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Abstract: Global climate change and the spread of COVID-19 have caused widespread concerns about
food security. The development of smart agriculture could contribute to food security; moreover,
the targeted and accurate management of crop nitrogen is a topic of concern in the field of smart
agriculture. Unmanned aerial vehicle (UAV) spectroscopy has demonstrated versatility in the rapid
and non-destructive estimation of nitrogen in summer maize. Previous studies focused on the entire
growth season or early stages of summer maize; however, systematic studies on the diagnosis of
nitrogen that consider the entire life cycle are few. This study aimed to: (1) construct a practical diag-
nostic model of the nitrogen life cycle of summer maize based on ground hyperspectral data and UAV
multispectral sensor data and (2) evaluate this model and express a change in the trend of nitrogen
nutrient status at a spatiotemporal scale. Here, a comprehensive data set consisting of a time series of
crop biomass, nitrogen concentration, hyperspectral reflectance, and UAV multispectral reflectance
from field experiments conducted during the growing seasons of 2017–2019 with summer maize
cultivars grown under five different nitrogen fertilization levels in Beijing, China, were considered.
The results demonstrated that the entire life cycle of summer maize was divided into four stages,
viz., V6 (mean leaf area index (LAI) = 0.67), V10 (mean LAI = 1.94), V12 (mean LAI = 3.61), and
VT-R6 (mean LAI = 3.94), respectively; moreover, the multi-index synergy model demonstrated high
accuracy and good stability. The best spectral indexes of these four stages were GBNDVI, TCARI,
NRI, and MSAVI2, respectively. The thresholds of the spectral index of nitrogen sufficiency in the V6,
V10, V12, VT, R1, R2, and R3–R6 stages were 0.83–0.44, −0.22 to −5.23, 0.42–0.35, 0.69–0.87, 0.60–0.75,
0.49–0.61, and 0.42–0.53, respectively. The simulated nitrogen concentration at the various growth
stages of summer maize was consistent with the actual spatial distribution.

Keywords: hyperspectral sensor; UAV multispectral sensor; nitrogen concentration; synergy model;
summer maize

1. Introduction

Considering global climate change and the COVID-19 pandemic, crops affected by
droughts, floods, pests, diseases, and lack of nutrients such as Nitrogen (N) have garnered
more attention [1–4]. Nitrogen is essential for crop growth and development [5]. Using
remote sensing technology to estimate nitrogen content, existing relevant studies mainly
focus on nodes in a certain growth period, which makes it difficult to support relevant
business requirements. Maize is one of the most widely planted crops worldwide, grown in
over 170 countries. China is the second largest corn producer globally; moreover, summer
corn dominates the Huang-Huai-Hai plain in China. Therefore, the fixed-point production

Atmosphere 2022, 13, 122. https://doi.org/10.3390/atmos13010122 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos13010122
https://doi.org/10.3390/atmos13010122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://doi.org/10.3390/atmos13010122
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos13010122?type=check_update&version=2


Atmosphere 2022, 13, 122 2 of 23

and management of nitrogen that considers the entire life cycle of summer maize is of great
significance. Site-specific crop-production management (SCM) is an information-based
technology for agricultural production management [6]. Nitrogen is a vital nutrient for
summer maize production in the North China plain; however, excessive fertilization has
adverse effects on the environment [7–9]. The nitrogen demand of summer maize varies
spatially across fields, which could lead to localized differences in plant growth [10,11].
Hence, nitrogen management is a primary consideration in SCM [12,13]. An accurate and
rapid monitoring of the nitrogen concentration in crops during the plant life cycle is key to
assessing crop nitrogen nutrition and for the SCM of nitrogen fertilizer [14]. It is also a key
method for reducing the risk of environmental pollution caused by improper fertilization
management [15,16].

Field variability can be evidenced by maps describing crop status. Maps could be
obtained as outputs of proximal (unmanned aerial vehicle (UAV)-mounted) and remote
sensing techniques using optical sensors [17], which could then be used to interpret the
dynamics of plant nitrogen demand during the crop’s life cycle [18]. Maps help to undertake
this rapidly and accurately, instead of using destructive and time-consuming ground-plant
sampling and analytical measurements [19–21].

Various satellite-mounted sensors are suitable for monitoring a crop’s nitrogen nutrient
status, providing information at different levels of spatial (pixels from 300 to 0.3 m) and
temporal (every 1–44 days) resolution [22]. Numerous studies have shown that nitrogen-
sensitive bands are concentrated in the visible and near-infrared regions [18]. Furthermore,
spectral indices are mainly calculated from the reflectance of visible and near-infrared bands
according to ratios, normalization, or certain formulas [23–26]. However, satellite remote
sensing data are greatly affected by weather—it is rainy and cloudy during the growing
period of summer maize. It is challenging to obtain remote sensing data in time under
cloudy conditions [18,27–30]. Furthermore, some authors stress that this technique has
limited operational flexibility for real-time field monitoring or management due to the low
spatial resolution of the images acquired and the long intervals between satellite revisits.

In recent years, the limitations of remote sensing satellites have opened up new
opportunities for the innovative use of unmanned aerial vehicles (UAVs) in crop monitoring.
Equipped with multispectral digital cameras, these devices can be used to periodically fly
over a field to obtain spectral information on crops in the visible and near-infrared regions
and calculate the vegetation index with very high spatial resolution (usually <20 mm).

UAVs are easy to carry and operate and can help realize the real-time monitoring
of nutrients and water management [31], weed control, disease, and pest detection and
can give an estimation of the grain yield [22,32] of different crops (such as rice [33,34],
wheat [35], maize [36], etc.), thus providing a guarantee for the SCM. With the advent
of robust and reliable unmanned aircraft and low-payload spectral scanners [23,37–39],
an opportunity now exists for using high-resolution hyperspectral imaging techniques to
predict the nitrogen nutrition status of summer maize [23–25,28,40]. However, due to the
high correlation of adjacent bands in a hyperspectral sensor, the redundant information
is relatively increased. In comparison, the number of multispectral sensor bands are less
than the hyperspectral ones, with 3 to 10 bands (generally divided into the red, green, blue,
visible, thermal infrared (two bands), near-infrared, and panchromatic bands), while re-
dundant information is relatively reduced [41,42]. Additionally, the hyperspectral imaging
technology of UAVs requires specific flight conditions and expensive equipment, contribut-
ing to high data acquisition costs and limited promotion and application of low-altitude
accurate observations [37]. The UAV multispectral technology has garnered considerable
attention due to its flexibility, convenience, and low cost. In particular, in comparison to
near-surface hyperspectral point measurements, it is also attractive with regard to its scale
capabilities for nitrogen management [15,20,38,43].

