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Abstract: Flux–profile relationships are crucial for parametrizing surface fluxes of momentum and
heat, that are of central relevance for applications such as climate modelling and weather forecast.
Nevertheless, their functional forms are still under discussion, and a generally accepted formulation
does not exist yet. We reviewed the four main formulations proposed in the literature so far and
assessed how they affect the theoretical behaviour of the kinematic heat flux (H0) and the temperature
scale (T∗) in the stable boundary layer, as well as their consequences on the existence of critical values
for both the gradient and the flux Richardson numbers. None of them turned out to be fully consistent
with the literature published so far, with two of them leading to very unreliable expressions for both
H0 and T∗. All considered, a convincing description of flux–profile relationships still needs to be
found and seems to represents a considerable challenge.

Keywords: flux–profile relationships; universal similarity functions; stability functions; stable bound-
ary layer; heat flux; temperature scale; Richardson numbers; wind profile; temperature profile

1. Introduction

Characterising the turbulent energy exchange between the atmosphere and the un-
derlying surface is a central problem in boundary-layer research, especially under stable
conditions, i.e., when turbulence is produced only by wind shear and tends to be sup-
pressed by buoyancy. In particular, generally accepted functions to describe mean vertical
wind speed and temperature profiles related to a number of applications spanning from
climate modelling and weather forecasting to air pollution are still missing.

Despite all efforts, measuring stable boundary-layer (SBL) turbulent parameters is
still a challenge, primarily because the SBL is usually nonstationary and the turbulence is
weak. It was recently highlighted how stable conditions can be classified in at least two
different scaling regimes [1,2], depending on the stability strength. As stability increases,
the heat flux decreases to a minimum value beyond which turbulence becomes local,
intermittent, often detached from the surface, and mainly generated by low level jet gravity
waves and sub-meso motions [3–7]. Such a variety of phenomena, as well as turbulence
parameter values very close to the instrumental uncertainties make stable and very stable
cases quite difficult to both measure and model. From a theoretical point of view, it was
shown [8–10] how SBL turbulence intermittency arises when the surface radiative cooling,
which tends to suppress turbulence, prevails over wind shear, with both processes being
driven by downwelling longwave radiation associated with the cloud cover and synoptic
pressure gradient.

As already highlighted in the literature [1,3,4,6,11–14], when considering the kine-
matic heat flux (H0) as a function of stability a peculiar behaviour occurs. Under a neutral
condition, the thermal stratification is almost adiabatic, the mean potential temperature
gradient is approximately zero, and so are the thermal fluctuations; as a consequence, H0

Atmosphere 2021, 12, 1197. https://doi.org/10.3390/atmos12091197 https://www.mdpi.com/journal/atmosphere

https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0001-8637-0974
https://orcid.org/0000-0002-8475-5018
https://doi.org/10.3390/atmos12091197
https://doi.org/10.3390/atmos12091197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/atmos12091197
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos12091197?type=check_update&version=2


Atmosphere 2021, 12, 1197 2 of 15

is expected to tend to zero. Similarly, under very stable conditions, mechanical turbu-
lence is suppressed by a strong thermal stratification leading to the same result. Such a
behaviour implies that H0 reaches at least one minimum in between (i.e., under a weakly
stable condition), as confirmed by several papers [14–18] reporting a single pronounced
minimum value.

According to the previous literature, the existence of such a minimum value was inves-
tigated with two different approaches, leading to analytical expressions for H0 that include
or exclude the surface roughness parameter depending on whether the gradient [11,13,14]
or profile [3,4,6] relationships for wind speed and virtual potential temperature are consid-
ered. Despite the difference, a number of studies acknowledge the possibility of extending
the Monin–Obukhov similarity theory (MOST) to very stable conditions, a conjecture
supported by turbulent and mean meteorological measurements carried out during the
SHEBA experiment [5]. However, such an extension requires adequately addressing the
physical processes that are not considered by MOST but are expected to affect the SBL in
very stable conditions, such as internal gravity waves, Kelvin–Helmholtz shear instability,
low-level jets, sub-meso and nonturbulent motions in general [19].

