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Abstract: Theoretical calculations of the cooling potential of radiative cooling materials are crucial for
determining their cooling capability under different meteorological conditions and evaluating their
performance. To facilitate these calculations, accurate models of long-wave infrared downwelling
atmospheric irradiance are needed. However, the transmittance-based cosine approximation, which
is widely used to determine radiative cooling potentials under clear sky conditions, does not account
for the cooling potential arising from heat loss to the colder reaches of the atmosphere itself. Here,
we show that use of the approximation can lead to >10% underestimation of the cooling potential
relative to MODTRAN 6 outputs. We propose a temperature correction to the transmittance-based
approximation, which accounts for heat loss to the cold upper atmosphere, and significantly reduces
this underestimation, while retaining the advantages of the original model. In light of the widespread
and continued use of the transmittance-based model, our results highlight an important source of
potential errors in the calculation of clear sky radiative cooling potentials and a means to correct
for them.

Keywords: radiative cooling; cooling potential; MODTRAN; transmittance model; atmospheric
optics; atmospheric irradiance

1. Introduction

In recent years, radiative cooling has seen growing scientific and commercial interest
for applications ranging from the passive cooling of buildings to geoengineering. The pro-
cess, which involves a spontaneous heat loss from terrestrial objects to the atmosphere and
outer space by radiation of heat (and reflection of incident sunlight) through atmospheric
transmission windows, has a zero-energy, zero-carbon functionality and a net cooling effect
on the environment [1]. Precisely how much cooling occurs for a given surface depends
strongly on meteorological conditions. For instance, the cooling potential, which is defined
as the difference between the radiance from a sky-facing radiative cooler and the down-
welling atmospheric irradiance under clear skies, can vary between ~0 and 150 Wm−2

depending on the ambient temperature and total precipitable water (TPW) content [2].
Given this large variability, accurate determination of radiative cooling potentials

is crucial for validating the performance of radiative coolers, informing industry on the
geographical scope of designs such as cool-roof paints [3], and the best potential geographic
regions for radiative cooling approaches for geoengineering [2,4]. Research over the years
has yielded a range of atmospheric models that can be used to calculate radiative cooling
potentials, accounting for various factors such as humidity, topography, cloud cover and
altitude [1,5–12]. However, standard models used today to calculate radiative cooling
potentials or cooling power are often used beyond their scope, leading to systematic errors.
The most prevalent example of this is the transmittance-based cosine approximation. This
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approximation is widely used to model radiative cooling potentials under clear skies,
particularly of materials with strong spectral and angular selectivity in their emissivity.

In this paper, we elucidate the source of the errors in atmospheric radiance calculations
that use the transmittance-based cosine approximation and demonstrate its underestima-
tion of radiative cooling potential due to its simplified accounting of the irradiance from
greenhouse gases where the atmosphere is transparent. Comparative analysis against the
MODTRAN atmospheric hemispherical irradiance model shows that the transmittance-
based cosine approximation yields a significantly higher downwelling atmospheric irradi-
ance, and thus, cooling potentials that are lower by 6–24 Wm−2

, under typical operating
conditions, which is 10–23% more than the approximation itself. To address this, we apply a
temperature correction that accounts for the high elevations, and thus, low temperatures, of
greenhouse gases, namely, water vapor, carbon dioxide and ozone, which allows a net heat
transfer to them from the earth’s surface. This reduces the underestimation of the cooling
potential to 0.1–6% while retaining the useful angular resolution of the transmittance-based
cosine approximation, which the MODTRAN hemispherical irradiance model does not
provide. Our results suggest that recently constructed maps of radiative cooling potentials
may require corrections. Moreover, they indicate that the common use of the uncorrected
transmittance-based cosine approximation to verify experimental demonstrations of ra-
diative cooling could be leading to an overestimation of performance of radiative cooling
designs across the literature.

