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Abstract: In this study, an improved method named spatial disaggregation and detrended bias
correction (SDDBC) based on spatial disaggregation and bias correction (SDBC) combined with trend
correction was proposed. Using data from meteorological stations over China from 1991 to 2020 and
the seasonal hindcast data from the Beijing Climate Center Climate System Model (BCC_CSM1.1
(m)), the performances of the model, SDBC, and SDDBC in spring temperature forecasts were
evaluated. The results showed that the observed spring temperature exhibits a significant increasing
trend in most of China, but the warming trend simulated by the model was obviously smaller.
SDBC performed poorly in temperature trend correction. With SDDBC, the model’s deviation in
temperature trend was corrected, and consequently, the temporal correlation between the model’s
simulation and the observation as well as the forecasting skill on the phase of temperature were
improved, thus improving the MSSS and the ACC. From the perspective of probabilistic prediction,
the relative operating characteristic skill score (ROCSS) and the Brier skill score (BSS) of the SDDBC
for three categorical forecasts were higher than those of the model and SDBC. The SDDBC’s BSS
increased as the effect of the increasing resolution component was greater than that of the decreasing
reliability component. Therefore, it is necessary to correct the predicted temperature trend in post-
processing for the output of numerical prediction models.

Keywords: BCC_CSM1.1 (m); air temperature; spatial disaggregation and bias correction; seasonal
forecasting; China

1. Introduction

Climate system models (CSMs) have become the main tool for climate prediction
around the world [1–3]. Recently, the Beijing Climate Center (BCC) of the China Me-
teorological Administration (CMA) has improved the physics and resolution of its op-
erational CSM and updated the forecast system to a second-generation climate system
model (BCC_CSM) [2]. Recent studies have used the archived BCC_CSM reforecasts for
different applications, such as evaluating the forecast skill of Asian–Western Pacific sum-
mer monsoon [4], Asian summer monsoon [5], Madden–Julian oscillation [6], summer
precipitation [7], synoptic eddy and low-frequency flow [8], Indian Ocean basin mode
and dipole mode [9], stratospheric sudden warming [10], primary East Asian summer
circulation patterns [11], and winter temperature [12]. The model has shown a considerable
ability to predict important climate phenomena, tropical large-scale atmospheric circulation
anomalies and primary climate variability modes. However, the prediction skill of weak
anomaly signals and atmospheric circulation in middle and high latitudes still needs to be
improved.
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Seasonal predictions are often needed at the local scale for the assessment and correc-
tion of forecasts to meet local forecasting needs. The downscaling method is an effective
way to transform model prediction to the local scale and improve the forecast accuracy,
which has two categories: dynamic downscaling and statistical downscaling [13–18]. Sta-
tistical downscaling uses the statistical relationship between the output of a CSM and
local observations to obtain local-scale or station forecasts and is simple to apply, with
high computational efficiency [13–15]. It can also be employed to correct systematic bias
between forecasts and observations. The limitation of statistical downscaling methods
is that they require long-term continuous forecast archives and observations to establish
stable and reliable statistical relationships [13–15].

Many studies on statistical downscaling have been carried out, and new meth-
ods are emerging. The bias correction and spatial disaggregation (BCSD) method is an
interpolation-based downscaling method first proposed by Wood et al. in 2002 [19,20].
This method has been widely used in hydrologic and climate prediction studies [21–30].
The BCSD method is composed of bias correction by quantile mapping and spatial dis-
aggregation, which effectively corrects both the mean and variance of forecasts based
on observations. By reversing the order of the BCSD process, the spatial disaggregation
with bias correction (SDBC) method was developed [31]. This modification improved
the downscaling skill, and the SDBC method was widely used for developing local-scale
statistics of precipitation, surface temperature, reference evapotranspiration, and climate
extremes [32–35]. In addition to downscaling methods based on interpolation, parametric
approaches [36,37] and Bayesian merging techniques [38,39] are also usually used to carry
out seasonal downscaling of climate forecasts. However, according to some researchers,
downscaling methods with stochastic analog and constructed analog have shown good
performance [22,40–45], and seasonal reforecast datasets are generally not long enough to
use those analog-based downscaling methods since there is a limited number of potential
historical analogs [33].

