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Abstract: In the context of climate change and urban heat islands, the concept of local climate zones
(LCZ) aims for consistent and comparable mapping of urban surface structure and cover across
cities. This study provides a timely survey of remote sensing-based applications of LCZ mapping
considering the recent increase in publications. We analyze and evaluate several aspects that affect
the performance of LCZ mapping, including mapping units/scale, transferability, sample dataset,
low accuracy, and classification schemes. Since current LCZ analysis and mapping are based on
per-pixel approaches, this study implements an object-based image analysis (OBIA) method and
tests it for two cities in Germany using Sentinel 2 data. A comparison with a per-pixel method yields
promising results. This study shall serve as a blueprint for future object-based remotely sensed LCZ
mapping approaches.

Keywords: local climate zones; remote sensing; mapping unit; transferability; object-based im-
age analysis

1. Introduction

Urbanization is an important global socioeconomic phenomenon, with approximately
55% of the world’s total population currently living in cities, a proportion that is estimated
to reach 66% by 2050 [1]. Various impacts of urbanization (e.g., changes in surface fea-
tures, anthropogenic activities, and energy consumption structure) led to local climate
changes [2] such as heat island effects [3] As an important means of acquiring surface
feature information, remote-sensing technology has been widely applied to monitor im-
pervious urban surfaces [4-6]. However, a simple binary classification system (permeable
vs. impervious) has limitations to define changes in urban structure. Therefore, Stewart
and Oke [7] proposed the concept of the “local climate zone” (LCZ) classification system,
which has since received wide attention and became a global standard for classifying urban
structure, with applications in diverse fields (e.g., analysis of urban planning, heat island
effect, urbanization) [8-11].

The LCZ classification system classifies urban landscapes into 17 homogeneous types
according to their urban structure, land cover, building materials, and anthropogenic
activities (Figure 1). As an accepted classification system for urban internal structure, the
LCZ classification system enables a comparative analysis of internal structure across global
cities [12], thereby overcoming the deficiencies of existing land-cover databases, such as
inadequate descriptions of urban internal structure and difficulties in the analysis of urban
internal structure [13]. LCZ classification is an emerging field, with many studies on LCZ
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remote-sensing mapping conducted in recent years [14-16] (Figure 2). Traditional urban
remote sensing focuses on the detection of impervious surfaces but has not yet been applied
to a fine and universal urban structure classification system, which represents a significant
challenge for remote sensing-based monitoring of fine urban structures [17].
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Figure 1. Description of LCZ types, containing 10 urban types on the outer circle and 7 natural types on the inner circle [7,18].
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Figure 2. Number of published articles on LCZ classification and mapping in recent years (search
date: 27 August 2021).
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First, this study reviews the recent advances in remote sensing-based LCZ mapping
and classification, as well as its advantages and disadvantages. Then, due to the lack
of current research on object-based LCZ classification, we apply the object-based LCZ
classification to two cities in Germany in order to compare its performance with common
per-pixel methods in LCZ mapping.

2. Overview of LCZ Mapping

LCZ data are essential for the characterization of urban climates and subsequently for
climate scenarios and for urban planning. LCZ data are particularly used for predictive
analysis such as urban climate simulations [19-21], but also for decision-making and
urban planning [22,23]. LCZ characterization is methodologically challenging due to huge
differences between cities. Cities bear a significant level of idiosyncrasy rooted in their
topographic and biogeographic setting and their historical development. A city such as
Rio de Janeiro with its prevalent hills and several rocky mountains is hard to be compared
with a similarly sized city built on flat terrain. Nonetheless, the LCZ concept aims to
reveal systematic patterns, and LCZ mapping schemes are at the core of the research in
this field [24,25]. To analyze the recent developments in LCZ mapping, we performed a
search in the Scopus database (accessed on 27 August 2021) while using the keywords
(“Local Climate Zones”) AND (“Classification” OR “Mapping”). Figure 2 shows the years
of publication for the retrieved data. The number of published articles on LCZ mapping
has increased continually, with a particularly sharp increase in 2017. This may be due to the
recent IEEE GRSS Data Fusion Contest, in which remote-sensing organizations encouraged
remote-sensing researchers to develop LCZ mapping methods [26].