2. Atmospheric Irradiance and the Transmittance-Based Cosine Approximation

Due to its constituent greenhouse gases that are intrinsically absorptive or emissive
in the thermal wavelengths, the atmosphere radiates heat towards the earth’s surface.
The difference between this irradiance Iatm and the black-body radiance IBB (Tamb) at the
ambient air temperature (Tamb) close to the ground is what is typically defined as the
cooling potential or cooling power Pcooling. The cooling potential arises primarily within
the long-wavelength infrared (LWIR, 8–13 µm) atmospheric transmission window, where
the low intrinsic absorption of water vapor lowers Iatm, and reveals the cold upper reaches
of the atmosphere and the cold space beyond, allowing for heat radiated upwards from the
ground to be lost.

While the calculation of black-body irradiance is straightforward, it is more challeng-
ing to calculate Iatm, which needs to, at the very least, account for the spectral properties of
greenhouse gases, their distributions along the height of the atmosphere, and variations
in temperature across heights. A long history of work on this topic has yielded a number
of useful theoretical models for calculating Iatm, each of which is reasonably accurate
within its scope of use [1,5–9]. For instance, when using a spectrally flat emitter (gray-
or black-body), simple correlations have been shown to be very accurate in predicting
downwelling atmospheric irradiance [6]. However, for many radiative cooling calcula-
tions, spectrally and angularly resolved sky irradiance is often required, since radiative
cooling surfaces can present highly spectral and angular selective emissivities. Models that
yield the level of detail needed for such calculations are comparatively rare [1,5,13]. One
model, which has achieved almost universal use in recent radiative cooling literature, is the
transmittance-based cosine approximation [1,14–29], which was first used as part of a more
comprehensive model by Granqvist in 1981 [1]. This model assumes that the irradiance of
the atmosphere originates from greenhouse gases, including water vapor, carbon dioxide
and ozone, and calculates the spectral, angular sky irradiance based on an effective spectral
angular emittance as follows:

Iatm(θ, λ, Tatm) = εatm(θ, λ, Tamb)·IBB(θ, λ, Tatm) (1)

where
εatm(θ, λ, Tamb) = 1 − [1 − εatm(0, λ, Tamb)]

1/cosθ (2)
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Here, εatm is the effective emittance of the atmosphere, θ is the angle measured from
the zenith and λ is the wavelength. As stated by Granqvist, implicit in this model is
Kirchhoff’s Law, which states that at thermal equilibrium:

εatm(θ, λ) = αatm(θ, λ) = 1 − τatm(θ, λ) (3)

where αatm(θ, λ) is the spectral, directional absorptance of the atmosphere. τatm(θ, λ) is
the spectral, directional transmittance and is calculated based on the zenith-ward value
τatm(0, λ) using the cosine approximation:

τatm(θ, λ) = τatm(0, λ)
1

cos θ (4)

The hemispherical irradiance Iatm can be calculated by hemispherical integration of
the angular values from (1) and, in turn, yields Pcooling=IBB − Iatm.

3. Issues with the Transmittance-Based Cosine Approximation

While the model provides a reasonable estimate of Iatm (θ, λ), a crucial point to note is
that in using Kirchhoff’s law and Equation (3), it implicitly assumes that the atmosphere is
a homogenous entity at thermal equilibrium [1]. In reality, it is a complex, semi-transparent
structure whose temperature decreases with height. Where the atmosphere is particularly
transparent, the colder upper reaches of the atmosphere are apparent from the ground. This
transparency enables heat loss not only through the atmosphere but also to it (Figure 1A),
a fact that is not accounted for by the transmittance-based approximation.