The seasonal mean air temperature is one of the fundamental products of seasonal
prediction [46]. Global and regional temperature variations have shown a significant
increasing trend under the background of global warming [47]. Since the 1990s, the spring
air temperature over China has increased significantly, and the warming rate is the largest
among the four seasons of the year (Figure 1), which makes the prediction of spring air
temperatures in China more difficult. Studies have shown that IPCC CMIP5 models are
able to reproduce the warming trend of observed global and regional averaged surface
air temperatures. However, there are still obvious differences between the temperature
trends simulated by the diverse variety of models and the observations [48–50]. Therefore,
it is worth studying how well the operational seasonal forecasting model BCC_CSM could
forecast the spring temperature while considering the rapid warming during spring in
China since the 1990s. Bias in the model-simulated temperature trend leads to forecast
error, which has a strong impact on the model forecast performance. Assuming that the
operational climate model BCC_CSM could not accurately simulate this trend, correcting
the model would be another problem worth studying.

Existing correction methods such as SDBC can improve both the mean and the variance
of forecasts’ probability distribution. However, the variation trends are ignored, and the
forecast error caused by the trend deviation between model simulations and observations
cannot be reduced. Thus, a method to correct model simulation trends to reduce model
errors and improve forecast skills is urgently needed.

This paper intended to extend SDBC into the spatial disaggregation and detrended bias
correction (SDDBC) method by removing the trends of model simulations and observations
and then adding the observed trend to both. The performance of seasonal prediction of
spring air temperature for the BBC model, SDBC, and SDDBC was evaluated by employing
deterministic and probabilistic forecast verification methods. The influence of temperature
trend correction on the seasonal predictability of the model was analyzed. The purpose
was to improve the forecast skills of the model for spring air temperature. This work
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addressed three main questions: (1) How well could the BCC_CSM forecast the trend of
spring air temperature? (2) How well did the BCC_CSM and SDBC forecast the spring air
temperature? (3) How much could the forecast skill of the BCC_CSM for air temperature
be improved by modifying the SDBC through correcting the simulated trend, and what are
the advantages of SDDBC over SDBC?
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Figure 1. Time series and linear trends of seasonal mean air temperature anomalies from 1991–2020
in China.

2. Data
2.1. Observed Data

The data used in this study were the boreal spring (March to May) mean air tempera-
ture data for the period 1991 to 2020 at 160 meteorological stations over China from the
China Meteorological Administration. The spatial distribution of the 160 meteorological
stations is shown in Figure 2. The stations are divided into seven regions based on the
geography and administration of China, including Northeast China (sub-region 1, 17 sta-
tions), North China (sub-region 2, 22 stations), East China (sub-region 3, 32 stations), South
China (sub-region 4, 14 stations), Central China (sub-region 5, 16 stations), Northwest
China (sub-region 6, 31 stations), and Southwest China (sub-region 7, 28 stations).
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Figure 2. Location of observation stations and sub-regional divisions in China (1. Northeast China;
2. North China; 3. East China; 4. South China; 5. Central China; 6. Northwest China; 7. Southwest
China).

2.2. Model Data

The BCC-CSM1.1 (m) model used in this study was developed by the Beijing Climate
Center (BCC) of the China Meteorological Administration. This model consists of fully
coupled components of the atmosphere, ocean, ice, and land and has been applied in
research on climate change projection and climate prediction at the BCC [3]. The BCC_CSM
shows a reliable performance in short-term climate prediction [4,5]. The hindcasts and
forecasts of the model were initiated from the first day of each month from 1991 to 2020.
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In total, 24 ensemble members were used to predict the monthly average atmospheric
circulation and surface climatic factors in the next 13 months, with a resolution of 1◦ × 1◦.
In this study, the spring air temperature forecasts by the model from March 1st were used.
The deterministic forecasts were determined by the ensemble mean of the 24 members.
The climate state of the observation and the model is the average value from 1991 to 2010.