Existing LCZ mapping methods predominantly include GIS-based statistics and
remote-sensing mapping. GIS-based statistical methods aim to divide the internal structure
of a city into different LCZs according to its existing derivative data [22,27-29]. Due to
differences in GIS data accessibility and data structure between different cities, it is difficult
to develop unified and normative mapping methods. For example, only some cities pro-
vide building elevation data [13]. Therefore, this method cannot be extensively applied to
LCZ classification, which hinders the original goal of using the LCZ classification system
for internal structure mapping and comparisons of global cities. Remote sensing-based
mapping aims to directly extract LCZ classification information from Earth observation
data [15,17,26,30,31]. In addition, remote-sensing data of different cities are highly con-
sistent and have obvious advantages over individual city-level GIS data. More and more
remote sensing-based LCZ mapping methods are developed, and studies have examined
the key difficulties in remote-sensing LCZ classification. These difficulties include the
development of mapping units from initial pixels to recent scene understanding and object
recognition [17,32,33], the change from traditional supervised classifiers to frequently used
deep learning models [13,16,17], or issues related to the mapping scale [34]. Recently, a
first global LCZ sample dataset was launched [31]. These and other studies have paved the
way towards a high-quality LCZ mapping based on remote sensing. However, as we will
argue in the next section, the classic “per-pixel view” is increasingly becoming a limiting
factor in such mapping approaches, particularly along with higher spatial resolutions.

3. LCZ Mapping Based on Remote-Sensing Technology

This section summarizes the recent LCZ advancements achieved by using remote-
sensing techniques. The major aspects of LCZ remote-sensing classification are discussed,
including mapping units, size of units, mapping scale, transferability, sample datasets,
accuracy, and classification strategies. We will briefly analyze the limitation of the per-pixel
analysis approach that is used in almost all studies, while Section 4 will briefly highlight
the advantages of the object-based image analysis (OBIA) methodology.
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3.1. Mapping Unit and Scale
3.1.1. Mapping Units in LCZ Classification

Pixels, scenes, and objects are the basic units commonly used in remote-sensing image
analysis [35,36]. Almost all current LCZ classifications use per-pixel analysis [15,24,25].
With the application of deep learning algorithms to LCZ classification, scene units have
gradually received increasing attention [31,33]. However, both pixel units and scene units
face many uncertainties; for example, what unit size is suitable for LCZ classification [37]?
Different mapping units lead to differences in the classification schemes (e.g., selection of
the sample labeling method and classification algorithm). For example, the deep learning
approach may be advantageous for the recognition of scene units [37]. Moreover, the
current prevalent per-pixel LCZ classification does not directly use the original pixel size of
images; instead, Landsat and Sentinel data are resampled to 100 m pixels for use as basic
mapping units [23,37,38]. For scene-based classification schemes, a recent study suggested
that the optimal scene size for LCZ mapping is 480 x 480 m? [33]. Among existing studies
on LCZ classification at the object level, only two cases use segmented objects as the basic
mapping units [32,39], and the mapping results are output only for a single city. In addition,
the impact of object units on LCZ classification has not previously been analyzed in detail.

3.1.2. Importance of Fine-Scale LCZ Mapping

There is no generally accepted scale of LCZ classification across different cities. For ex-
ample, Stewart and Oke [7] specified a fixed mapping scale of 500 m in the LCZ guidelines.
However, Zheng et al. [28] found that the optimal LCZ scale of Hong Kong in GIS-based
LCZ mapping is 300 m, and Kotharkar and Bagade [40] even used a mapping scale of
1000 m to analyze the urban heat island effect. Therefore, no unified standard scale for
LCZ classification exists. This may be because high-precision LCZ classification does not
need to be very fine-grained in the traditional analysis of land-surface temperature [41].
Although LCZ has been applied to fields such as urban planning, finer-scale mapping is
required [12,18]. In recent years, high-quality fine-scale LCZ classification has received sub-
stantial attention and has been actively developed. For example, Yoo et al. [13] conducted
LCZ mapping on a finer scale (50 m) using Sentinel optical data and Simanjuntak et al. [32]
used images with a high resolution of 2 m (Pleiades) for LCZ classification to obtain more
detailed mapping results.