Flux–profile relationships are crucial to validate MOST predictions, and are usually
obtained by making a number of assumptions on both their analytical forms and the
experimental data used to derive them. In particular, SBL measurement reliability depends
on the capability of disentangling turbulent fluctuations from nonturbulent sub-meso
motions with larger time scales [20,21]. As highlighted in [22], MOST similarity relationship
reliability increases when turbulent parameters are estimated over short time windows,
mostly because nonturbulent motions are filtered out.

In this framework, following [1,4,6,11–13] and extending the analysis presented in [14],
we systematically explored the consequences of adopting MOST under both weak and
strong stability conditions, with particular reference to the behaviour of H0 and of the
temperature scale T∗ when determined using four different universal similarity functions
previously proposed in the literature (in both their gradient and bulk form). Since these
functions are also related to the gradient (Ri) and the flux Richardson number (R f ), conse-
quences on the nonexistence of a critical value for Ri [23,24] are also discussed.

2. Theoretical Framework

The Monin–Obukhov similarity theory represents the most widely accepted approach
to describe the surface layer (SL), i.e., the closest layer to the Earth’s surface where both the
friction velocity (u∗) and the kinematic heat flux H0 = w′θ′ are approximately constant [25],
and turbulence parameters can be expressed as a function of the stability parameter
ζ = z/L, with z being a reference height and L the Obukhov length defined as

L = − θr

kg
u3
∗

w′θ′
, (1)

where θr is a reference virtual potential temperature (e.g., the temperature at ground level),
k the von Kármán constant, and g the gravity acceleration. The Obukhov length represents
the relative contributions of shear and buoyancy in the production or consumption of
turbulent kinetic energy, and is positive (negative) in stable (unstable) conditions but
becomes infinite when the stratification is strictly neutral.

According to MOST, the vertical gradient of mean wind speed and potential tempera-
ture can be expressed in terms of dimensionless universal functions:

dU
dz

=
u∗
kz

φm(ζ), (2a)

dθ

dz
=

T∗
kz

φh(ζ), (2b)
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where θ is the mean potential temperature, T∗ = −w′θ′/u∗ the scale temperature, and
φm(ζ), φh(ζ) are the wind velocity and temperature universal similarity functions, respec-
tively. Since, strictly speaking, gradients cannot be measured directly but only estimated
by numerical methods (e.g., finite-difference), it is often convenient to retrieve U and θ by
integrating the previous equations:

U =
u∗
k

[
ln

z
z0
−Ψm(ζ)

]
, (3a)

θ = θ0 +
T∗
k

[
ln

z
z0h
−Ψh(ζ)

]
, (3b)

where is the surface (z = 0) potential temperature, z0 (as well as its counterpart z0h) is the
aerodynamic roughness length, and Ψm,h(ζ) are the integral forms

Ψm,h(ζ) =
∫ ζ

ζ0,0h

1−Φm,h(x)
x

dx, (4)

with ζ0,0h = z/z0,0h.
As an alternative, stability can also be characterized using both R f and Ri, defined by

Ri =
g
θr
·

∂θ
∂z(

∂U
∂z

)2
+
(

∂V
∂z

)2 R f =
g
θr
· w′θ′

u′w′
(

∂U
∂z

)
+ v′w′

(
∂V
∂z

) (5)

where U and V are the horizontal wind component mean values. As for the Obukhov length,
positive (negative) values are associated with a stable (unstable) condition: the more the
stability increases the more the turbulence is suppressed. Substituting Equations (4) into (5),
both the Richardson numbers can be expressed as a function of Φh and Φm:

Ri = ζ
Φh(ζ)

(Φm(ζ))
2 R f =

ζ

Φm(ζ)
(6)

As pointed out in [26], when considering a stationary SL the TKE balance can be used
to demonstrate how R f reaches an asymptotic value of ≈ 0.2 for ζ→ ∞, as confirmed by
a number of both experimental and modelling studies [24,27–32]. Conversely, according
to the recent literature [23,24], Ri does not reach a critical value below which the flow
becomes laminar, even though weak and strong turbulence regimes are separated by a
transitional range of Ri (0.1 < Ri < 1).