3. Methods
3.1. Downscaling Methods

(a) SDBC

The spatial disaggregation and bias correction (SDBC) method [31] has two steps.
In the first step, the model forecasts are interpolated to a station using inverse distance
weighting (IDW). The control points’ number of neighbors of IDW is 4, and the weighting
function is the inverse power of the distance (a power of 2 was used in this study). In the
second step, the interpolated data of the model are bias-corrected based on the station’s
observation data using the quantile mapping technique [33,34]. The bias-corrected data at
time i at station j are calculated as follows:

xi,j,corr = F−1
o,c

[
Ff ,c

(
xi,j, f

)]
(1)

where F(x) and F−1(x) denote the cumulative density function (CDF) of the data and its
inverse, respectively; the subscripts f and o indicate model forecasts and observation data,
respectively; and the subscript c indicates the calibration period. The cross-validation
procedure is conducted by leaving the target year out when creating the CDFs of the
observation data.

(b) SDDBC

Since the model cannot accurately simulate temperature trends, in order to reduce
the effect of trend simulation errors on forecasts, the SDBC was improved by removing
the trend of forecasts and observations ahead of bias correction and then adding the
observation trend. The modified method based on SDBC is called spatial disaggregation
and detrended bias correction (SDDBC).

This method has four steps. In the first step, the model forecasts are interpolated to a
station using IDW. In the second step, the interpolated model data and the observations
are detrended (Equations (2) and (3)). In the third step, the detrended data of the model
are bias-corrected using the quantile mapping technique based on the detrended data
of the observation. In the final step, the observed trend is added to the bias-corrected,
downscaled, and detrended model data. The SDDBC method not only corrects the mean
and variance of the prediction in the probability space but also further corrects the trend.
Thus, bias-corrected data at time i at station j are calculated as follows:

∆x f ,c = x f ,c − f
(

x f ,c

)
(2)

∆xo,c = xo,c − f (xo,c) (3)

∆xi,j,m = xi,j, f − f
(

x f ,c

)
(4)

xi,j,corr = F−1
o,c

[
Ff ,c

(
xi,j, f

)]
+ f (xo,c) (5)

where f (x) is the optimal trend fitting of the data, and here is the linear trend fitting based
on least square; ∆x represents the data after removing the linear trend. In steps 2–4, the
cross-validation procedure is conducted by leaving the target year out.
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3.2. Evaluation Statistics

(a) RMSE

The root mean square error (RMSE) reflects the difference between forecasts and
observations, with smaller values indicating better accuracy [51]. RMSE was calculated as
follows [52]:

RMSE =

√√√√√ n
∑

i=1
( fi − oi)

2

n
(6)

where oi represents observation data, fi represents the model forecasts or model-corrected
forecasts, and n is the amount of data.

(b) ACC and TCC

The anomaly correlation coefficient (ACC) reflects the similarity of anomalous spatial
patterns between forecasts and observations [8]. The ACC for the year j was calculated as
follows [53]:

ACCj =

m
∑

i=1

(
∆oi,j − ∆oj

)2 ×
m
∑

i=1

(
∆ fi,j − ∆ f j

)2

√
m
∑

i=1

(
∆oi,j − ∆oj

)2 ×
m
∑

i=1

(
∆ fi,j − ∆ f j

)2
(7)

where ∆oi,j and ∆ fi,j represent the observation and forecast anomalies for year j at station i,
respectively; ∆oj and ∆ f j are the spatial averages of the observation and forecast anomalies,
respectively; and m is the number of stations.

The temporal correlation coefficient (TCC) is used to measure the forecast skill for
each station. The TCC at station i was calculated as follows [53]:

TCCi =

n
∑

j=1

(
oi,j − oi

)2 ×
n
∑

j=1

(
fi,j − fi

)2

√
n
∑

j=1

(
oi,j − oi

)2 ×
n
∑

j=1

(
fi,j − fi

)2
(8)

where oi,j and fi,j represent the observations and forecasts for year j at station i, respectively;
oi and fi are the time averages of the observations and forecasts, respectively; and n is the
number of years. ACC and TCC range between −1 and 1. The closer they are to 1, the
higher the forecast skill is.