3.1.3. Limitations of the Regular Mapping Unit

Whether they use pixel units or scene units, existing remote-sensing mapping schemes
need to resample remote-sensing data on a smaller scale in order to express the con-
text information of LCZ types. Typically, the output size of a regular mapping grid is
50-200 m [23,25,30,37], with most studies using a grid size of 100 m. As a result, the final
LCZ classification results are extremely fragmented; that is, when existing pixel-based
mapping output schemes process high-resolution images, a single pixel is too small to
effectively express a single LCZ type. This explains why pixel-based mapping methods
need to resample remote-sensing data to images with a lower resolution, and mostly use
the window strategy (typically a 3 x 3 window) to identify single pixels [37]. This is
because large tile input data are beneficial to the detection of city types [33]. However, the
size of LCZ types in a city is not consistent; when the scale of the mapping unit is relatively
large, it is inevitably difficult to express small-scale LCZ types. Therefore, the pattern of
a regular drawing unit size is not suitable for expressing LCZ types with different sizes
within a city or across different cities. In addition, regular mapping units are large after
resampling, resulting in a poor visualization effect; thus, the ability of resampled data
to describe the boundary information of LCZ types is naturally weaker than that of the
original high-resolution data. Therefore, the object unit mapping paradigm with irregular
boundaries is a promising choice for LCZ mapping [32,39].
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3.2. Transferability
3.2.1. Lack of an Efficient Transferring Mode

Almost all LCZ studies address the problem of transferability of LCZ classification
and several studies test the transfer performance. However, this problem has not been
effectively solved in LCZ studies. Rosentreter et al. [25] tested large-scale LCZ classification
for a convolutional neural network (CNN) and found that the classification model trained
using only the training data of source cities led to a variable reduction in the classification
accuracy of target cities. Liu and Shi [33] also found that their LCZNet model exhibited
low transferring ability and they argued that the transfer learning of LCZ classification is
essentially a domain shift problem; namely, how to effectively use the training sample data
of the source domain for classification of the target domain. However, few studies have
discussed the domain shift problem in LCZ classification [33]. Only Elshamli et al. [42]
studied multisource domain adaptation related to LCZ classification through the deep
neural network (DNN). They argued that LCZ classification must resolve the problem
of multisource domain adaptation in order to efficiently utilize large quantities of LCZ
sample data of different cities. Due to its capacity for large-scale data processing, DNNs
seem currently to provide the best solutions to this problem.

3.2.2. Lack of a Benchmark Dataset

A lack of available high-quality training samples may be an important reason for the
low accuracy of LCZ classification [15,39]. Therefore, most studies on the transferability
evaluation of LCZ classification reuse training samples in different cities to increase the
quantity of available training samples and the efficiency of sample use. Using the Google
Earth Engine (GEE), recent studies have investigated the transferability of global-scale LCZ
mapping training samples, with the following results: (1) the transferability of training
samples is better between cities in the same ecological region, and (2) using multisource
training samples from different cities can improve LCZ classification performance. Ev-
idently, increasing the quality and quantity of training samples in different ecological
regions is conducive to improving the transferability of LCZ classification across global
cities [38]. At present, the quality of the LCZ training sample database for cities in China
is clearly inferior to that of cities in Europe and other regions, which is important for
explaining why the recent LCZ classification accuracy of Chinese cities is only 48% [23].

Notably, Zhu et al. [31] constructed the world’s first LCZ standard sample set based
on Sentinel-1 SAR and Sentinel-2 remote-sensing data to facilitate LCZ mapping on a
global scale. Although the LCZ standard sample set covers a wide range of data, it only
labels 52 urban regions worldwide and does not cover all cities in China. The structure of
Chinese cities is more complex; therefore, to obtain more reliable classification results, it is
necessary to sample more Chinese cities and increase the data volume of standard datasets
for different urban regions. In addition, the LCZ standard sample set only opens a scene
library with a fixed scene size (320 x 320 m), which imposes various restrictions on its
further application because the size of the mapping unit affects the mapping performance.