Numerous scholars have proposed many spectral indices for various research areas,
crops, and growth stages [23–26]. Numerous diagnostic studies on the spectral nitrogen
nutrition status of summer maize were also undertaken; however, they primarily focused
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on one or several key growth stages [44]. Studies that consider the nitrogen nutrition status
during the entire life cycle of summer maize are lacking. Most of them consider multiple
linear support vector machines, machine learning language, and other methods to study
and analyze crop nitrogen spectral diagnostic models. Research on a simple and practical
universal model is lacking.

So far, the application of spectral technology in diagnosing summer maize nitrogen
has primarily focused on single spectral technology, such as by only considering ground
hyperspectral research, UAV research, or remote sensing research. Some researchers
have combined ground hyperspectral technology with satellite remote sensing technology;
however, few have combined ground hyperspectral technology with UAV multispectral
technology. Previous studies have noted that spectral indices are developed for the entire
growing season of crops; hence, they could overestimate or underestimate plant parameters
at specific growth stages. For precision farming, exponents based on growth stages could
be required to prevent the smoothing that could occur when an entire seasonal equation is
applied to a particular stage [45]. Additionally, spectral tests generally occur in cycles of
1–2 years; moreover, inter-annual changes also need to be studied and discussed.

Therefore, ground hyperspectral technology and UAV multispectral technology were
combined here to diagnose the nitrogen nutrition status over the entire life cycle of summer
maize. This study aimed to: (i) construct and evaluate a diagnostic model of nitrogen con-
sidering the entire life cycle of summer maize using systematic near-surface hyperspectral
data from 2017 to 2019; (ii) optimize the summer maize life cycle nitrogen diagnostic model
using UAV multispectral data from 2019; and (iii) determine the spectral index thresholds
of sufficient and inadequate plant nitrogen nutrition nutrient levels at different stages of
the summer maize life cycle based on the optimized nitrogen diagnostic model and the
critical nitrogen concentration model.

2. Materials and Methods
2.1. Field Experiments and Environmental Conditions

Field experiments were conducted in the China National Research Center of Water-
saving Irrigation Engineering Technology, Daxing District, Beijing, China (39◦39′ N, 116◦15′ E,
34 m above sea level) in three consecutive growing seasons (2017–2019). Daxing is located
within semiarid-temperate, continental monsoon climate zones. The soil at the experimental
site was classified as a tidal soil comprising a silty loam in the 0–100 cm soil layer. The
average soil bulk density in the 0–60 cm soil layer is 1.42 g cm−3. The average nitrate
nitrogen content, ammonia nitrogen content, and PH value are 20.44 mg kg−1, 5.20 mg
kg−1, and 8.2, respectively, before the summer maize sowing. The mean annual temperature
is 13.4 ◦C and the mean annual precipitation is 532 mm. The three experimental seasons
were characterized by varying environmental conditions, with major differences in rainfall
and temperature, especially for July (beginning of the growing period in summer) and
September (end of the growing period in autumn). In Figure 1, the cumulative rainfall
(mm) and mean temperatures (◦C) of the three experimental seasons are presented with
values of the long-term mean (1990–2019).

A random block design with three replications was used. The area of each plot
was 60 m2, with a planting density of 55,000 plants per ha−1. The distribution obtained
was maintained during the three years, preventing interference of the residual mineral
nitrogen. The soil surrounding each plot was insulated to ensure that the fertilizer did not
penetrate the other plots. The field experiment area was surrounded by a 5 m protected
area. Cultivation and sowing were carried out simultaneously in accordance with the local
uniform farming model. The terrain is flat. The soil is uniform in texture and fertility. The
maize plant spacing was 30 cm and the row spacing was 60 cm. In all three seasons, a
widely grown Chinese summer maize cultivar (Jiyuan 168) was sown on 11 June in 2017,
and on 15 June in 2018 and 2019 at five levels of N fertilization (0 (N0), 140 (N1), 209 (N2),
279 (N3), and 419 (N4) kg·N·ha−1) with three replications. The N fertilizer was split into
two doses in a ratio of 1:3 (before sowing and the tasseling (VT) stage of summer maize)
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and applied on 8 June and 9 August in 2017, on 12 June and 13 August in 2018, and on
12 June and 5 August in 2020. Prior to sowing, “keba” compound fertilizer (15% N) was
applied. In the V12 stage, urea fertilizer (47% N) was applied. Due to a severe water
shortage, 60 mm irrigation was undertaken prior to sowing in all three years of the field
trials. Weeds, pests, and pathogens were frequently monitored and controlled as needed.
The summer maize was harvested on 24 September in 2017–2019.

The “Jiyuan” 168 cultivar was characterized by a short ripening period, lodging
resistance, good quality, good resistance, and an outstanding yield. In China, the variety is
widely grown in summer maize areas.

Field test data are the basis for the model-adjustment verification, and previous
studies have shown that the most effective model-adjustment parameter data are the
observation data under different environments (including climate and field treatment,
etc.) [46]. Therefore, the nitrogen gradient set in this study was relatively large.
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2.2. Plant Sampling and Spectral Measurements

Tissue samples were collected to measure the tissue nitrogen concentration in the
above-ground biomass the day after the spectral data were collected. The plants were
sampled by cutting the base of the stem just above the soil surface. Additional details
regarding sample acquisition (i.e., date, stage, sample number, etc.) are listed in supplemen-
tary Table S1. Before the annual first test, three representative plants were selected in each
plot and marked as reference plants for each sampling. Three plants were then selected for
each sampling with reference to the plant height, stem diameter, and panicle size of the
reference plants. The plant samples were oven-dried at 105 ◦C for 0.5 h and then at 75 ◦C
until a constant weight was achieved. Thereafter, the samples were weighed and ground to
pass through a 1 mm sieve. The nitrogen concentration of the plants was measured using
Kjeldahl digestion (Table S2).