(c) MSSS

The mean squared skill score (MSSS) is a relative skill measure that compares model
forecasts with the climatology forecast. MSSS is calculated as follows [54]:

MSSS = 1 −
∑j wjMSEj

∑j wjMSEcj
(9)

where MSEj is the mean squared error of the model forecasts, MSEcj is the mean squared
error of climatology forecasts, and wj is equal to cos (θj), where θj is the latitude of
station j. MSSS ranges from −∞ to 1.0, with a value of 0 indicating that the forecast
has equivalent skill to climatology, negative values indicating that the forecast has less skill
than climatology, and a value of 1.0 indicating a perfect forecast.

MSSSj for fully cross-validated forecasts can be expanded as follows [55]:

MSSSj =

2
S f j

Soj
r f oj −

(
S f j

Soj

)2

−


[

f j − oj

]
Soj

2

+
2n − 1

(n − 1)2

/

{
1 +

2n − 1

(n − 1)2

}
(10)
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where rfxj is the product-moment correlation of the forecasts and observations at station j;
xj and f j and sxj and sfj are the average value and root mean square error of observations
and forecasts, respectively; and n is the number of years. The first three terms of the
decomposition of MSSSj are related to phase skills (through the correlation), amplitude
errors (through the ratio of the forecast to observed variances), and overall bias error of the
forecasts [54].

(d) ROCSS

The relative operating characteristic (ROC) is a curve that indicates the relationship
between hit rate (HR) and false alarm rate (FAR), and different sorted ensemble members
are used as decision thresholds [54]. This prototypical ROC is a plot of HR (ordinate) vs.
FAR (abscissa). The area under the ROC curve (AUC) can be used in the calculation of a
probabilistic skill score. The approximate integral AUC is calculated as follows [56]:

AUC =
n+1

∑
i=1

(FARi − FARi−1) ∗ (HRi − HRi−1)

2
(11)

where HRi and FARi are the hit rate and the false alarm rate, respectively, and n is the
amount of data of probability bins.

The ROC skill score (ROCSS) is calculated from the AUC [53]:

ROCSS = 2 × AUC − 1 (12)

(e) BSS

The Brier skill score (BSS) was employed to evaluate the skill of probabilistic forecasts
in terciles (above normal, near normal, and below normal) for each station. The BSS is
written as follows [53]:

BSS = 1 −
BS f

BSc
=

BSres − BSrel
BSc

= BSSres − BSSrel (13)

where BSf and BSc represent the Brier score (BS) of the forecast and climatology, respectively;
BSSres and BSSrel are the resolution component and the reliability component of the BSS,
respectively; and BSres and BSrel are the resolution component and the reliability component
of BS, respectively. The BSS ranges between −∞ and 1.0; values of 1 indicate perfect skill
and values of 0 indicate that the skill of the forecast is equivalent to climatology.

4. Results
4.1. Air Temperature Trend

Figure 3 shows the spatial distribution of spring air temperature trends from obser-
vations and the BCC_CSM. Both observed and simulated temperatures increased, but
at different rates. Overall, the average rate of increase in the observed air temperature
over China was 0.49 ◦C/decade, significantly higher than that of the simulated rate of
0.3 ◦C/decade. Excluding parts of South China and Southwest China, the simulated air
temperature warming rates were lower than the observed rates in most regions. Larger
differences were found in North China, Central China, Northwest China, and East China,
ranging between 0.22 and 0.25 ◦C/decade. North China showed the largest difference,
where the simulated trend of temperature was 0.31 ◦C/decade, significantly lower than the
observed rate of 0.55 ◦C/decade. There were fewer differences in South China, Southwest
China, and Northeast China, ranging between 0.09 and 0.14 ◦C/decade. It is suggested
that the trend of increasing spring air temperature was underestimated by the BCC_CSM
in most parts of China.

Moreover, differences in air temperature trends between the observations and the
BCC_CSM results led to an annual variation in the model error. The model error of spring
air temperature over China increased significantly at an average rate of 0.18 ◦C/decade.
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Warming rates higher than 0.2 ◦C/decade were found over North China, Central China,
Northwest China, and East China. The rates over Southwest China, Northeast China, and
South China were lower. Therefore, it is necessary to correct the warming trend during
the post-processing of the model forecast results to reduce the model forecast error and
improve the forecast efficiency.