3.3. Limitations of LCZ Classification
3.3.1. Low Accuracy and Valid Measures

Existing methods for LCZ remote-sensing supervised classification mainly include
traditional supervised classifiers and deep learning methods, such as random forest
(RF) [17,30], recurrent neural network (RNN) [15], and CNN [25]. Bechtel et al. [17]
developed a pixel-based LCZ mapping tool called the World Urban Database and Portal
Tool (WUDAPT), which uses the RF classifier and Landsat 8 image data with a pixel size
of 100 m. As WUDAPT contains large quantities of vector sample data uploaded by vol-
unteers for global cities, it has actively promoted LCZ mapping applications. However,
WUDAPT mainly considers the universal applicability of methods but does not incorporate
complex auxiliary classification steps; therefore, the accuracy of WUDAPT is typically very
low. The average overall accuracy (OA) of 90 cities mapped by WUDAPT is only 74%, and
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the extraction accuracy of urban regions is usually less than 60% [18,37]. Moreover, Bechtel
et al. [18] and Yoo et al. [13] found that the OA of LCZ mapping benefits significantly from
natural types; namely, the higher the proportion of natural types, the higher the OA. In
particular, recent studies have shown that the average accuracy of LCZ mapping of 20 Chi-
nese cities is only 48% [23]. Therefore, there is significant potential for improvement in
LCZ remote-sensing mapping, particularly in the extraction of LCZ types in urban regions.
Regarding the accuracy measures of LCZ classification, Bechtel et al. [18] argued that the
accuracy of urban LCZ types and natural LCZ types should be evaluated individually in
order to reflect the true classification accuracy of urban internal structure. In addition, they
summarized five accuracy measures for evaluating LCZ classification (Table 1). For urban
areas, OA_urb should be given more weight to overcome the bias of large training areas
from natural classes.

Table 1. Five accuracy measures for LCZ classification [18].

Index Description
OA Percentage of correctly classified pixels or area for all polygons
Kappa A standard measure accounting for accuracies of different classes

The OA for only the urban polygons. It’s necessary because of the

OA_urb bias of large training area from natural classes
OA builtu The OA for both classes with urban and natural, and LCZ E as
- p artificial class in natural is omitted
. A metric that accounts for similarity and dissimilarit
Weighted accuracy (WA) between classesy y

3.3.2. Classification Schemes

Regarding the low accuracy of LCZ classification, existing studies typically focus on
improving classification performance from the perspectives of data sources and classifi-
cation algorithms. For example, the use of multi-season and multisource remote-sensing
optical data has been shown to improve the accuracy of LCZ classification [15,43]. Multi-
dimensional spectral, textural, and spatial features can also effectively improve the LCZ
classification performance [26,37,44]. Moreover, frequent use of auxiliary data (e.g., OSM
and DEM data) can remarkably improve classification accuracy [13,45], mainly because
OSM and DEM data can provide information on building distribution or elevation. Based
on the advantages of the RNN for processing time sequence data, Qiu et al. [15] tested the
performance of multi-seasonal Sentinel optical data in LCZ classification and found that
multi-temporal data can improve LCZ classification. Moreover, Qiu et al. [43] evaluated
the importance of multisource data features and found that the joint spectral features of
Landsat 8 and Sentinel 2 can effectively improve the performance of LCZ classification.
Based on a combination of Sentinel and Landsat 8 remote-sensing data, Yoo et al. [13] fur-
ther improved the performance of the CNN in LCZ classification by using OSM building
data. In addition, artificial intelligence technologies (e.g., deep learning) that have emerged
in recent years have become the preferred algorithms for improving LCZ classification
accuracy, and pixel-based RNN and CNN models can remarkably improve the accuracy of
LCZ mapping [13,15,46]. The deep learning model also performs well in the identification
of scene-based LCZ types [33]. Bulleted lists look like this (Table 2):
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Table 2. Typical research examples of LCZ mapping.