The case for ozone illustrates this well. It is first important to note that the overwhelm-
ing majority of ozone occurs at frigid 10–40 km heights of the stratosphere in what is
known as the ozone layer. Consequently, any downwelling irradiance outside the LWIR
window from ozone is masked by the highly absorptive water vapor and CO2 in the
troposphere. In the LWIR window, however, the transparency of the atmosphere reveals
the ozone layer and outer space beyond. This means that some of the radiance from the
earth’s surface is absorbed by the ozone, and much of its intrinsic radiance at ~9.5 µm
reaches the earth. However, because of the low temperature of the ozone layer, which can
be ~70 ◦C lower than Tamb at altitudes where ozone concentration peaks in the summer
and ~40 ◦C lower in the winter [30], it radiates far less towards the ground than it absorbs
from the latter. In other words, a net heat loss occurs from the surface to the ozone layer,
and the assumption of a thermally homogeneous atmosphere no longer holds (Figure 1A).
This is not captured by Equation (3), which implicitly assumes the ozone layer to be at
Tamb, causing the downwelling irradiance from ozone to be incorrectly equal to the fraction
of IBB (Tamb) absorbed by it. Consequently, heat loss to the ozone layer is not registered,
Iatm is overestimated and Pcooling is underestimated, as is shown in Figure 1B. This is also
evident when one compares the hemispherical emittance calculated by MODTRAN with
Iatm calculated using the transmittance-based cosine approximation. The difference due
to the ozone effect alone is about 5–18.5 Wm−2 depending on the atmosphere type and
temperature, which is a significant 6–21% of the net cooling potential predicted by the
transmittance-based cosine approximation.

A similar effect occurs for water vapor and carbon dioxide, which we consider col-
lectively in this analysis. The two gases are well mixed throughout the atmosphere, and
a majority of their downwelling irradiance arises from within ~102 m depths of the at-
mosphere near the earth’s surface outside the LWIR window (which is at ~Tamb) and
within 2 km of the earth’s surface (or within ~12 ◦C of Tamb) in the LWIR. The resulting
temperature differences are far less than those for ozone. Consequently, the transmittance-
based approximation is largely correct outside the LWIR window where the atmosphere is
opaque, and shows a lower underestimation of Pcooling than seen for ozone at individual
LWIR wavelengths (Figure 1B). However, unlike for ozone, the underestimation occurs
over a much broader bandwidth across the LWIR, and for dry atmospheres, across the
16–20 µm wavelengths, which adds to a significant total when integrated.
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radiation. The photograph in the background was taken by NASA [31], and used under the Creative Commons-CC-BY-
NC-ND 2.0 License. (B) The spectral hemispherical atmospheric irradiance from the transmittance-based approximation 
and that from MODTRAN. 
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that from MODTRAN.

It should be noted that Granqvist explicitly proposed the transmittance-based cosine
approximation for use with a box model for calculating the radiative cooling powers of SiO
films on metal. Since the irradiance from ozone and absorptance/emittance of SiO films
have little overlap and the SiO film has a narrowband emittance, such a choice is justifiable
in that context. However, the approximation has since been used to calculate the radiative
cooling potentials of ideal emitters and cooling powers of radiative coolers with different
spectral emittances, leading to both a systematic underestimation of cooling potential
and a related overestimation of performance [14–29]. The MODTRAN hemispherical
emittance, which is more accurate, should ideally be used instead. Indeed, Granqvist
used a similar model in a later work [5]. However, because publicly available versions of
MODTRAN contain no angle resolved information [30,32] to date, it has mostly been used
for ideal emitters or real ones with ultra-wide angle emittances [33]. Furthermore, given
the widespread use of the transmittance-based model in the radiative cooling community, it
may be expedient for researchers to employ a modified version of the model that provides
the flexibility needed to accurately model spectrally and angularly selective radiative
coolers. Towards that end, in the subsequent section, we propose a correction to the
transmittance-based cosine approximation that reduces the systematic overestimation of
the ozone’s irradiance while retaining the necessarily angular resolution of the model.

4. Temperature-Corrections of the Transmittance-Based Model

Although the publicly accessible MODTRAN hemispherical irradiance model provides
a highly accurate estimate of the cooling potential, it does not contain angle-resolved infor-
mation, which is crucial for calculating the performance of typical radiative coolers whose
emittances can vary considerably with angle [1,15,34,35], and which the transmittance-based
cosine approximation provides. Therefore, here, we propose a correction that retains the
mathematical fundamentals of the original model, but corrects for the overestimation of the
irradiance from greenhouse gases. To do so, the lower effective temperatures of the ozone
layer and water vapor + CO2 in the LWIR, which allow for heat loss from the terrestrial
environment, must be taken into account. The ozone layer is kilometers-thick, and CO2 and
water vapor are distributed throughout the atmosphere, which means that their radiative
contributions are determined by a temperature distribution along their height. However,
we can simplify calculations assuming that the irradiance of the ith gaseous component
arises from a specific combination of its emittance εi and effective temperature Ti. The
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irradiance Iatm can then be separated into two contributions: one for ozone, which is
distributed high in the atmosphere, and one for CO2 + water vapor, which is distributed
throughout, as follows:

Iatm(θ, λ) = εozone(θ, λ)× IBB(Tozone, λ) + εrest(θ, λ)× IBB(Trest, λ) (5)

The directional emittances εi(θ, λ) of each component are calculated using
Equations (2)–(4), using their transmittance instead of τatm. The transmittance τrest of
water vapor + CO2, which effectively occur below the ozone layer, is calculated using
MODTRAN by setting the atmospheric ozone concentration to zero. The transmittance of
ozone is calculated as follows:

τOzone(θ, λ) = τatm(θ, λ)/ τrest(θ, λ) (6)

As mentioned earlier, for the transmittance-based cosine model, it is reasonable to
assume that the effective temperature of water vapor + CO2 where it is highly absorptive
is the ambient temperature Tamb and the effective temperature of the completely masked
ozone layer beyond is 0 K. It thus remains to calculate the effective temperature TOzone
of the ozone layer in the LWIR and Trest of water vapor and CO2 in the LWIR within the
16–20 µm range. To do so, we first obtain, from MODTRAN, the effective hemispherical
irradiance of CO2 and water vapor Irest (i.e., without ozone) and that of the ozone layer
IOzone by subtracting Irest from the hemispherical irradiance of the whole atmosphere
(Iatm). In parallel, we also calculate the hemispherical emittance of water vapor + CO2, and
the ozone layer from the directional values εrest(λ, θ) and εOzone(λ, θ) calculated earlier. We
then solve for Ti(λ) using the equation:

Ii(λ) = εi(λ)
∫ 2π

0

∫ π
2

0
2hc2λ−5

(
e

hc
λkBTi(λ) − 1

)−1
cos θ sin θ dθdϕ (7)

Plots of Trest and TOzone are presented in Figure 2 for the six MODTRAN standard
atmospheres: US standard, Tropical, Midlatitude summer, Midlatitude winter, Subarctic
summer and Subarctic winter. As shown, the effective temperatures of the gaseous com-
ponents are drastically lower than Tamb, with ∆T(lambda) being 50–100 ◦C for ozone and
5–20 ◦C for water vapor + CO2, which the traditional transmittance-based model does
not capture.

Equation (5), along with Equations (2)–(4), yields the directional irradiance, which
in turn can be used to calculate the hemispherical irradiance (Iatm) that corrects the over-
estimation of the transmittance-based model. As an illustration, we present the resulting
hemispherical sky irradiances Iatm for the six MODTRAN standard atmospheres against
the respective MODTRAN and transmission model outputs (Figure 3). As expected, the cor-
rected transmission-based Iatm is far closer to the MODTRAN irradiance than the original
transmission-based approximation. More importantly, our method maintains its closeness
to the MODTRAN model when the temperature Tamb is changed. Figure 4 shows the
cooling potential Pcooling = IBB(Tamb)− Iatm of the traditional transmission-based model,
the corrected model we propose and the MODTRAN irradiances of versions of the stan-
dard atmospheres at different temperatures. The values of Iatm are calculated using Tamb
for the traditional transmission-based model, using Tamb and ∆T in Figure 2 (assuming
that ∆T is unaffected by Tamb) for the corrected model, and by scaling the irradiances of
the standard atmosphere by the black-body spectra corresponding to Tamb for the MOD-
TRAN model. As shown in Figure 4, relative to the MODTRAN model, the traditional
approximation underestimates the cooling potential of radiative coolers by 6 to 24 Wm−2