Here, spectral reflectance includes hyperspectral reflectance and multispectral re-
flectance. Hyperspectral reflectance was measured from 2017 to 2019, using the passive,
non-imaging spectroradiometer, FieldSpec HandHeld 2 (ASD Inc., Boulder, CO, USA).
This device provides hyperspectral data within a wavelength range of 325–1075 nm at a
sampling interval of 1.5 nm. The spectral sampling dates were synchronized with the plant
sampling dates; moreover, the spectral measurements were undertaken on sunny days
around midday (10:00–14:00) Beijing time under clear sky conditions. The sensor had a field
of view of 25◦. After optimization of the ASD instrument, the reflectance of the device was
set to 100% by measuring the reflectance of a spectral on a reference panel (white reference
panel 25.4 × 25.4 cm, calibrated as 99% reflective). The white reference was measured
approximately every 5–10 min to check the instrument’s stability for 100% reflectance. The
white reference measurements were conducted by bringing the sensor close (~0.4 m) to
a spectral to ensure that the reflectance of only the reference panel was measured. Three
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representative points were selected from each test plot; furthermore, the sensor probe was
kept vertically downward during measurement. To ensure that maximum information on
the plants was obtained within the measured range, and to minimize the influence of the
soil background, the sensor was placed ~20 cm away from the plant canopy. The data were
converted to five multispectral wavebands centered at 475 nm (blue, bandwidth: 20 nm),
560 nm (green, bandwidth: 20 nm), 668 nm (red, bandwidth: 10 nm), 840 nm (near infrared,
bandwidth: 40 nm), and 717 nm (red edge, bandwidth: 10 nm) by calculating the average
reflectance of the three readings per waveband.

Multispectral reflectance was measured through a UAV, equipped with a multispectral
sensor in 2019. The platform used here comprised the Jingweim-M600 hex rotor UAV
system controlled by the open-source flight control Pixhawk (DJI, Shenzhen, China). At
present, there are many kinds of multispectral sensors (such as the Red Edge sensor, the
DJI Phantom 4 Multispectral Camera, the Parrot Sequoia+, the Sentera 6X, etc.). Through a
literature review and a cost-performance analysis [46–48], the Red Edge sensor (Mica Sense,
Seattle, WA, USA) was selected. The focal length of the camera was 5.5 mm, with an image
resolution of 1280 × 960 pixels. The camera was equipped with five spectral channels,
with central wavelengths of 475 nm (blue), 560 nm (green), 668 nm (red), 840 nm (near
infrared), and 717 nm (red edge); it was also equipped with a 30 cm × 30 cm gray plate and
a light intensity sensor. The light intensity sensor corrected the image of the external light
during the shooting process. The gray plate had a fixed reflectance; moreover, this plate
was corrected before and after the UAV measurements. The UAV image acquisition was
conducted on seven occasions between July 2019 and September 2019 and was synchronized
with the time of the ground data acquisition. The UAV images were acquired from 10 am
to 12 am, while the flight altitude was set to 60 m. The course was fixed during flight
(Figures S1 and S2). The overlap between the course and the side was set to 80%, the
ground resolution was 4.09 cm, and the flight speed was 3 m/s. A total of 335 images
were collected after the flight and imported into the Pix4Dmapper software for Mosaic.
Thereafter, the reflectivity and orthophoto images of the study area were obtained after
gray plate reflectivity correction.

Multispectral data of the hyperspectral conversion from the first two experiments
(2017 and 2018) were used as the training set, while those from the third experiment (2019)
and the multispectral data set obtained by a UAV were, respectively, used for validating
the new parameters (“validation data set”).

2.3. Data Processing and Analysis
2.3.1. Calculation of Simulated Multispectral Reflectance

The equation below was used to convert the near-ground hyperspectral reflectance
into multispectral reflectance. Thus, a multispectral model to diagnose nitrogen content in
the plant canopy was constructed:

R = ∑λ=λmax
λ=λmin

SλRλ/ ∑λ=λmax
λ=λmin

Sλ (1)

where R represents the reflectivity of the wide band of the simulated multispectral; λmin
and λmax represent the starting and ending wavelengths of the UAV sensor, respectively;
Sλ represents the value of the spectral response function of the sensor at the lambda
wavelength; and Rλ represents the hyperspectral reflectance of the summer maize plant
canopy spectrum at the lambda wavelength [49].

2.3.2. Multispectral Index

This index is a combination of two or more sensitive bands of vegetation; it helps
highlight the vegetation characteristics. Here, over twenty spectral indices that had a good
correlation with the nitrogen concentrations of the crops were selected from the published
literature for modeling and for verification of the analysis. Table 1 shows the formulas for
calculating these multispectral indices.
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Table 1. Multispectral reflectance indices used to estimate nitrogen content of crops in this study.

Number Multispectral Index Formula Literature Source

1 GOSAVI (1 + 0.16) (Rnir − Rg)/(Rnir + Rg + 0.16) [50]

2 MSR1 [(Rnir/Rr) − 1]/[ (Rnir/Rr)0.5 + 1] [51]

3 DVI Rnir − Rr [52]

4 GDVI Rnir − Rg [53]

5 VARI (Rg − Rr)/(Rg + Rr − Rb) [54]

6 GRVI (Rnir/Rg) − 1 [54]

7 MNLI (1.5 R2nir − 1.5 Rg)/(R2nir + Rr + 0.5) [55]

8 OSAVI 1.16 (Rnir − Rr)/(0.16 + Rnir + Rr)

[56]9 TCARI 3 [(Rnir − Rr) − 0.2 (Rnir − Rg) (Rnir/Rr)]

10 TCARI/OSAVI TCARI/OSAVI

11 RDVI (Rnir − Rr)/(Rnir + Rr)0.5

[57]
12 TVI 0.5 [120 (Rnir − Rg)−200 (Rr − Rg)]