Cites Classification Schemes Accuracy—OA Data City Ratio Reference
Bandung in OBIA with Rule-based 75.56%—82.31% SPOT-6 (2013) 68.02% Simanjuntak et al.
Indonesia classification 86.15%-88.89% Pleiades (2016) 69.17% [32]
Salt Lake City . - o . Collins and
in USA OBIA with RF classifier 64% Landsat Metropolitan area Dronova [39]
43.11%
. Pixel-based method (The ratio of city to
Iljl}(];:iﬁfe with RF classifier 64% (MtI;I?ir-l(sies;sjcoilal) nature in the Danylo et al. [47]
(WUDAPT framework) verification point,
485/1125)
(ave7r9a'8e/:§:1u/;ac Sentinel-2
7 cities in Pixel-based method fg7 ities) y (Multi-seasonal) ) Qiu et al. [15]
Germany with RNN oF/ cles Sentinel-2 + Qiu et al. [43]
78% (average
> Landsat 8
accuracy of 7 cities)
Berlin, Pixel-based method 85.3% Sentinel-2 + ) Yoo et al. [13]
Seoul with CNN (50 m) 96.1% Landsat 8 + OSM ’
Rome, 75.7%
Hong Kong, Pixel-based method 75.5% Landsat 8 (Dual ;
Maryland, with RF (100 m) 85.9% time) Yooetal. [37]
Chicago 89.8%
Rome, 82.2%
Hong Kong, Pixel-based method 80% Landsat 8 (Dual )
Maryland, with CNN (100 m) 90.3% time) Yoo etal. [37]
Chicago 91.2%
Pixel-based method Landsat 8 Demuzere et al
Europe with RF (100 m) - Sentinel-1 [30] ’
(WUDAPT framework) DEM(DSM-DTM)
50 cities in Pixel-based method 76% (OA Average Landsat
Chin with R (100 m) accuracy) Sentinel-1 - Ren et al. [23]
a (WUDAPT framework) 47% (OAy) (Generating DEM)
. Pixel-based method 68.68% (OA Landsat 8 (Dual
Kampala in ith RF A . Brousse et al.
Usanda wit (100 m) verage accuracy) time) 48]
& (WUDAPT framework) 66.61% (OAy) Sentinel-1
Guangzhou Pixel-based method >80 /;E?uAraé;)erage Landsat Xu et al. [49]
with RF (120 m) <70% (OAy) ASTER

3.4. The Issue of Describing 3-D Urban Structures

Another challenging problem of mapping urban local climate zones by remote sensing
images is the lack of 3-D urban form information. This has actually limited the accuracy of
generating LCZ level 0 products due to no more detailed level 1 and 2 data, even though
the WUDAPT community provides a procedure for generating the LCZ level 0 product
from Landsat imagery [50]. Aiming at the issue of describing 3-D urban structures, the
existing solution in the field of remote-sensing LCZ mapping is to use auxiliary data that
can generate urban surface structures (e.g., building footprints, building heights). For
instance, Lidar has been successfully applied to urban LCZ classification by extracting the
building height and calculating the building footprint and building surface fraction [51,52];
Bartesaghi Koc et al. [53] estimated the absolute height of buildings from normalized
Digital Surface Model (nDSM) derived from LiDAR data, and the calculated parameters
related to height information were assigned to grids of 100 x 100 m to classify the remote
sensing imagery to LCZ types. For another similar case, Du et al. [9] used the airborne
LiDAR data to derive nDSM and then acquired the building height. Quan et al. [54]
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considered the urban 3-D information by generating parameters based on the urban canyon
model and then classify the urban block unit defined by the streets. For the SAR data,
Bechtel et al. [14] proved that SAR data provide more information on urban structures for
improving the LCZ classification, and Ren et al. [23] evaluated the role of the urban digital
elevation model (DEM) generated from Sentinel-1 data by the synthetic aperture radar
interferometry (INSAR) technique. However, the existing research for LCZ mapping only
uses SAR as an alternative source of input data for calculating simple SAR features such
as intensity and texture, and few derive 3-D descriptors (e.g., building height, sky view
factors). Therefore, these data requires further investigation for LCZ mapping [14]; for
example, high-resolution SAR data can be used to extract urban building information [55],
which would provide the level 2 information for LCZ mapping. At present, we would
argue that Lidar data are the most frequently used and most successful way to derive
3-D urban structures in the field of LCZ mapping [9,51-53], while the use of SAR data
should be more investigated in the future. Furthermore, all of the photogrammetry and
remote sensing techniques, which can acquire the urban 3-D structure information, have
the potential to contribute to urban LCZ classification; for example, UAV can generate the
DTM/DSM by the digital photogrammetry technique [56] to calculate the 3-D descriptors
for LCZ classification.

4. Applications and Challenges of LCZ Mapping Using OBIA

Recently, OBIA methodologies and methods [57,58] have received attention in LCZ
classification. Using Landsat images, Collins and Dronova (2019) generated a LCZ classi-
fication map for the urban areas of Salt Lake City, USA. The classification accuracy (64%
overall) of the LCZ classification map was similar to that of conventional WUDAPT re-
sults. Compared with regular pixel and scene units, they argued that the object-based
LCZ classification paradigm could better describe the boundaries of LCZ types. Using
ultra-high-resolution images, Simanjuntak et al. [32] generated an LCZ classification map
for Bandung, Indonesia. Due to the high spatial resolution and high proportion of natural
LCZ types (more than 30%), the OA of the LCZ classification map was 66% and 69% in
2013 and 2016, respectively. However, to the best of our knowledge, these two studies on
object-based LCZ classification did not clearly reveal the differences between OBIA and
pixel-based methods.

