole, the calculated value of wall static pressure before the diffuser was higher
than the test value, and it was lower than the test value near the diffuser entrance, after
which the pressure gradually recovered, the calculated value and the test value gradually
converged, and the EoE decreased. The EoE trends of the seven modeling approaches were
similar in the throat, but after entering the diffuser, the SST model showed great differences.
The EoE of the SST model was relatively uniform, and the range of the EoE was smaller
than those of the other six modeling approaches.
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The calculation reliability of the seven modeling approaches was quantified and
compared by calculating the root mean square (RMS) value of the EoE. As shown in Table 6,
the RMS of the EoE value of the SST model was the smallest, followed by the RKE-SWF and
RKE-EWT approaches. Although the SST model had larger errors in the diffuser, the overall
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error was small. The RKE model had the smallest RMS error among the three k-ε models.
The static wall pressure can reflect the details of the flow field, so it can be considered that
the SST model and the RKE model are more accurate for the calculation of the turbulent
flow in a steam ejector.

Table 6. RMS of EOE of wall static pressure (%).

Modeling Approach RMS of EOE

SKE-SWF-2ND-PBS 22.15

RNG-SWF-2ND-PBS 22.07

RKE-SWF-2ND-PBS 16.96

SST-2ND-PBS 12.43

SKE-EWT-2ND-PBS 22.35

RNG-EWT-2ND-PBS 21.98

RKE-EWT-2ND-PBS 19.91

Figure 8 shows the variation curves of the Mach number (Ma) along the ejector axis
and the Mach number contours of the flow field under the seven modeling approaches.
Figure 8a shows that all the modeling approaches could depict the first shock wave train
at the nozzle exit, especially the positions of the first two shock waves being basically
the same, and only the Mach number peak values were different. It should be noted that
the SST model had small fluctuations in the Mach number trough rather than a smooth
transition. After the flow entered the throat (X = 0.130–0.225), a third shock wave was
generated, and the peak value and position of the modeling approaches were quite different.
The Mach number of the SST model was basically stable in the throat, in contrast with the
other six schemes showing a downward trend. After the mixed fluid entered the diffuser,
a second shock wave train was generated under the action of the pressure gradient. The
Mach number trends of the seven modeling approaches were different. Among them, the
Mach wave of the SST model was gentler but had not yet reached stability, even at the exit
of the diffuser (X = 0.405). Figure 8b shows that the main fluid continued to accelerate after
leaving the nozzle, and obvious expansion waves appeared. Shock waves appeared under
the restriction of the mixing layer between the two fluids. Then, the expansion waves and
the shock waves alternately appeared, forming a “diamond wave” at the first shock train.
As seen in Figure 7a, the pressure change in the mixing chamber was relatively stable,
and it can be considered that the two fluids achieved constant-pressure mixing. There
was no significant difference in the flow in the mixing chamber described by all modeling
approaches, but the difference began to appear after the flow enters the diffuser. The flow
under the six modeling approaches based on the k-ε model showed obvious spreading and
then contraction after entering the diffuser, and there was a clear boundary in the high
Mach number region meaning that the shock wave was stronger. In the diffuser calculated
by the SST model, the high Mach number region was relatively long and narrow, and only
slow contraction could be seen without spreading.

The pressure and Mach number variation in the diffuser of each modeling approach
were quite different. To study the reason for this feature, the streamlines inside the diffuser
were outlined. It can be seen that there was a recirculation region in the diffuser, as shown
in Figure 9, and the size of the recirculation region calculated by each modeling approach
was different. By extracting the wall shear stress distribution curve, the positions of the
separation point and the reattachment point under each modeling approach were obtained,
as shown in Figure 10, and the starting position and ending position of the recirculation
can be judged. Viewed along the flow direction, the separation point occurred when the
wall shear stress was equal to 0 for the first time, and the reattachment point occurred
when it was equal to 0 again. When using the standard wall function, the separation point
and reattachment point calculated by the RNG and SKE models basically coincided; while
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the separation point calculated by the RKE model was earlier, the reattachment point was
later, and the recirculation region was obviously larger. When the enhanced wall treatment
was used, the separation points of these three k-ε models were basically the same, and
the reattachment points calculated by the RNG and SKE models were later than the RKE
model, indicating that the effect of the enhanced wall treatment was greater than these
three turbulence models for recirculation region prediction. Two recirculation cores were
still visible in the recirculation zone calculated by the RKE model, and the recirculation was
wider (in the radial direction). The standard wall function is considered to be unsuitable for
large pressure gradients and boundary layer separation, while the enhanced wall treatment
is usually recommended for these situations. At the same time, the SKE model is considered
unsuitable for flows with large pressure gradients. The RKE model is considered to be
more suitable for flows that include separated flows, boundary layers under strong reverse
pressure gradients, and recirculation. These conclusions have also been verified here. With
the enhancement by the enhanced wall treatment, the three k-ε models have improved the
prediction ability of recirculation. Therefore, it is recommended to use the RKE model or
the enhanced wall treatment for flows with recirculation in the steam ejector.
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Figure 10. Distribution of the ejector wall shear stress at Pb = 3 kPa.