3. Flux–Profile Relationships

On the basis of the general energy balance and without using MOST explicitly, it was
shown [26] that under neutral conditions and for turbulence that is both homogeneous and
stationary the wind vertical gradient as a function of the altitude is described by the very
same relationship (2a) provided by MOST, with Φm(ζ) given by

Φm(ζ) = 1 + βmζ, (7a)

where βm = 5. Under the same conditions and by using LES (Large Eddy Simulation) data,
it was found [33] that the functional form of Φh(ζ) can be expressed as

Φh(ζ) = 1 + aζ + bζ2, (7b)

with a = 4 and b = 1.25.
Using Equations (6) and (7), it easy to show that Equation (6) behave as expected, i.e.,

lead to a critical value for R f but not for Ri. In addition, both the Equation (7a,b) hold in a
neutral SL but can be considered as approximately valid in a real SBL too [33] provided
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that the stability is weak (ζ . 1). Being derived from fluid dynamic arguments and LES
that assume homogeneous and isotropic turbulence (i.e., not including sub-meso motions),
hereafter Equation (7a,b) will be considered as the reference flux–profile relationships.

In the attempt to characterize better Φm,h and Ψm,h in all cases, i.e., from weakly stable
to very stable SBL, four main experimental campaigns were carried out in the last fifty
years, leading to as many recommendations. In this respect, it is crucial to observe that all
of them were determined using eddy covariance flux measurements with time averaging
periods spanning from 15 to 60 min, i.e., not capable of filtering out all nonturbulent
motions. According to [34], under stable conditions the eddy covariance fluxes should be
estimated over a few minutes, while longer integration times would result in inflating the
SBL turbulence [35].

3.1. Businger–Dyer Formulation

The first experimental campaigns investigating stability conditions are older [36–38],
but despite that they can still be considered as a point of reference when considering weakly
stable cases and continuous nonintermittent turbulence. The universal similarity functions
proposed by Businger and Dyer and obtained using an averaging time of 15 min are:

Φm(ζ) = 1 + βmζ Ψm(ζ) = −βmζ (8a)

Φh(ζ) = α−1
h (1 + βhζ) Ψh(ζ) = −α−1

h βhζ (8b)

where the constants βm, βh and α−1
h are equal to 5.3, 8, and 0.95, respectively, as carefully

assessed in [39–41]. These relationships were obtained under a weakly stable condition,
in the range 0 < ζ ≤ 1, and since Equation (8a) is identical to Equation (7a), which was
retrieved for the neutral SL, they somehow reflect such a constraint. Contrary to what is
expected, extending the previous equations to high stability parameter values ( ζ → ∞ )
would lead to critical values for both R f and Ri. It is worth noting that the validity of the
extension to high ζ values was discussed by several authors [42–44]; in particular, it was
argued in [42] that in the range 0 < ζ ≤ 6 of both the equations seem to tend to ≈6.2, so
that Ri ∝ ζ for ζ → ∞ and the nonexistence of a critical value for Ri would hold.

3.2. Beljaars–Holtslag Formulation

Beljaars and Holtslag [45] based their study on a large dataset including routine
micrometeorological measurements acquired at Cabauw (Holland) with an average time of
10 min, as well as data from the MESOGERS-84 campaign carried out in Southern France.
Their analysis suggested the following equations:

Φm(ζ) = 1 + aζ + bζ·[1 + c− dζ]·exp(−dζ) (9a)

Ψm(ζ) = −
[

aζ + b
(

ζ − c
d

)
·exp(−dζ) +

bc
d

]
(9b)

Φh(ζ) = 1 + aζ·
[

1 +
2
3

aζ

]1/2
+ bζ·[1 + c− dζ]·exp(−dζ) (9c)