Therefore, to further examine the performance of OBIA in LCZ classifications, we
carried out an object-based LCZ classification practice on both megacities (Berlin and Mu-
nich, Germany) and compared the classification results with the performance of resampled
pixel units. For the experiments, the LCZ reference data for classification were obtained by
manual interpretation assisted by GEE, and the multi-seasonal Sentinel-2 Level-2A (L2A)
images were used for the object-based classification process and pixel-based classification
process, respectively.

For the object-based classification process, we used the general object-based super-
vised classification method [59,60], including (1) generating the segmented objects by
multi-resolution segmentation, (2) sampling by stratified random strategy, (3) calculating
the spectral and textural features of the object, and (4) using the RF classifier to perform
LCZ classification. Specifically, for the segmentation step, a small scale parameter 90 was
used to avoid the under-segmentation phenomenon, color/shape was set to 0.9/0.1 to
consider spectral information more, and smoothness/compactness was set to 0.5/0.5. For
the sampling step, the 60% training set ratio was used. For the classification step, the RF
model used 479 trees and one single randomly split variable [61].

For the pixel-based classification process, we showed the performance of the LCZ
classification on different pixel sizes, and the classification steps mainly include: (1) resam-
pling Sentinel 2 data to reduce the resolution to 100 m (10 x 10 pixels), 200 m (20 x 20
pixels), and 300 m (30 x 30 pixels), respectively, (2) sampling by stratified random strategy,
(3) calculating the spectral and textural features of each pixel, and (4) performing the
classification and accuracy evaluation steps. Note that all parameter settings are consistent
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48°10'0"N

with that of the aforementioned object-based method, including the 60% training set ratio
and the RF model. In both experimental areas, LCZ classification was repeated ten times
under the same conditions to calculate the average classification accuracy. Subsequently, we
simply compared the pixel-based classification results with the performance of object-based
classification.

The experimental results yielded average classification accuracies for Munich and
Berlin of 64.16% and 86.38%, respectively (Table 3). The classification accuracy for Berlin is
far higher than that for Munich, which may be due to the high proportion of natural LCZ
types in Berlin; this is consistent with previous analysis [18]. Overall, like the classification
results of the WUDAPT, the OA of OBIA-based LCZ classification is generally not high.
However, the experimental results (Figures 3 and 4) reveal that, under similar accuracy
conditions, OBIA has the potential to express the more detailed internal spatial structure of
a city. The visualization effect of OBIA is consistent with the results of the 10 x 10 pixels
and even exhibits better integrity by providing more detailed boundary information of
specific LCZ types (Figure 3a,b and Figure 4a,b).
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Figure 3. Mapping results for Munich using the OBIA method and the pixel-based method. (a): the result based on OBIA;
(b): the result based on 10 x 10 pixels; (c) the result based on 20 x 20 pixels; (d) the result based on 30 x 30 pixels.
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Figure 4. Mapping results for Berlin using the OBIA method and the pixel-based method. (a): the result based on OBIA; (b):
the result based on 10 x 10 pixels; (c) the result based on 20 x 20 pixels; (d) the result based on 30 x 30 pixels.

Table 3. OA results of two German cities.

Mean OA of Pixel-Based Method

Cities OBIA-Mean OA
100 m 200 m 300 m
Munich 64.16% 66.2% 61.14% 59.38%
Berlin 86.38% 87.49% 89.32% 90.75%

The experimental results show that, under different resampling conditions (10 x 10,
20 x 20, and 30 x 30 pixels), the OA of Berlin was 87.49%, 89.32%, and 90.75%, and
the OA of Munich was 66.2%, 61.14%, and 59.38%, respectively (Table 3). As mentioned
above, most studies employ finer pixel units for LCZ classification [13,23] to obtain a
better visualization effect. However, the accuracy indicators for Berlin show that a higher
resolution does not necessarily lead to higher OA. We believe that this is primarily due to
the numerous natural LCZ types in Berlin. Due to high consistency in natural types, the
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accuracy indicators appear higher under low resolution, resulting in indicator distortion.
Therefore, we recommend that LCZ sampling and mapping scales should be performed
more prudently and the problem should be investigated in greater depth, whether it is
pixel-based or object-based LCZ mapping.