or 12 to 29 % depending on the temperature and atmosphere type. The underestimations
are large, particularly for high values of Iatm. Our corrected model, by comparison, is
within 1–8 Wm−2 or 0.1–7% of the MODTRAN model, irrespective of the temperature, and
the different total precipitable water and other greenhouse gas levels represented by the
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different atmospheres. The corrected transmission-based model thus provides an accurate
irradiance relative to MODTRAN, while also providing angle-resolved irradiance values
that the traditional transmission-based model provides.
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It should be noted that the transmittance-based model, and the correction we propose,
are intended for clear, cloudless skies. This is sufficient for validating experimental perfor-
mances of radiative coolers, as such experiments are usually performed under clear skies.
However, the effects of clouds are important as well, particularly for mapping global aver-
age radiative cooling potentials. We note here that our model can, in principle, be modified
to account for clouds—which are essentially finite layers of condensed water vapor with
high absorption across the thermal and LWIR wavelengths—similar to how it accounted
for the ozone layer in Equation (5). Doing so requires information about the thickness and
type of clouds (e.g., thin cirrus vs. thick cumulus), their heights (which could be estimated
from the dew point temperatures and atmospheric lapse rates), their coverage and view
angle from the perspective of the radiative cooler. However, such a modification is beyond
the scope of the present study, since the angle-resolved and spectrally resolved irradiances,
which are the unique yields of the transmittance-based model, vary continuously as clouds
move. In this case, the hemispherical irradiance becomes more important, and models
which output it may be better suited. A number of such models, which take into account
factors such as cloud cover, topography and altitude, exist in the literature [6,8,10–12,36,37]
and could be used in conjunction with satellite imagery of cloud covers and their calculated
transmittances [38] as well as radiometric characterization of clouds [39,40] to calculate
downwelling atmospheric irradiances. It should be noted that if the cloud cover is uniform
and near-full, the motion of individual clouds has little impact and they behave as a layer,
in which case, our model can be conveniently used.
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5. Conclusions

Two results stand out from our analysis. From a computational standpoint, our
results indicate that a higher cooling power can be achieved by radiative coolers than is
calculated using the traditional transmittance-based model under clear skies. This adds to
their promise for cooling at local and global scales, with ~20% greater cooling potentials
possible for some atmospheres. However, our results also suggest that, except in rare
cases, experimentally demonstrated radiative coolers perform less well relative to what
is theoretically possible than usually thought. One reason for this could be that such
radiative coolers often have their near-normal emittances reported and used in radiative
cooling calculations rather than their true hemispherical emittance, which may require full
angularly resolved measurements. Since hemispherical emittances are usually considerably
lower than the near-normal emittances typically reported [41], this could explain why this
mismatch has not been previously noted.

Given the above implications of our work, we believe that it may be useful to con-
textualize prior works that used the transmittance-based model, and that future works
should account for the underestimation of the theoretical radiative cooling potential by
the traditional transmittance-based model. Towards this end, we have provided analytical
expressions of the cooling potentials for the different MODTRAN atmospheres as a function
of temperature, as well as analytical expressions of ∆Pcooling. between the MODTRAN,
transmittance-based and corrected models, in Table 1. Additionally, we have also made
numerical data publicly available for the zenith-ward transmittances and ∆Ti for different
model atmospheres, which can be used with our method to calculate angular and hemi-
spherical emittances [42,43]. We hope that these resources will be useful to researchers
modelling atmospheric irradiances for radiative cooling applications.

Table 1. Analytical expressions of the Pcooling corrections between the MODTRAN, transmittance-based and corrected models.

∆Pcooling Tropical Midlatitude
Summer

Midlatitude
Winter

US 1976
Standard

Subarctic
Summer

Subarctic
Winter

PMODTRAN-
PCorrected

0.0011T2 − 0.57T
+ 72.7

0.0012T2 − 0.6T
+ 72.6

−0.002T2 +
0.15T − 32.7

−0.0005T2 +
0.32T − 53.32

0.0008T2 −
0.385T + 45

−0.0007T2 +
0.49T − 82.2

PMODTRAN-
PTraditional

0.001T2 − 0.4T +
41.9

0.0009T2 −
0.31T + 26.1

−0.001T2 +
0.767T − 127.2

−0.0001T2 +
0.29T − 59.8

0.0005T2 −
0.071T − 7.9

−0.002T2 +
1.39T − 214.8
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