Ψh(ζ) = −
[(

1 +
2
3

aζ

)3/2
+ b
(

ζ − c
d

)
·exp(−dζ) +

bc
d
− 1

]
(9d)

where a, b, c, and d are equal to 1.0, 0.667, 5.0, and 0.35, respectively.
It is easy to show that Φm(ζ) ∝ ζ and Φh(ζ) ∝ ζ3/2 when ζ → ∞ , which implies

no critical value for Ri(ζ) ∝ ζ1/2 and R f∞(ζ) = 1.0. The latter value is slightly higher
than that reported in the literature but equal to the critical value originally proposed by
Richardson [46]. In addition, it is worth highlighting that as neutrality is approached (i.e.,
when ζ → 0) Equations (9) reduce to (8) with βm = βh = 5 and αh = 1.
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3.3. CASES-99 Formulation

The CASES-99 field campaign [47] was carried out in Kansas (USA) to provide a
detailed investigation of the SBL, including the retrieval of universal similarity functions.
Performed at mid latitudes, the dataset is actually capable of providing information on
the nocturnal SBL, but not on the long-living SBL that is typical of polar regions. Using
one-hour averaged mean and turbulent parameters, Cheng and Brutsaert [48] were able to
retrieve the following functions:

Φm(ζ) = 1 + a

 ζ + ζb
(

1 + ζb
) 1−b

b

ζ +
(
1 + ζb

)1/b

 (10a)

Ψm(ζ) = −a ln
{

ζ +
[
1 + ζb

]1/b
}

(10b)

Φh(ζ) = 1 + c

 ζ + ζd
(

1 + ζd
) 1−d

d

ζ +
(
1 + ζd

)1/d

 (10c)

Ψm(ζ) = −c ln
{

ζ +
[
1 + ζd

]1/d
}

(10d)

where a, b, c, and d are equal to 6.1, 2.5, 5.3, and 1.1, respectively. As expected, when
ζ → ∞ the latter equations do not lead to a critical Ri(ζ) value, but in contrast with the
recent literature they do not lead to a critical R f (ζ) either. Moreover, in this case, when
ζ → 0 the previous equations reduce to (8) with βm = 6.1, βh = 5.3 and αh = 1.

3.4. SHEBA Formulation

The SHEBA experimental campaign [49,50] took place on the Arctic Ocean and is the
principal source of information on the long-living SBL and a strong stability condition,
with the stability parameter ζ spanning from 0 to 100, a limit practically impossible to be
reached at midlatitudes. In this case, turbulent fluxes were calculated via eddy correlation
based on 60 min averaging, but flux time series were further corrected by examining 1 h
spectra and cospectra to filter noise and exclude low-frequency components, probably
including part of the sub-meso motions.

The first four universal similarity functions, originally proposed in [50] on the basis
of such an impressive dataset, were somehow complicated and difficult to be used in an
operational context. To overcome this issue, they were analytically simplified [51] to the
following expressions:

Φm(ζ) = 1 +
amζ

(1 + bmζ)2/3 (11a)

Φh(ζ) = Pr0

(
1 +

ahζ

1 + bhζ

)
(11b)

Ψm(ζ) = −3
am

bm

[
(1 + bmζ)1/3 − 1

]
(11c)

Ψh(ζ) = −Pr0
ah
bh

ln(1 + bhζ) (11d)

where Pr0 = 0.98, am = ah = 5.0, bm = 0.3, and bh = 0.4. It is easy to show that in this case
both the Richardson number critical values do not exist (as Ri∞ ∝ ζ

1
3 and R f∞ ∝ ζ

2
3 ), and

Equations (11) reduce to (8) under neutral condition, with bm = bh = 5 and α−1
h = 0.98.
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4. Effect of the Similarity Function Expressions on H0 and T∗

The four similarity function formulations mentioned in the previous section imply
different flux–profile relationships, leading to as many expressions for the mean wind
speed and temperature and their vertical gradients. Following and extending previous
analysis [1,4,6,11–13], which only considered the simple linear similarity functions (8), this
section systematically investigates the theoretical consequences of adopting any of the
presented options on H0 and T∗ behaviour. The results for H0 as a function of Φm were
already illustrated in [14] but are included here for the sake of completeness.

According to the cited literature, it is convenient to analyse the variation of H = −H0,
which is always greater than zero under a stable condition.