13 SAVI 1.5 (Rnir − Rr)/(Rnir + Rr + 0.5) [58]

14 RVI Rnir/Rr [59]

15 EVI 2.5 (Rnir − Rr)/(Rnir + 6 Rr − 7.5 Rb + 1) [60]

16 GNDVI (Rnir − Rg)/(Rnir + Rg) [61]

17 NPCI (Rr − Rb)/(Rr + Rb) [62]

18 MSAVI2 0.5 [(2 Rnir + 1) − [(2 Rnir + 1)2 − 8 (Rnir − Rr)]0.5] [63]

19 NDVI (Rnir − Rr)/(Rnir + Rr) [64]

20 NRI (Rg − Rr)/(Rg + Rr) [65]

21 NLI (R2nir + Rr)/(R2nir − Rr) [66]

22 BNDVI (Rnir − Rb)/(Rnir + Rb)

[67]

23 BRNDVI [Rnir − (Rr + Rb)]/[Rnir + (Rg + Rb)]

24 GBNDVI [Rnir − (Rg + Rb)]/[Rnir + (Rg + Rb)]

25 GRNDVI [Rnir − (Rg + Rr)]/[Rnir + (Rg + Rr)]

26 PNDVI [Rnir − (Rg + Rr + Rb)]/[Rnir + (Rg + Rr + Rb)]

Note: Rnir, Rr, Rg, and Rb were spectral reflectance of the near-infrared, red, green, and blue wave segments,
respectively.

2.3.3. Critical Nitrogen Content Curve

The critical nitrogen content (Nc) was calculated by Equation (2):

Nc = aW−b
max (2)

where a represents the critical nitrogen content of the plants’ aboveground unit biomass; b
represents the dilution coefficient of the critical nitrogen content; and Wmax represents the
maximum aboveground biomass of the plants (103 kg·ha−1). The values of a and b were
determined based on the field test data.

2.3.4. Leaf Area Index (LAI)

Three summer maize plants which had been tested by hyperspectral measurement in
the plots were sampled. The total leaf area was measured using CanoScan LiDE 300. The
LAI was calculated using Equation (3):

LAI =
total lea f area o f plant

the plant occupies land area
(3)
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2.4. Model Evaluation

Using regression statistics, quantitative monitoring models were established to de-
termine plant nitrogen content during various growth stages using a multispectral index.
The simulated values of the quantitative monitoring model were calculated by the deter-
mination coefficient (R2), the root mean square error (RMSE), and the relative error (RE).
The sensitivities of the different spectral vegetation indices for detecting changes in plant
nitrogen concentration in the growth stages were tested by utilizing the noise equivalent
(NE) method, as reported by Viña et al. [68]. The modeling and analysis were undertaken
in Microsoft Excel 2010. Nitrogen prediction maps from the UAV data were drawn using
ENVI and ArcGIS.

2.5. Diagnosis Flow of Nitrogen Nutrition Status

The diagnosis flow of the nitrogen nutrition status in this study is illustrated in Figure 2.
First, three years of near-surface hyperspectral data were simulated as multi-spectral data.
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Furthermore, the whole growth stages of summer maize were divided into different
stages, and models were established. The suitable multi-spectral indices for the nitrogen
nutrition estimation were screened by comparative analysis by using the simulated multi-
spectral experiment. In this step, the multi-spectral indices were calculated by using
simulated spectra, and the relationship between the various multi-spectral indices and the
nitrogen nutrition was analyzed to identify the spectral indices that enabled an accurate
estimation of the nitrogen nutrition.

Finally, the multi-spectral models of nitrogen concentration were validated by the
UAV multi-spectral field observation data. It was concluded that the whole growth period
of summer maize could be divided into several stages for better diagnosis of the nitrogen
nutrition. Then, the multi-index synergy diagnosis model of the nitrogen nutrition of
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summer maize over its life cycle was determined. The sensitivity of these indices to
environmental interference factors was evaluated. In this step, we calculated the LAI and
the critical nitrogen concentration curve and gave the spectral diagnostic threshold.

3. Results
3.1. Model Construction and Optimization

The ground hyperspectral data measured between 2017 and 2019 were simulated as
multispectral data based on Equation (1). Here, the entire growth period of summer maize
was divided into eight growth stages (V6, V10, V12, VT, R1, R2, R3, and R6); moreover,
the relationship between the plant nitrogen concentration and the multispectral index was
established using the experimental data for 2017 and 2018. Based on twenty-six commonly
used multispectral indices, the first six spectral indices with good correlation coefficients in
each maize growth period were selected. A model for diagnosing the relationship between
the nitrogen concentration and the multispectral indices of the different growth stages was
established. Table 2 shows the results.

Table 2. Multispectral diagnosis models and evaluation results of the summer maize nitrogen
concentration at different growth stages.

Growth Stage Multispectral Index Diagnosis Model R2

V6

GBNDVI y = −1.112ln(x) + 2.963 0.643

BNDVI y = −3.686x + 6.488 0.571

BRNDVI y = −1.194ln(x) + 2.927 0.536

PNDVI y = −0.560ln(x) + 2.940 0.472

NRI y = −2.993x + 4.297 0.547

NDVI y = −1.997ln(x) + 3.101 0.543

V10

TCARI y = −0.0998x + 2.228 0.552

BNDVI y = 4.8586x − 1.6217 0.448

TCARI/OSAVI y = −0.0874x + 2.209 0.423

PVI y = 12.764x + 10.388 0.372

NPCI y = 1.725x + 2.660 0.295

RVI y = 2.118e0.0115x 0.274

V12

NRI y = −5.833x + 4.457 0.587

TVI y = 4.021e−0.018x 0.395

DVI y = 4.029e−1.153x 0.377

RDVI y = 7.343e−1.753x 0.371

SAVI y = 8.028e−1.790x 0.353

BNDVI y = −6.90ln(x) + 1.545 0.340

VT

NRI y = −2.816x + 2.121 0.424

OSAVI y = −2.525x + 3.400 0.334

NLI y = −1.414x + 2.490 0.331

RDVI y = 2.835e−1.026x 0.323

SAVI y = 2.956e−1.042x 0.315

MSAVI2 y = −1.414x + 2.489 0.309
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Table 2. Cont.