Both the RKE and RNG models are improved variants of the k-ε model since the
advantages and disadvantages of the SKE model are known. However, the RNG model
does not show significant improvement over the SKE model in this steam ejector simulation,
while the RKE model shows substantial improvements. This may be because the RNG
and the SKE model have similar forms of transport equations for k and ε, while the RKE
model contains a new formulation for the turbulent viscosity and a modified transport
equation for ε, derived from an exact equation for the transport of the mean-square vorticity
fluctuation [36]. Mainly due to the modeled dissipation equation, the SKE model and other
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k-ε models with the modeled equation for ε are found to predict the spreading rate in planar
jets reasonably well, but the spreading rate for axisymmetric jets is unexpectedly poor,
while the RKE model is found to predict the spreading rate for axisymmetric jets as well
as that for planar jets. This reason may explain the superiority of the RKE model over the
RNG and the SKE model for the simulation of a steam ejector with the flow dominated by
axisymmetric jets.

The starting point for the development of the SST model was the need for the accurate
prediction of aeronautic flows with strong adverse pressure gradients and separation [42].
Compared with the k-ε models, the SST model gains the largest recirculation region, the
separation point is closer to the diffuser inlet, and the reattachment point even exceeds
the diffuser and enters the outlet pipe. The SST model is considered to be suitable for the
separated flow generated by the reverse pressure gradient, but in the current flow, there
is interference from the second shock train and the confined wall, and the calculated flow
spreading when entering the diffuser is obviously weak and cannot spread to the boundary
in time to overcome the adverse pressure gradients. Therefore, the calculated recirculation
is larger, and there is the possibility of overpredicting the recirculation and underpredicting
the flow spreading rate. The existence of recirculation produces a large energy loss, so the
back pressure that can be overcome is lower, and the obtained CBP value is also lower.

3.4. Influence of the Spatial Discretization Scheme

This section studies the influence of two different spatial discretization schemes for
steam ejector simulation on the scale of commonly used meshes (such as Mesh02) and suffi-
ciently fine meshes (such as Mesh05) to help choose discrete schemes. The aforementioned
seven simulation schemes were changed from the second-order upwind scheme (2ND) to
the QUICK scheme and recalculated, adding a total of 78 cases.

Figure 11 and Table 7 show the ejector performance calculation results under different
modeling approaches and discretization schemes and use the calculation results of the
second-order upwind scheme as a reference to show the EoC between the calculation results.
When the back pressure was less than the CBP, the flow was in the choked flow region, and
the calculated EoC value of the maximum ER value caused by the change of the upwind
schemes on the two scale meshes was less than 1%. Except for the modeling approach
based on the SKE model, the EoC of the other schemes was less than 0.11% and could
be ignored. When using a regular-scale mesh, after the upwind scheme of the SKE-SWF
approach was changed from 2ND to QUICK, the calculated CBP value was reduced from
4.7 kPa to 4.6 kPa, the EoC value was −2.13%, and the CBP values of the other modeling
approaches remained unchanged.

Table 7. Comparison of the ejector performance with different solvers and turbulence models.

Turbulence Model
and Solver

Maximum ER CBP

Value EoC (%) EoE (%) Value
(kPa) EoC (%) EoE (%)

Experimental data 0.40 — — 5.0 — —

SKE-SWF-QUICK-PBS 0.435 0.81 8.67 4.6 −2.13 −8.00

RNG-SWF-QUICK-PBS 0.444 −0.11 11.09 4.7 0.00 −6.00

RKE-SWF-QUICK-PBS 0.409 −0.02 2.26 4.7 0.00 −6.00

SST-QUICK-PBS 0.423 −0.01 5.62 4.3 0.00 −14.00

SKE-EWT-QUICK-PBS 0.482 0.39 20.40 5 0.00 0.00

RNG-EWT-QUICK-PBS 0.486 0.00 21.57 5 0.00 0.00

RKE-EWT-QUICK-PBS 0.446 0.03 11.59 5 0.00 0.00
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Figure 11. Comparison of ejector performance from experimental data and CFD results utilizing
different solvers: (a) Comparison of ejector performance, (b) EoC comparison of ejector performance,
(c) Comparison of ejector performance, (d) EoC comparison of ejector performance.

When the back pressure was greater than the CBP, the flow was in the unchoked flow
region, and as the back pressure increased, the EoC caused by the higher order upwind
scheme increased. The changes in EoC when the SKE model was used were the most
significant, while the changes in EoC when the RKE model and the SST model were used
were weaker. The EoC value when using a regular-scale mesh was generally greater than
that of a high-density mesh.