4.1. Universal Functions for Wind and Temperature Gradient

Using Equation (2a) with ζ = z/L and Equation (1), H can be expressed as a function
of Φm(ζ),

H =
θr

kzg
ζ

[
kz·dU/dz

Φm(ζ)

]3
, (12)

i.e., as a parametric equation where (fixing a measurement height z and dU/dz) H depends
only on ζ. When ζ → 0 , H is expected to decrease along with ζ because of the diminishing
potential temperature gradient suppressing the thermal fluctuations; similarly, when
ζ → ∞ , the strong thermal stratification tends to inhibit vertical turbulent fluctuations
leading to H0 → 0 again. It follows that H should be described by a nonmonotonic function
of ζ with at least one relative maximum, as confirmed by a number of studies [14–18]
reporting a single minimum value.

When the reference relationship (7a) is used, there is just one maximum [11,13,17,18]
for ζH = 1/2βm ∼= 0.1, at which H(ζH) is

Hmax =
4
27

θr

βm
(kz)2

(
dU
dz

)3
. (13)

It is interesting to note that while the relative maximum value of H depends on
both z and dU/dz, its position is a constant that has to be experimentally determined by
estimating βm. In this context, ζH is a critical threshold discriminating between weak
(ζ < ζH) and strong stability (ζ > ζH), i.e., between SBL characterized by continuous and
intermittent turbulence, respectively, with nonturbulent motions becoming more effective
as stability increases.

Being more complex than the simple Businger–Dyer equation for Φm, the conse-
quences of adopting the other three equations on the behaviour of H were numerically
characterized in the range 0 < ζ ≤ 100, i.e., under the same stability conditions measured
during the SHEBA campaign, where experimental studies suggested the existence of one
maximum of H. In addition, to allow a direct comparison between the four results, H0 was
replaced with the dimensionless scale parameter

H∗ = H
g

(kz)2θr(dU/dz)3 =
ζ

Φ3
m(ζ)

, (14)

that depends only on ζ.
The behaviour of the absolute value of H∗ as a function of ζ for the four Φm proposed

in the literature is shown in Figure 1. Using Equation (7a) as a reference, the following
conclusions can be made:

• SHEBA Φm led to a trend similar to that expected, with a single maximum at ζ ∼= 0.1
and H∗ → 0 when ζ → 0 and ζ → ∞ . We were not able to reproduce the local
minimum at the large stability values (ζ ∼= 80) reported in [14].

• H∗ retrieved adopting the Beljaars–Holtslag Φm presented a first maximum at ζ ∼= 0.1,
but beyond that it did not decrease monotonically as expected, reaching a second
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maximum at ζ ∼= 6.1. The presence of such a secondary maximum might be attributed
to the limited ζ values that can be observed at midlatitudes, i.e., where the Beljaars–
Holtslag dataset was acquired.

• CASES-99 Φm performance was disappointing, leading to a function that increased as
stability increased.
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As a result, while all equations were capable of reproducing the expected H∗ evolution
when 0 < ζ ≤ 1, both the Beljaars–Holtslag and the CASES-99 formulations did not hold
under very stable conditions. When reference, Businger–Dyer, or SHEBA formulations
were used, the correspondence between ζ and H∗ was not biunivocal and led to a sub- and
a supercritical value of ζ for H∗ < H∗,max.

The same analysis can be extended to the temperature scale T∗, whose expression as a
function of Φm(ζ) was obtained from Equations (1) and (2a):

T∗ =
kzθr

g
ζ

(
dU/dz
Φm(ζ)

)2
. (15)

As before, it was convenient to introduce the dimensionless scale parameter T∗∗, that
depends only on ζ and allows for direct comparisons between different Φm(ζ) expressions:

T∗∗ =
g

kzθr
(dU/dz)−2T∗ =

ζ

(Φm(ζ))
2 . (16)