Growth Stage Multispectral Index Diagnosis Model R2

R1

DVI y = 2.983e−1.992x 0.328

TVI y = 2.933e−0.031x 0.343

GDVI y = 3.035e−2.170x 0.297

EVI y = 3.563e−1.379x 0.235

MNLI y = −1.889x + 1.870 0.229

RDVI y = 4.061e−1.941x 0.227

R2

NDVI y = 3.544x3.731 0.376

MSR1 y = 0.632x1.290 0.367

MSR2 y = 0.412x1.425 0.367

RVI y = 0.167x1.014 0.363

BRNDVI y = 3.052x1.708 0.343

PVI y = 586.49e16.675x 0.279

R3

OSAVI y = 1.946x1.303 0.522

NDVI y = 1.649x1.387 0.513

RVI y = 0.490ln(x) + 0.153 0.500

MSR2 y = 0.815x0.605 0.498

MSR1 y = 0.341x + 0.380 0.493

TCARI/OSAVI y = −0.276x + 0.934 0.490

R6

DVI y = 2.860x0.889 0.347

GDVI y = 3.055x0.950 0.343

TVI y = 0.093x0.815 0.334

MNLI y = 0.690e2.654x 0.330

MSAVI2 y = 2.241x1.031 0.325

SAVI y = 2.563x1.225 0.317
Note: ”y%” represented the nitrogen concentration of the summer maize plant. “x” represented multispectral
indices, the same as below.

Table 2 showed that in the different growth stages of summer maize, the multispectral
indices were closely related to the nitrogen concentration of the plants; however, they were
not completely consistent. The top six multispectral indices in each stage were as follows:
in V6: BNDVI, BRNDVI, GBNDVI, PNRI, NRI, and NDVI; in V10: TCARI, TCARI/OSAVI,
NPCI, BNDVI, PVI, and RVI; in V12: NRI, BNDVI, TVI, RDVI, DVI, and SAVI; in VT: NRI,
OSAVI, NLI, RDVI, SAVI, and MSAVI2; in R1: DVI, GDVI, TVI, MNLI, EVI, and RDVI; in
R2: MSR1, RVI, MSR2, NDVI, BRNDVI, and PVI; in R3: OSAVI, NDVI, MSR1, MSR2, RVI,
and TCARI/OSAVI; and in R6: GDVI, DVI, MNLI, MSAVI2, TVI, and SAVI.

The top six multispectral indices of each stage were nonidentical due to the different
environments and physiological ecologies of the crops at the different growth stages.
Stages V12 and VT were closely related to the multispectral index NRI. Although the
corresponding diagnostic models were linear, the slopes were inconsistent. The slope of
the V12 stage model was −5.833 and that of the VT stage model was −2.816. The nitrogen
concentration of the plants at the V12 stage varied greatly with the NRI because the nitrogen
concentration of these plants was more sensitive to changes in the NRI.

In the V6, V10, V12, and R3 stages, the determination coefficients of the optimal
multispectral index and plant nitrogen content were mostly above 0.5, while those in the VT,
R1, R2, and R6 stages were basically below 0.4. To improve the accuracy of the multispectral
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diagnostic model of the nitrogen concentration of summer maize, considering the entire
growth stage of summer maize, the LAI changed greatly from V6 to V12 (0.34–3.66), while
it changed insignificantly after VT (3.13–4.74). Therefore, stages VT to R6 were combined
into one stage for remodeling; hence, the model was further optimized (Table 3).

Table 3. Multispectral diagnosis models and evaluation results of the summer maize nitrogen
concentration in the stages from VT to R6.

Growth Stage Multispectral Index
Diagnosis

Model R2

VT-R6

MSAVI2 y = 2.115x0.879 0.682

GRNDVI y = 2.198x0.774 0.523

MSR y = 0.925x0.480 0.501

NDVI y = 2.010x1.506 0.492

NRI y = 1.926x + 1.092 0.481

VARI y = 1.190x + 1.105 0.452

After model optimization, the spectral indexes of the top six were MSAVI2, GRNDVI,
MSR, NDVI, NRI, and VARI, respectively. The determination coefficients were all above
0.45, and the top one was 0.682. The model determination coefficient was higher than that
of the individual models for each stage of growth. Therefore, the multispectral diagnostic
model of plant nitrogen concentration in the whole growth period of summer maize was
divided into an eight-stage model (V6, V10, V12, VT, R1, R2, R3, and R6) and optimized in
a four-stage model (V6, V10, V12, VT-R6). The results showed that the modeling precision
was improved by the optimized four-stage model.

3.2. Model Evaluation
3.2.1. Evaluation of Eight-Stage Model

This model was evaluated based on the multispectral data converted from the hyper-
spectral data and UAV multispectral data of 2019. The accuracy of the top six models in
the different growth stages of summer maize was analyzed using the multispectral data
converted from the hyperspectral data at eight stages. The equation of the fit between
the measured and the predicted values, the determination coefficient R2, the RMSE, and
the RE is shown in Figure 3. The RMSE of the maize at different growth stages ranged
from 0.14% to 0.32%, while the RE was <10%; these values indicated that the errors of
the models were insignificant, while the stability of these models was suitable. Therefore,
the model for diagnosing the nitrogen concentration of maize at different stages could be
optimized by R2. Generally, a higher R2 was selected for the appropriate multispectral
index diagnostic model.

According to Figure 3, the BNDVI spectral index in V6 was prominent in the validation
set, with R2 reaching 0.634. The appropriate spectral index for stage V10 was BNDVI
(R2 = 0.594). NRI (R2 = 0.573 and 0.342, respectively) was used in both the V12 and the VT
stages. The estimation accuracy of DVI, GDVI, and TVI in the R1 period was relatively high.
MSR1, RVI, MSR2, and NDVI could be used during stage R3. The optimal multispectral
index at stage R2 was OSAVI (R2 = 0.287). MNLI, GDVI, or MSAVI2 could be used as the
optimal multispectral index at the maturity stage.
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Figure 3. The top six multispectral indices of summer maize at the V6 (a), V10 (b), V12 (c), VT (d),
R1 (e), R2 (f), R3 (g), and R6 (h) growth stages and their life cycle diagnostic evaluation.
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To further verify the regional practicability of the multispectral plant nitrogen model
at different stages, field verification was undertaken using the 2019 UAV multispectral data
from V6 to R3 across seven stages. Table 4 shows the results. The RMSE values of the top
six multispectral index diagnostic models at three stages (V6, V10, and R1) were between
0.01% and 0.31%. The errors were relatively small, with the RE values being within 10%.
Therefore, the appropriate spectral index and its model could be determined based on
the R2 value in these three stages. The six spectral indices of PNDVI, NDVI, BRNDVI,
GBNDVI, BNDVI, and NRI in stage V6 all maintained high accuracy (R2 > 0.68); among
these, the accuracy of GBNDVI was particularly high. The accuracy of TCARI in stage V10
was relatively good (R2 = 0.547). In stage V12, NRI (R2 = 0.612) was significantly better than
that in the other indices (R2 < 0.30). The prediction level of stage VT was very poor. TVI
was better (R2 = 0.648) in stage R1. In the R2 and R3 stages, the RMSE values lay between
0.01% and 0.31%; however, the RE values were well over 30%. These results indicated that
these models were unstable and had large errors.