The spatial distribution of the temperature trend of the SDBC method was consistent
with that of the BCC_CSM. The trends of most stations were also below the observed
rates, since SDBC did not modify the underestimated warming rate from the BCC_CSM.
Meanwhile, the temperature trends from the SDDBC method were close to the observed
trends. Thus, the SDDBC method effectively solved the problem of underestimation of the
spring air temperature trend by the BCC_CSM.
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Figure 3. Spatial distribution of spring air temperature trends from (a) observation and (b) the BCC_CSM and (c) the
difference between the observed trend and the BCC_CSM trend from 1991 to 2020. Units: ◦C/decade.

4.2. Deterministic Evaluation of Forecast Skill

(a) RMSE

The BCC_CSM forecasts systematically underestimated the spring temperature over
China and the seven sub-regions, and the bias was 3.88 ◦C on average over China. A larger
systematic bias of over 4 ◦C was found over Northwest China, Northeast China, North
China, and Southwest China. The greatest systematic bias was 7.26 ◦C in Northwest China,
while the smallest was in South China with a value of 0.87 ◦C. SDBC and SDDBC effectively
eliminated the systematic temperature biases and presented almost no bias in all seven
sub-regions.

Figure 4 shows the spatial distribution of the root mean square error (RMSE) values for
three methods. The RMSE values of spring air temperature for the BCC_CSM ranged from
0.61 to 14.4 ◦C, averaging at 4.98 ◦C over the whole country. RMSE was larger in West and
North China than in East and South China. The largest RMSE was detected in Northwest
China (7.79 ◦C), followed by Southwest China (5.59 ◦C), and South China had the smallest
error (1.78 ◦C). RMSE values for the SDBC and SDDBC methods ranged between 0.49
and 1.66 ◦C and 0.48 and 1.71 ◦C, respectively, averaging at 0.89 and 0.87 ◦C over China,
respectively. The spatial distribution of the RMSE values for these two methods was very
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similar. Values higher than 1 ◦C were found in Northeast China and the western part of
Northwest China, while the values ranged from 0.50 to 1.00 ◦C in most other areas. The
RMSE values were greatly reduced by the SDBC and SDDBC methods compared with the
BCC_CSM. The RMSE for the SDDBC method was smaller than that for the SDBC method.
Lower RMSE values suggested a useful correction of the SDBC and SDDBC methods to the
BCC_CSM. Moreover, the SDDBC method performed better than the SDBC method.
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(b) TCC and ACC

Figure 5 shows the spatial distribution of the temporal correlation coefficient (TCC) of
spring air temperature forecast for the BCC_CSM and the SDBC and SDDBC methods. The
BCC_CSM was skillful, with TCC values ranging between 0.09 and 0.72 over China. The
TCC in North China was significantly higher than that in South China. TCCs above 0.4
(significant at the 5% level) suggested the higher skill of the BCC_CSM in Northeast China,
North China, Northwest China, North Central China, and Northeast China. In particular,
the TCCs for the northern part of Northwest China, the northern part of East China, the
southern part of North China, and the northern part of Central China were greater than 0.5.

The TCC for the SDBC and SDDBC methods was also obviously higher in North China
than that in South China, which presented a similar spatial distribution to that for the
BCC_CSM. However, the area with a TCC for SDBC above 0.4 was narrowed. Instead, the
area with a TCC for SDDBC above 0.4 was expanded. Moreover, SDDBC was more skillful
in the southern part of North China, the northern part of East China and the northern part
of Central China, with TCCs above 0.7, while the TCC in Northeast China was smaller. In
general, the narrowed area with higher TCCs for SDBC led to lower forecast skills and the
expanded area with higher TCCs for SDDBC resulted in an improvement in forecast skills.
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Figure 5. Spatial distribution of TCCs for spring air temperature anomalies from 1991 to 2020 based on observations and
forecasts by (a) BCC_CSM, (b) SDBC, and (c) SDDBC over China.