Since T∗ = −H0/u∗ and u∗ is greater than zero by definition (as long as U > 0), all
considerations of the evolution of H∗ as a function of ζ must hold here as well. Thus, T∗∗
is expected to tend to 0 when ζ → 0 and ζ → ∞ and to have a maximum somewhere be-
tween. When Equations (7a) or (8a) were used, the maximum value was at ζT = 2ζH ∼= 0.2,
where T∗∗,max = 1/2βm. The behaviour of T∗∗ as a function of the stability parameter ζ for
the four Φm listed in Section 3 is represented in Figure 2, which shows how all functions
except the reference and the Businger–Dyer Φm led to unreliable representations of T∗∗
under very stable conditions. In particular, while all formulations presented a maximum at
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ζ ∼= 0.2, the Beljaars–Holtslag Φm gave another pronounced maximum at ζ ∼= 7.8, and both
CASES-99 and SHEBA Φm did not approach to zero when ζ increased, presenting local
minima at values of ζ that are of physical interest.
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By inverting Equation (2b) is it possible to express H as a function of Φh(ζ) instead
of Φm(ζ), i.e., as a parametric equation where H depends only on ζ when z and dθ/dz
are fixed:

H =

(
g
θr

)1/2

(kz)2
(

dθ

dz

)3/2
ζ−1/2Φ−3/2

h (ζ). (17)

Again, the dependence on ζ can be better studied by introducing the following
dimensionless scale parameter:

H∗∗ = H
(

g
θr

)−1/2

(kz)−2
(

dθ

dz

)−3/2
= ζ−1/2Φ−3/2

h (ζ). (18)

Unlike the previous cases, Equation (18) is not defined when ζ → 0 , but it is straight-
forward to demonstrate that H∗∗ is represented by a monotonically decreasing function
regardless of the analytical form of Φh(ζ). All the curves shown in Figure 3 tended to zero
when ζ → ∞ , even with different velocities depending on the Φh chosen, with Businger–
Dyer Φh being the fastest and SHEBA the slowest. Moreover, SHEBA Φh led to a trend very
close to that of the reference function (7b), suggesting a very low influence of sub-meso
motions. That is to say, the Φh performance was even worse than that of Φm, leading to a
monotonic trend that completely contradicted the expected behaviour.
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4.2. Universal Functions for Wind and Temperature Profile

When measuring either the average wind speed or the mean potential temperature
at a fixed height, the behaviour of both H and T∗ can be expressed as a function of the
universal similarity functions for wind and temperature gradient Ψm(ζ) and Ψh(ζ). In
this case, the thermal and mechanical surface characteristics (represented by the three
parameters z0, z0h, and θ0 in Equation (3) each play a role, and both H0 and T∗ are now
expected to depend on them.

Using Equation (3a) with ζ = z/L and Equation (1) gives

H = −H0 =
θr

kzg
ζ

[
kU

ln(z/z0)−Ψm(ζ)

]3
, (19)

that as its counterpart (12) is expected to tend to zero when ζ → 0 and ζ → ∞ , i.e., to be
described by a nonmonotonic function with one maximum. When the simple Businger–
Dyer Ψm(ζ) was used, it was easy to show [4] that Equation (18) has a maximum at
ζH = ln(z/z0)/2βm, where H0 is:

Hmax =
4k2

27
θr

zgβm

U3

[ln(z/z0)]
2 . (20)

Unlike the previous case, such a maximum is not universal, in the sense that it
explicitly depends on the surface characteristics represented by z0 and has to be considered
as local.

As seen in the previous subsection, to compare the four Ψm proposed in the literature
it is convenient to introduce the dimensionless variable

H+ =
zg
k2

1
θrU3 H′ =

ζ

[ln(z/z0)−Ψm(ζ)]
3 , (21)

that is represented in Figure 4 as a function of ζ and for the five Ψm listed in Section 3, with
z0 = 0.1 m. The value of z0 changed both the position of the maximum and its absolute
value, but did not affect the general forms reported in Figure 4, which shows similar trends
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to those seen in the previous subsection. In particular, Businger–Dyer and reference Ψm
(that coincided with each other), as well as SHEBA Ψm, led to a H∗ trend compatible with
that expected, but Beljaars–Holtslag Ψm produced a small secondary maximum around
ζ ∼= 10 and CASES-99 formulation does not go to zero when ζ increased. All Ψm were
capable of reproducing the first maximum, but in this case, it slightly depended on Ψm and
was 0.46, 0.55, 0.45, and 0.5 for reference and Businger–Dyer, Beljaars–Holtslag, CASES-99,
and SHEBA, respectively.
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Regarding T∗, Equations (1) and (3a) gives