Table 4. Results of UAV multispectral diagnosis and evaluation of nitrogen in summer maize at
different growth stages.

Growth Stage Multispectral Index Relationship RMSE (%) RE (%) R2

V6

BNDVI y = 0.443x + 1.801 0.28 5.15 0.798

BRNDVI y = 0.551x + 1.453 0.24 4.13 0.843

GBNDVI y = 0.734x + 1.162 0.26 5.97 0.833

PNDVI y = 0.559x + 1.434 0.23 3.88 0.861

NRI y = 0.491x + 1.707 0.24 2.99 0.689

NDVI y = 0.324x + 2.224 0.31 5.27 0.845

V10

TCARI y = 0.590x + 1.085 0.03 5.42 0.547

TCARI/OSAVI y = 0.223x + 1.817 0.01 4.11 0.292

NPCI y = −0.169x + 3.105 0.05 8.83 0.211

BNDVI y = 0.384x + 1.709 0.06 7.59 0.277

PVI y = 0.176x + 2.031 0.01 0.14 0.307

RVI y = 0.361x + 1.643 0.04 2.67 0.249

V12

NRI y = 0.997x–0.244 0.31 9.51 0.612

BNDVI y = 0.265x + 1.517 0.49 16.11 0.143

TVI y = 0.242x + 1.700 0.37 11.42 0.232

RDVI y = 0.315x + 1.469 0.40 12.86 0.282

DVI y = 0.230x + 1.699 0.40 12.66 0.225

SAVI y = 0.334x + 1.408 0.41 13.32 0.283

VT

NRI y = −0.011x + 0.216 1.53 88.51 0.001

OSAVI y = −0.025x + 2.742 1.02 57.83 0.002

NLI y = −0.111x + 2.762 0.92 50.34 0.010

RDVI y = −0.015x + 2.299 0.61 32.92 0.002

SAVI y = −0.014x + 2.575 0.87 49.14 0.001

MSAVI2 y = −0.0045x + 2.347 0.67 36.73 0.001
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Table 4. Cont.

Growth Stage Multispectral Index Relationship RMSE (%) RE (%) R2

R1

DVI y = 0.408x + 0.757 0.18 7.24 0.636

GDVI y = 0.333x + 0.846 0.20 8.52 0.602

TVI y = 0.447x + 0.718 0.16 6.00 0.648

MNLI y = 0.259x + 0.947 0.21 9.03 0.536

EVI y = 0.329x + 0.890 0.18 5.98 0.611

RDVI y = 0.260x + 0.911 0.23 11.49 0.578

R2

MSR y = 0.608x + 1.453 0.99 79.54 0.689

RVI y = 0.851x + 1.569 1.40 113.3 0.698

MSR y = 0.695x + 1.611 1.25 101.1 0.706

NDVI y = 0.383x + 1.680 0.94 75.57 0.727

BRNDVI y = 0.253x + 1.727 0.84 66.38 0.715

PVI y = 0.263x + 1.695 0.82 64.84 0.707

R3

OSAVI y = 0.081x + 1.192 0.43 46.47 0.081

NDVI y = 0.185x + 1.140 0.46 50.76 0.532

MSR y = 0.303x + 0.947 0.37 40.26 0.532

MSR y = 0.327x + 1.306 0.74 84.31 0.533

RVI y = 0.269x + 1.129 0.52 57.91 0.534

TCARI/OSAVI y = 0.481x + 1.067 0.63 71.88 0.497

3.2.2. Evaluation of Optimized Four-Stage Model

The four growth stages in the optimized four-stage model mean that the entire growth
period of summer maize was divided into four stages: V6, V10, V12, and VT to R6. The
first three stages (V6, V10, and V12) were evaluated in the previous section. The evaluation
of the fourth stage model (VT to R6) was undertaken based on the UAV multispectral data.
The results are shown in Table 5 and Figure 3. The accuracy (R2) of the top six multispectral
index (MSAVI2, GRNDVI, MSR, NDVI, NRI, and VARI) diagnostic models in the VT to
R6 stage ranged from 0.311 to 0.735. The spectral index with the highest R2 was MSAVI2,
followed by NDVI (R2 = 0.497). The RMSE values ranged from 0.22% to 0.53%, and the
RE values ranged from 6.32% to 22.0%. The multispectral indices with an RE < 10% were
MSAVI2 and GRNDVI. Therefore, in the VT to R6 stage, the model established by the
MSAVI2 multispectral index had high accuracy and good stability.

Table 5. Evaluation results of nitrogen in summer maize in the VT to R6 stages.

Multispectral Index
UAV Data Evaluation

Relationship RMSE (%) RE (%) R2

MSAVI2 y = 0.848x + 0.331 0.22 6.38 0.735

GRNDVI y = 0.306x + 1.962 0.53 6.88 0.491

MSR y = 0.121x + 1.517 0.42 18.30 0.373

NDVI y = 0.085x + 1.521 0.39 15.03 0.497

NRI y = 0.736x + 0.689 0.49 21.83 0.332

VARI y = 0.787x + 0.621 0.50 22.20 0.311

Figure 4 shows the evaluation of the optimal spectral index prediction model for the
nitrogen diagnosis of summer maize at different growth stages. The dotted line represents
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the 1:1 line. It was better to divide the whole life cycle of summer maize into four stages to
diagnose the nitrogen nutrition status. Figure 3a represented the V6 stage, and the optimum
spectral index was GBNDVI. Figure 3b represented the V10 stage, and the optimum spectral
index was TCARI. Figure 3c represented the V12 stage, and the optimum spectral index
was NRI. Figure 3d represented the VT to R6 stage, and the optimum spectral index
was MSAVI2.
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the V6 (a), V10 (b), V12 (c), and VT-R6 (d) growth stages.