Figure 6 shows the anomaly correlation coefficients (ACCs) of spring air temperature
forecasts by the BCC_CSM and the SDBC and SDDBC methods. The BCC_CSM showed
statistically significant skill at the 5% level (ACC = 0.31) for the whole of China. The
ACCs of SDBC and SDDBC were 0.03 lower and 0.04 higher than that of the BCC_CSM,
respectively.
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Figure 6. ACC for spring air temperature anomalies from 1991 to 2020 based on observations and
forecasts by BCC_CSM, SDBC, and SDDBC over China and seven sub-regions. The dashed black line
denotes statistical significance at 95% confidence level based on Student’s t-test.

The greatest ACC of the BCC_CSM for temperature forecasting was found in Northeast
China (0.25), followed by East China and Northwest China (0.24), and the smallest was
in South China (0.15). The ACCs were significant at the 5% level in most regions over the
whole country, except South China, which suggests a high forecast skill of the BCC_CSM.
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SDBC had a lower ACC than the BCC_CSM did in most regions except East China,
and the difference was the greatest in Northeast China, with a value of 0.09. SDDBC
showed a higher ACC in most areas except Northeast China. The greatest improvement in
ACC was found in South China (0.22), followed by North China, East China, Central China,
Northwest China (0.11–0.12), and Southwest China (0.05). Thus, in terms of ACC, the
SDBC method showed lower skill, while the SDDBC method was obviously more skillful
than the BCC_CSM.

(c) MSSS

The MSSS of the BCC_CSM and SDBC for spring air temperature anomaly forecasts
in China was 0.18. The MSSS of SDDBC was 0.22, 22% higher than the above two methods.
Figure 7 shows the MSSS distribution of the three methods used to forecast spring air
temperature. The BCC_CSM was skillful, with a positive MSSS in most parts of China
except Southwest and South China. The distribution of MSSS was similar to that of TCC,
which showed higher skill in North China than in South China. High MSSS values were
found in North China, Northwest China, Northeast China, East China, and the northern
part of Central China, ranging between 0.2 and 0.51. The forecasts were most skillful in
North China, with an average MSSS of 0.29. The MSSS was lower in South China with an
average of 0.05. The BCC_CSM showed no skill in most of Southwest China due to the
negative MSSS.
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Figure 7. Spatial distribution of MSSS for spring air temperature anomalies from 1991 to 2020 based on observations and
forecasts by (a) BCC_CSM, (b) SDBC, and (c) SDDBC over China.

The MSSS spatial distribution of SDBC and SDDBC was close to that of the BCC_CSM,
ranging between −0.37 and 0.44 and −0.44 and 0.73, respectively. The area of SDBC with a
positive MSSS was wider than that of the BCC_CSM. The forecast skill was improved in
Southwest China and the southwestern part of Northwest China because of the increased
MSSS. However, the MSSS of SDBC was lower in almost all of the remaining areas com-
pared with the BCC_CSM, especially for the MSSS turning negative from positive in South
China.

The area of SDDBC with a positive MSSS was much larger than that of the BCC_CSM,
while an area having no skill (MSSS < 0) was detected in South China. Except Northeast
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China and South China with a decreased MSSS, the SDDBC forecast was most skillful
among the three methods. A 23% to 34% improvement in MSSS occurred in North China,
East China, Central China, Northwest China, and Southwest China.

MSSS is decomposed into phase skill, amplitude error, and systematic error. The
systematic error term is close to 0 without considering the drift of climate states. Thus, the
MSSS is mainly determined by the phase skill term and the amplitude error term.

Table 1 shows the overall average MSSS for spring temperature anomaly forecasts
from 2001 to 2020 based on observations and forecasts by the BCC_CSM, SDBC, and
SDDBC methods over China. The phase skill and amplitude error of SDBC both dropped
by 0.1 compared with the BCC_CSM. Thus, because of the same influence of these two
errors on the MSSS, the forecast skill of SDBC remained. However, the amplitude error of
SDDBC increased by 0.01 and the phase skill increased by 0.05. The increase in phase skill
being greater than the increase in amplitude error led to the improvement of the forecast
skill of SDDBC.

Table 1. MSSS for spring air temperature anomalies from 1991 to 2020 based on observations and forecasts by BCC_CSM,
SDBC, and SDDBC over China and seven sub-regions.