Opverall, this experiment demonstrates that OBIA is a promising method like the
popular pixel-based method for LCZ mapping, and also retains the research gaps to further
improve OBIA performance as a review paper. Therefore, for OBIA-based LCZ mapping,
it is necessary to further investigate the effect of multi-scale algorithms on OBIA-based
LCZ classification; for example, the effect of segmentation scales. On the other hand, it
is necessary to test more segmentation algorithms to find more suitable algorithms for
LCZ classification (e.g., superpixel segmentation and quadtree segmentation). We consider
semantic segmentation and deep learning as other options to improve the LCZ mapping
performance under the OBIA paradigm [62-65]. In addition, to determine whether the
OBIA-based LCZ products are suitable for subsequent analysis of the heat island effect and
urban planning, such data should be experimentally tested in related models to verify the
validity of the classification results.

5. Discussion and Conclusions

This study discusses the contributions and limitations of LCZ mapping research
based on remote sensing. In order to efficiently summarize the content related to LCZ
classification based on remote sensing, high-frequency terms appearing in the title and
abstract of publications corresponding to Figure 2 were drawn as a tag cloud graph
(Figure 5), where higher-frequency results were represented by a larger font size. As
mentioned earlier, Landsat and Sentinel are the dominant sensor types. WUDAPT is the
predominant LCZ classification scheme. Even though the existing literature focuses on
the classification task, urban planning and land-surface temperature applications are also
notable. Finally, the majority of classification methods use CNN, followed by decision tree
and RE.

LCZ mapping predominantly uses medium-resolution remote-sensing images (e.g.,
Landsat and Sentinel images), and pixels as the mapping units. However, existing studies
do not typically use the pixel units of original images directly but resample the pixel units
to a resolution of 100 m or less to facilitate LCZ classification. Moreover, the accuracy of
current LCZ remote-sensing mapping is not high, and the extraction accuracy of urban
areas is typically lower than 60%. The resulting low classification accuracy may be due
to the current LCZ classification based on Remote Sensing preferring to employ the open-
source optical data such as Landsat and Sentinel, which is difficult to provide urban
3-D information related to the LCZ types. Therefore, it is expected that 3-D urban form
information contributes to the LCZ mapping by providing more detailed level 1 and 2
data (e.g., building footprints, building heights). In general, SAR data and UAV would be
alternative techniques to generate urban surface structure for improving LCZ mapping,
except for the popular Lidar data.

On the other hand, a significant fraction of the studies analyzed evaluate the trans-
ferability of their classification models. However, this problem has not been effectively
addressed for LCZ classification between different cites, according to previous studies.
Citing a development aimed at addressing this problem, Yoo et al. [37] considered that the
limited coverage of reference data for training leads to lower accuracy through a trans-
ferability experiment, whereas Liu and Shi [33] pointed out that more advanced methods
are important. The sampling proportion of urban or natural LCZ types may affect the
classification accuracy significantly. Therefore, we recommend performing LCZ sampling
more prudently and investigating this problem in greater depth. Also, the high quality
LCZ sample datasets are necessary to promote the development of LCZ mapping.
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Figure 5. Tag cloud graph for LCZ classification topics.

Despite the low accuracy, the experiments in this study indicate that, as a general
paradigm, OBIA is a promising method for LCZ mapping practice. The classification
results in this study obtained by OBIA are similar to those based on 10 x 10 pixels and
seem to have higher integrity, but we do not intend to determine which one is better
(pixel-based or object-based) in this paper because of the limitation of experiments in
terms of details and we just call for more scholars to develop object-based LCZ mapping
methods. Therefore, it still retains lots of research gaps in the field of OBIA-based LCZ
remote sensing classification. It is expected that the inclusion of previous additional data
(e.g., height information) is able to further improve the object-based LCZ classification.
Also, the boundary information of specific LCZ types under the OBIA paradigm might
be more useful for providing detailed descriptions of urban landscape parameters at a
scale suited to boundary-layer models, which would be more related to level 2 information.
Overall, subsequent studies should give priority to developing a high-accuracy LCZ-based
remote-sensing mapping method, whether it is based on pixel, object, scene or block.
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