In conclusion, the prediction accuracy of the nitrogen concentration in the whole life
cycle of summer maize using the four-stage model was higher, and it is in good agreement
with the actual observed value. Therefore, the four-stage model (Table 6) can be used to
jointly predict the nitrogen concentration in the life cycle of summer maize.
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Table 6. A four-stage combined diagnostic model of nitrogen concentration in summer maize.

Growth Stage
Four-Stage Combined Diagnostic Model

Multispectral Index Model

V6 GBNDVI y = −1.112ln(x) + 2.963

V10 TCARI y = −0.0998x + 2.228

V12 NRI y = −5.833x + 4.457

VT-R6 MSAVI2 y = 2.116x0.879

3.3. Model Inversion Results Based on UAV Images

Combined with the UAV images, the monitoring and diagnosis of plant nitrogen
concentration were undertaken based on the model established by the optimal multispectral
index. Figure 4 shows the prediction results of each growth period. Moreover, the plant
nitrogen concentrations estimated based on the appropriate multispectral index at different
growth stages were consistent with the spatial distributions of the actual plant nitrogen
concentration. The R2 values of the regression equations established by the estimated
and measured value at stages V6, V10, V12, and VT to R6 were 0.833, 0.547, 0.612, and
0.735, respectively. The TVI spectral index could be used to diagnose stage R1 in stage
VT to R6 with an R2 of 0.75. The prediction accuracies of stages V6, V12, and VT to R6
were higher than that of stage V10. Compared with the results of the satellite observation
experiments, it was found that the prediction accuracy of this method was higher than
that of the satellite observation experiments [47–49]. Furthermore, it could overcome the
influence of satellite remote sensing by heavy field cycle [22] and weather cloud [18,27–30].
For example, Li, F.L. et al. [49] only estimated the leaf nitrogen content of winter wheat at
the turning-green stage by ground hyperspectrum data combined with GF-1 satellite data,
and the highest predictive determination coefficient was 0.59. The average determination
coefficient of the model proposed in this study was 0.68.

According to the spectral diagnostic model and the critical nitrogen concentration of
summer maize at different growth stages (Figure S3), the nitrogen nutrition status of field
summer maize could be diagnosed based on the value range of the spectral index, as in
Figure 5. At the V6 stage (Figure 5a), the corresponding value of the optimal spectral index
(GBNDVI) corresponding to the critical nitrogen concentration was 0.61. At the V10 stage
(Figure 5b), the corresponding value of the optimal spectral index (TCARI) was −2.73. At
the V12 stage (Figure 5c), the corresponding value of the optimal spectral index (NRI) was
0.39. At the R1 stage (Figure 4d), the corresponding value of the optimal spectral index
(TVI) was 21.63. At the R2 stage (Figure 5e), the corresponding value of the optimal spectral
index (MSAVI2) was 0.55. At the R3 stage (Figure 5f) represented, the corresponding value
of the optimal spectral index (MSAVI2) was 0.48. The nitrogen nutrition status of field
summer maize could be diagnosed based on the value range of the spectral index.
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Figure 5. Spatial distribution of nitrogen diagnosis of summer maize plants by UAV at the V6 (a),
V10 (b), V12 (c), R1 (d), R2 (e), and R3 (f) growth stages.
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4. Discussion
4.1. Difficulties and Rationality of Experiment Implementation

This small-scale field trial, with well documented spatial differentiation of five dif-
ferent N-levels, enabled a case study for nitrogen concentration estimations based on a
combination of near-ground hyperspectral data and UAV multispectral push scan scanner
data. In comparison to other studies using similar spectral technology, this study carried
out both near-ground hyperspectral trials that could facilitate accurate predictions and
UAV multispectral trials with convenient and rapid prediction at a field scale; it was a
suitable combination of both. The experiment lasted three years. As compared to other
similar studies [18,30,69–71], the changes in nitrogen concentration (Figure S3) and spectral
data during the life cycle of summer maize were observed here. The results provided
detailed experimental data for predicting nitrogen concentration by spectral technology
during the life cycle of summer maize and enabled a more accurate prediction of nitrogen
concentrations.

4.2. Sensitivity, Validity, and Applicability of the Model

The proposed four-stage combined model (V6, V10, V12, and VT–R6) could be applied
more effectively. The four-stage model was constructed based on the GBNDVI, TCARI, NRI,
and MSAVI2 spectral indices, whose functions were logarithmic, linear, linear, and power
for each spectral index, respectively. The form of model function is consistent with other
research results [29,34,72,73]. To further analyze these indices, the sensitivity of the model
using NE was discussed (Figure 6). The results indicated that the GBNDVI-based model
demonstrated the lowest NE values, especially when the plant nitrogen concentrations
exceeded 4%. When the plant nitrogen concentration was <5%, the NE value was <0.5. The
TCARI-based model consistently demonstrated the second lowest NE for accessing plant
nitrogen concentrations, especially those exceeding 1%. The NRI model demonstrated
similar NE values to the TCARI index. When the plant nitrogen concentrations were <3%,
the NE values of the TCARI and NRI models were <0.5. The MSAVI2 model had low NE
values; however, as compared to the other three spectral indices, its NE value was the
highest. However, the NE was <0.1 when the plant nitrogen concentration was <2%. Due to
a decrease in the plant nitrogen concentration with the advancement of the growth period
(Figure S3), the GBNDVI, TCARI, NRI, and MSAVI2 models all showed high sensitivity in
their application stage.
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In order to better highlight the validity of the four-stage model, we discussed the
diagnosis of the nitrogen nutrition status of summer maize at different growth stages based
on the spectral index combined with the critical nitrogen concentration of summer maize
(Figure S3). At stage V6, the critical nitrogen concentration was 3.52%, and the correspond-
ing GBNDVI value was 0.61; furthermore, the spectral index range corresponding to the
normal nitrogen concentration was 0.83–0.44 (here, a critical nitrogen concentration of
0.9 to 1.1 times was considered as normal nitrogen fertilizer; that of >1.1 times as excess
nitrogen fertilizer; and that <0.9 times as deficient nitrogen fertilizer). At stage V10, the
critical nitrogen concentration was 2.50%, while the TCARI value was −0.22 to −5.23.
At this stage, the summer maize grew rapidly, the demand for fertilizer increased, and
the differences between the different base fertilizer levels were significant. At stage V12,
the critical nitrogen concentration was 2.2%, while the NRI was 0.42–0.35. The MSAVI2
model was applied from the VT to R6 stage; however, the critical nitrogen concentration
was significantly different in the VT, R1, R2, and R3–R6 stages (1.70%, 1.50%, 1.25%, and
1%, respectively). Therefore, the corresponding MSAVI2 ranges were 0.69–0.87, 0.60–0.75,
0.49–0.61, and 0.42–0.53, respectively. The spectral index obtained from the UAV sensor
data helped to effectively diagnose the nitrogen nutritional status of summer maize.