Region MSSS Phase Skills Amplitude Errors
Model SDBC SDDBC Model SDBC SDDBC Model SDBC SDDBC

Northeast China 0.23 0.20 0.18 0.77 0.61 0.61 0.59 0.47 0.49
North China 0.29 0.25 0.31 0.74 0.58 0.74 0.49 0.38 0.49
East China 0.23 0.20 0.26 0.51 0.48 0.69 0.33 0.37 0.53

South China 0.05 −0.01 −0.03 0.43 0.40 0.42 0.44 0.48 0.52
Central China 0.21 0.18 0.24 0.51 0.45 0.64 0.38 0.37 0.52

Northwest China 0.22 0.22 0.27 0.58 0.50 0.68 0.51 0.41 0.53
Southwest China −0.13 0.04 0.11 0.55 0.33 0.51 0.74 0.35 0.48

China 0.18 0.18 0.22 0.58 0.48 0.63 0.50 0.40 0.51

A lower phase skill of SDBC was found in all seven sub-regions, while a lower
amplitude error was detected in most areas, except East and South China. The decrease in
phase skill being greater than the increase in amplitude error led to the reduced forecast
capability of SDBC in most sub-regions. More than half of the areas showed greater
phase skill and larger amplitude error for the SDDBC method than the BCC_CSM, except
Northeast, South, and Southwest China. The increase in phase skill being greater than the
decrease in amplitude error led to the improvement in forecast skill of SDDBC in most
sub-regions.

4.3. Probabilistic Evaluation of Forecast Skill

(a) ROC

ROC and BSS were employed to evaluate the probabilistic forecast skills for the spring
air temperature anomalies in China. The skills of the BCC_CSM, SDBC, and SDDBC for
above-normal (AN), near-normal (NN), and below-normal (BN) forecasts were compared.
Figure 8 shows the ROC diagrams for the three methods. A ROC curve that lies along the
1:1 line indicates no skill, and a curve that is far toward the upper-left corner indicates high
skill. The ROC diagrams showed that, of the three methods, the skill was the best for BN
forecasts, followed by AN and NN forecasts. Thus, the weak anomaly signal, which is
difficult to forecast, led to the lower predictability of the model. SDDBC showed a better
performance than the BCC_CSM and SDBC did for all three (AN, NN, and BN) forecasts.
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China.

Figure 9 shows the spatial distribution of the relative operating characteristic skill
score (ROCSS) of the spring air temperature for three categorical probabilistic forecasts
by the BCC_CSM, SDBC, and SDDBC over China. An ROCSS above 0 denotes a skillful
forecast from the method for the stations. Overall, the BCC_CSM showed better skill for
AN and BN forecasts than for NN forecasts and was more skillful for BN than AN forecasts.
The ROCSS in most areas was above 0.2 for AN forecasts in China. The largest ROCSS of
0.43 was found in Central China, followed by North China, East China, and Northwest
China, where the ROCSS was larger than 0.35. The ROCSS for BN forecasts was higher
than 0.4 over most areas of China, except South China and parts of Southwest China. The
ROCSS for NN forecasts was mostly less than 0.2 and showed no forecast skill in some
areas of Northwest and Northeast China. The ROCSS spatial distributions of SDBC and
SDDBC were similar to that of the BCC_CSM. SDBC was less skillful than the model for all
three categorical forecasts. The site-level average ROCSS for AN, NN, and BN forecasts
decreased by 0.06, 0.09, and 0.06, respectively. The areas of NN forecast having no skill
(ROCSS less than 0) were wider and became non-skilled from skillful in Central China,
South China, and East China. The skill of SDDBC for the three categorical forecasts was
better in most areas except Northeast China. In terms of AN forecasts, the ROCSS of North
China, East China, Northwest China, and Southwest China enhanced significantly by
0.05 to 0.06. For BN forecasts, the ROCSS increased by more than 0.05 in most of China,
particularly increasing by 0.08 to 0.09 in Northwest and Southwest China. For NN forecasts,
the non-skilled area significantly narrowed. Compared with that of SDBC, the ROCSS of
SDDBC for AN, NN, and BN forecasts was improved by 0.11, 0.13, and 0.11, respectively.
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(b) BSS