T∗ =
θr

kzg
ζ

[
kU

ln(z/z0)−Ψm(ζ)

]2
(22)

and the dimensionless scale variable

T++ =
zg

θrU2 T∗ =
ζ

[ln(z/z0)−Ψm(ζ)]
2 , (23)

both of them depending on z0. Once again, when the reference and the Businger–Dyer
Ψm(ζ) were selected it is easy to see that Equation (21) had its maximum value at
ζT = ln(z/z0)/βm = 2ζH , where T∗ s

T∗,max =
θΘr

zg
k

4βm

U2

ln(z/z0)
(24)

and depended on both U and z, as well as on z0. In addition, it is interesting to note
that when T∗ was maximum H was (ζT) = 27/32 H0,max, i.e., the two maxima were
not coincident.

Figure 5 shows the comparison between different T++ numerically calculated as a
function of ζ for the four available Ψm with z0 = 0.1 m. Moreover, in this case, z0 did not
affect the general behaviour of T∗∗ and the trends illustrated in Figure 5 can be considered
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as representative. The reference and Businger–Dyer Ψm led to the expected T++ trend,
reaching a maximum around ζ = 1 and decreasing as stability increased. SHEBA Ψm had
similar behaviour, but with a slower decreasing trend reaching a slight minimum at high
ζ values. In contrast, both the Beljaars–Holtslag and the CASES-99 formulations led to
unreliable results, and did not appear to be capable of reproducing the expected behaviour.
In particular, CASES-99 Ψm did not lead to a decreasing trend at all.
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Following the same analysis performed in the previous subsection, it is possible to
express H as a function of Ψh also in this case, i.e., when dealing with profile universal
functions. Obtaining T∗ from Equation (3b) and substituting it into ζ = z/L = kzg/θr ·
T∗/u2

∗ to obtain u∗, H = −T∗u∗ can be expressed as

H =

√
kzg
θr

ζ−1/2
(

k(θ − θ0)

ln(z/z0h)−Ψh(ζ)

)3/2
, (25)

that leads to the dimensionless parameter

H++ =

√
θr

kzg

(
1

k(θ − θ0)

)3/2
H =

ζ−1/2

(ln(z/z0h)−Ψh(ζ))
3/2 . (26)

Similarly to H∗∗, H++ is not defined when θ − θ0 = 0 Whatever Ψh(ζ) and z0h values
were used, H++ trends were analogous to those presented in Figure 3, i.e., monotonically
decreasing functions without extrema. Again, none of the published Ψh(ζ) were capable of
reproducing the expected behavior.

5. Discussion

Theoretical and experimental results suggest that both H and T∗ tend to zero when ζ
goes to zero or infinity, reaching a maximum in correspondence of the critical values ζH and
ζT , that discriminate between continuous and intermittent turbulence. In particular, when
stability reaches supercritical values, turbulence becomes weak and can be significantly
inflated by the presence of nonturbulent motions.
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Assuming that MOST is a suitable theory to describe SBL turbulence under both
weak and strong stability conditions, the behaviour of H and T∗ as a function of different
universal similarity functions was systematically investigated. The analysis included four
experimentally determined formulations, as well as a reference formulation estimated from
theoretical considerations and LES (i.e., expected to be valid under neutral condition and
for homogeneous and stationary turbulence). Both the reference and the four experimen-
tally determined formulations for Φm, Φh Ψm, and Ψh used here were expected to lead to
similar outcomes, but our analysis showed otherwise. All Φm and Ψm were able to describe
the expected H and T∗ trends for subcritical values of ζ (ζ < ζH,T), including their max-
ima. Such a result is not surprising, as when neutrality is approached (i.e., when ζ → 0)
Beljaars–Holtslag, CASES-99, and SHEBA formulations reduce to the equations proposed
by Businger and Dyer (although with different coefficients). Nevertheless, for supercritical
values (ζ > ζH,T), three out of four formulations (namely Beljaars–Holtslag, CASES-99, and
SHEBA) led to unreliable results, with varying degrees of failure. In particular, the SHEBA
formulation showed an appreciable deviation only from the expected T∗ trend at high ζ
values, while the Belijaars–Holtslag formulation always presented another pronounced
maximum, and CASES-99 did not tend to zero as ζ increased. When considering Φh and Ψh
functions, the results were even more disappointing, as none of the formulations (including
the reference) were able to reproduce the expected behaviour. Such results are difficult
to explain without reanalysing the original datasets from which the universal similarity
functions were obtained, but some useful remarks can still be made.