The applicability of the four-stage model was further discussed considering the LAI.
The GBNDVI model was suitable for a low cover of summer maize. At this stage, the
LAI was <1; there was more exposed soil, and the LAI varied from 0.34 to 0.94, with
an average of 0.67; moreover, the vegetation cover was low. Sun et al. [74] found that
the GBNDVI spectral indices could well predict the aboveground biomass of rapeseed.
Wang et al. [75] found that the GBNDVI index model helped to best predict herb quantity
in the Yellow River wetlands. The results of these previous studies are consistent with
the current study. The TCARI model was suitable in considering the rapid growth stage
of summer maize. In this stage, the LAI varied from 1.11 to 2.51, with an average of 1.94;
moreover, there was a low to medium cover of summer maize. Previous studies have found
that changes in the background reflectance affect the reflectance slope between 550 and
700 nm; furthermore, changes in the Rnir/Rg ratio in the TCARI calculation formula were
closely related to the changes in the reflectance characteristics of the background material
(soil and non-photosynthetic components). Cohen et al. [76] found that TCARI was strongly
correlated with leaf N at the rapid growth stage. Therefore, TCARI is suitable for a low to
medium coverage of summer maize. The NRI model was suitable for a medium to high
cover of summer maize. At this stage, the LAI of maize varied from 2.66 to 4.66, with an
average of 3.61. The plants grew rapidly; however, their morphology was basically stable.
The NRI is the normalized index of green and red light, which helps to better reflect the
nitrogen nutrition status of crops at this stage. Wang et al. [77] found that the nitrogen
concentration in rice at the booting stage was also closely related to the NRI. The results
were similar to those of this study. The MSAVI2 model was suitable for a high cover of
summer maize. The LAI of maize changed from 3.13 to 4.74, with an average of 3.94; the
change was insignificant in comparison to that of the previous stage.

4.3. Feasibility of Data Acquisition

Only the growth stage of summer maize was determined when the four-stage model
was applied in the field; moreover, the UAV sensor data were obtained. First, the corre-
sponding diagnostic model was selected based on the stage; thereafter, the corresponding
spectral index was calculated based on the spectral data. The nitrogen nutrition status of
summer maize was diagnosed based on the range of normal fertilization. The model pro-
posed here was simple, easy to calculate, and convenient for obtaining data. The UAV was
equipped with a multispectral sensor. Compared with the hyperspectral sensor, although
the hyperspectral sensor can obtain hundreds of narrow spectral bands at the same time
with high accuracy [35], the multispectral sensor can obtain spectral information on blue,
green, red, near infrared, and red edge bands, including nitrogen-sensitive bands. Basically,
it can meet our work on the diagnosis of the nitrogen nutrition status of crops [17,34].
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Furthermore, the cost was lower than that of a UAV equipped with a hyperspectral sen-
sor [15,44]. It was convenient for a wide range of people and a wide range of regional
applications [30,32,37].

4.4. Limitations of the Method and the Focus of Future Work

In order to analyze the interannual applicability of the model, this study only carried
out a 3-year study based on the same variety of summer maize. This method has a certain
reference value for other varieties and other crops in the carrying out of similar research.
However, it should be noted that, firstly, as different crop types, there will be differences
in the division of the growth stages; secondly, different crop types may have different
sensitive bands and appropriate spectral indices. Further tests involving different varieties
of maize and a wide range of vegetation types and regional scales should be considered to
verify the use of spectral indices in determining the nitrogen content in plants. To facilitate
the application of the model, this study only analyzed the unitary model; moreover, further
studies on the multivariate model could be undertaken. Consideration of a combination
of the radiative transfer model and the statistical model is also promising in going ahead.
This study undertook three years of experiments, which could be further carried out in the
future to supplement the samples, further improve the model, and expand its applications.

5. Conclusions

Here, ground hyperspectral technology was combined with UAV multispectral tech-
nology; thereafter, a multi-index synergy model of nitrogen concentration during the life
cycle of summer maize was proposed based on the data of a 3-year systematic field experi-
ment. Based on the critical nitrogen concentration model, the spectral index thresholds of
sufficient nitrogen levels were determined at different stages.

The results of this study showed that the optimized four-stage, multi-index synergy
model could better diagnose the nitrogen nutrition status considering the entire life cycle of
summer maize. GBNDVI was suitable for stage V6 with low coverage (mean LAI = 0.67),
the evaluation accuracy R2 was 0.833, while the spectral index threshold of nitrogen
adequacy ranged from 0.83 to 0.44. TCARI was suitable for stage V10 with medium and
low coverage (mean LAI = 1.94), with an R2 of 0.547. The spectral index threshold of
nitrogen adequacy ranged from −0.22 to −5.23. NRI was suitable for stage V12 with
medium to high coverage (mean LAI = 3.61), and with an R2 of 0.612. The spectral index
threshold of nitrogen adequacy was 0.42–0.35. MSAVI2 was suitable for stage VT–R6 with
high coverage (mean LAI = 3.94), and with an R2 of 0.735. The spectral index thresholds of
nitrogen adequacy in stages VT, R1, R2, and R3-R6 were 0.69–0.87, 0.60–0.75, 0.49–0.61, and
0.42–0.53, respectively.

The nitrogen concentration of summer maize plants simulated by the optimal mul-
tispectral index synergy model constructed at the different growth stages was similar to
the actual spatial distribution. This study provides technical support for the timely, rapid,
convenient, and accurate diagnosis of summer maize nitrogen nutrition and provides a
basis for the SCM of nitrogen.
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2018. “N” represented the data in 2019.
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