If the unchoked flow region was not considered during the design and operation, the
performance parameters of the steam ejector mainly consisted of the maximum ER and the
CBP. When using regular-scale meshes combined with a standard wall function, the three
k-ε models were basically not affected by the special discrete scheme when calculating the
maximum ER value. When only the SKE model was used to calculate the CBP value, it was
more affected by the special discrete scheme. When the high-density mesh was combined
with the enhanced wall treatment, the maximum ER value and CBP value calculated by all
the modeling approaches were basically not affected by the special discrete scheme; that
is, under the current mesh density, the difference between the 2ND and QUICK schemes
could be ignored.

4. Conclusions

In this paper, we numerically studied the effects of different modeling and solving
approaches on the simulation of a supersonic steam ejector. The numerical approaches were
validated and compared against the experimental data of global quantities: the ER and
the CBP and local quantities: wall static pressure. In particular, the four most frequently
used and recommended turbulence models, two near-wall treatments, two solvers and
two spatial discretization schemes of the convection term have been tested and compared.
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In total, more than 185 cases of 17 different modeling and solving approaches were carried
out in this work, and several conclusions are obtained as follows:

(1) In the choked flow region, the pressure- and density-based solvers have no signif-
icant difference for the global and local parameters, while in the unchoked flow
region, the simulation results from the pressure-based solver are slightly closer to the
experimental data than those of the density-based solver.

(2) When a conventional density mesh is used with a standard wall function, the RKE
model can obtain the best predictions of the maximum ER, and its RMS value of
the wall static pressure error is the least among the three k-ε models, while they
gain the same adequate CBP value with the spatial discretization scheme as the
second-order upwind scheme. Hence, the RKE model with a standard wall function
is recommended for a conventional density mesh.

(3) When a high-density mesh with y+ < 1 is used, the SST model can obtain the best
predictions of the maximum ER, and its RMS value of the wall static pressure error is
lower than the three k-ε models with an adequate prediction of the CBP, while the RKE
model with enhanced wall treatment can obtain the best prediction of the CBP and an
adequate prediction of the ER. The SST model may overpredict the recirculation in an
ejector. Hence, the RKE model with enhanced wall treatment is recommended for a
high-density mesh, especially for a steam ejector with recirculation inside the diffuser.

(4) The difference between the second-order upwind scheme and the QUICK scheme
can be ignored for the maximum ER calculation, while the CBP value from the SKE
model with the standard wall function is affected. Hence, the SKE model is more
sensitive to the near-wall treatment and the spatial discretization scheme and is not
recommended for the ejector simulation.

(5) In the choked flow region, the location of the secondary shock process varies with
the back pressure. The shock will move upstream into the ejector throat as the back
pressure increases, but the mixing process is not disturbed, and the secondary flow
remains choked. In the unchoked flow region, the secondary flow is not choked,
and its flow rate decreases, resulting in a rapid drop of the ER as the back pressure
increases. The shock moves upstream into the mixing chamber and disturbs the
mixing between the primary and secondary fluids, increasing the complexity of the
flow. That is why the numerical results for unchoked flow tend to be more susceptible
to modeling or solving approaches than those for choked flow.
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Nomenclature

2ND second-order upwind scheme
CBP critical back pressure (Pa)
COP coefficient of performance
cp specific heat (J/kg K)
D diameter (mm)
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DBS density-based solver
ER entrainment ratio
EoC deviation values of calculation results, EoC = (simulation result/reference simulation

result − 1) ···100
EoE error value of simulation result and experimental data, EoE = (simulation result/

experimental data − 1) ···100
EWT enhanced wall treatment
EXP experimental data
K turbulence kinetic energy (m2/s2)
mp primary flow rate (kg/s)
ms secondary flow rate (kg/s)
Pb back pressure (Pa)
PBS pressure-based solver
RKE realizable k-ε model
RMS root mean square
RNG RNG k-ε model
RSM Reynolds Stress model
Rt throat radius
SERS steam ejector refrigeration system
SKE standard k-ε model
SKW standard k-ω model
SST SST k-ω model
SWF standard wall function
Tp primary fluid saturated temperature, Tp = 130 ◦C
Ts secondary fluid saturated temperature, Ts = 10 ◦C
u streamwise velocity component (m/s)
u’, T’ turbulence fluctuation terms(m/s, K)
ut axial velocity at the throat inlet (m/s)
v radial velocity component (m/s)
X distance along ejector (m)
Greek
α thermal diffusivity (m2/s)
ε turbulence dissipation rate (m2/s3)
λ heat conductivity (W/m K)
µ dynamic viscosity (kg/m s)
ρ density (kg/m3)
ω specific dissipation rate
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