Firstly, all experimental campaigns did not explicitly take into account nonturbulent
motions, which can sensibly affect turbulence measurements especially under very stable
conditions, when the stability parameter ζ exceeds its critical value. Excluding nontur-
bulent motion would require a completely different data analysis based on the spectral
gap that separates the small-scale turbulent region from mesoscale and sub-mesoscale
motions [20,21,52]. Starting from this evidence, a multiresolution decomposition technique
was successfully implemented in [22] to determine a turbulence cutoff time scale closely
related to the spectral gap. This result was further extended in [34], where the authors
introduced a variable averaging time τ, based on the bulk Richardson number (their Equa-
tions (12) and (13)), that varied between 20 min (strongly unstable conditions) and 30 s
(strongly stable conditions). As demonstrated in [19], such an approach is effective in
removing most of the nonturbulent perturbations, with the exception of Kelvin–Helmholtz
shear instability.

Secondly, none of the analysed formulations considered the possible presence of
self-correlation, which may affect the regression analysis yielding unreliable results, as
well demonstrated in [5,53]. For instance, Φm(ζ) is usually retrieved from Equation (2) by
performing a curve fit of the measured Φm(ζ) =

kz
u∗

dU
dz , where the friction velocity u∗ is

present in both the dependent and the independent variable.
This problem is also related to how flux–profile relationships are determined. All the

formulations considered here were obtained independently of each other, thus neglecting
any possible physical constraints or relation between them, but MOST requires for universal
functions to be congruent with all the similarity relationships in which they are included.
To be clearer, let us focus only on Φm and Φh, although a similar reasoning applies to
Ψm, and Ψh as well. In a typical experimental campaign, they are retrieved separately by
measuring dU/dz, dθ/dz, u∗, and T∗, so that any possible physical relationships between
them is neglected. To overcome such an issue, let us recall that there are three possible
parameters to characterize stability strength: the stability parameter ζ, which at a fixed
height depends only on the turbulent SBL parameters u∗ and T∗; the gradient Richardson
numbers, defined only by mean parameters such as the lapse rate and the gradients of the
mean horizontal wind speed components; and the flux Richardson number, which depends
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on a combination of both turbulent and mean parameters. As anticipated in Section 2, the
gradient Richardson number can be written as a function of both Φm and Φh :

Ri = ζ
Φh(ζ)

(Φm(ζ))
2 = JRi (ζ), (27)

that is a similar relationship between Ri and ζ not affected by self-correlation. Moreover,
JRi(ζ) represents a constraint that both Φh(ζ) and Φm(ζ) need to satisfy, as well as the
absence of a critical value for Ri. Equation (27) alone would not enable determination of
the two universal functions separately, just the functional form of their ratio. Nevertheless,
Equation (27) could be used in conjunction with its equivalent for R f ,

R f =
ζ

Φm(ζ)
= JR f (ζ), (28)

that does not involve Φh(ζ) but presents self-correlations that would need to be addressed
and is expected to reach a critical value when ζ → ∞ .

Such an approach, along with a careful data analysis to exclude the presence of
nonturbulent motions, could contribute to determining universal similarity functions that
are consistent with both the flux–profile relationships and the variety of physical processes
observed in the SBL. The effectiveness of this approach will be tested in future work, where
data acquired at Concordia station (Dome C, Antarctica) under stable and strongly stable
conditions will be analysed following the recommendations described above.
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