Figure 10 shows the Brier skill score (BSS), the resolution component of the BSS
(BSSres), and the reliability component of the BSS (BSSrel) for above-normal (AN), near-
normal (NN), and below-normal (BN) forecasts of spring air temperature anomaly by
the BCC_CSM, SDBC, and SDDBC over China. The negative BSS values indicate that
the BCC_CSM, SDBC, and SDDBC had no skill for the NN forecasts. The three methods
were found to be more skillful with greater BSS values for BN forecasts than AN forecasts.
SDBC showed no skill for AN forecasts and was less skillful than the BCC_CSM for BN
forecasts. Based on the BSS in Figure 10, SDDBC was obviously the most skillful for both
AN and BN forecasts. This result is consistent with the findings from the ROC diagram.
The BSS equation was employed to evaluate the resolution and reliability of the spring
air temperature anomaly forecasts. Larger BSSres values suggest higher resolution, and
smaller BSSrel values indicate stronger reliability. The BSSres values of the three methods
for NN forecasts were close to zero, while the BSSrel values were larger than 0.05. The low
resolution combined with the low reliability led to the unskillful NN forecasts by the three
methods. The BSSres was larger for BN forecasts than AN forecasts by the three methods,
suggesting the higher resolution for BN forecasts than for AN forecasts. The BSSrel for BN
forecasts was smaller than for AN forecasts, indicating stronger reliability for BN forecasts.
Therefore, the BSS for BN forecasts is greater than AN forecasts, and the three methods
showed more skill for BN forecasts.

Compared with the BCC_CSM, the BSSres of SDBC for the three categorical forecasts
decreased, and the BSSrel increased, resulting in lower resolution, reliability, and BSS. The
BSSres and BSSrel of SDDBC for the three categorical forecasts both increased, resulting
in higher resolution and lower reliability. However, the increase in BSSres was greater
than that in BSSrel, so the improvement in resolution exceeded the decrease in reliability,
leading to the increase in BSS.

Table 2 shows the BSS for three categorical probabilistic forecasts of spring temperature
by BCC_CSM, SDBC, and SDDBC over China and seven sub-regions. The BCC_CSM, SDBC,
and SDDBC had no skill for NN forecasts in the seven sub-regions of China. The three
methods also had no skill for the AN forecasts in Northeast China. The BCC_CSM showed
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the largest BSS of 0.16 for BN forecasts among the three methods in Northeast China,
indicating that the skill was not improved by the correction of SDBC and SDDBC. For the
other six regions, the BSS of the BCC_CSM for BN forecasts was positive. The largest BSS
of 0.2 was detected in Central China, followed by North China and East China with a BSS
of 0.18, suggesting better forecast skill in these areas. The BSS for AN forecasts was less
than that for BN forecasts in all six regions. Northwest China had the highest BSS of 0.09
for AN forecasts, followed by North and Central China with a BSS of 0.07. There was no
skill in South China because of the negative BSS. Compared with the BCC_CSM, the skill
of SDBC for AN and BN forecasts decreased by between 0.03 and 0.05. SDDBC presented a
larger BSS for both AN and BN forecasts and was more skillful than the BCC_CSM. The
BSS for AN forecasts was improved significantly by between 0.03 and 0.04 in North China
and East China, while the BSS for BN forecasts was improved significantly by between
0.04 and 0.06 in Northwest China, North China, and Central China. The lower resolution
and reliability of SDBC for AN and BN forecasts in each sub-region led to the lower BSS,
while the same resolution and lower reliability for NN forecasts resulted in the decreased
BSS. SDDBC improved the resolution for the three categorical forecasts in all sub-regions,
except Northeast China, but deteriorated the reliability in most regions. The improvement
in resolution being greater than the decrease in reliability resulted in the increases in BSS.
Compared with SDBC, the resolution was improved for the three categorical forecasts in
each region by SDDBC, while the variation in reliability differed from area to area. This
suggests that the BSS improvement of SDDBC was mainly due to the increase in resolution.
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Figure 10. BSS, BSSres, and BSSrel for AN, NN, and BN forecasts of spring air temperature by
BCC_CSM, SDBC, and SDDBC over China.

Table 2. BSS for AN, NN, and BN forecasts of spring air temperature by BCC_CSM, SDBC, and SDDBC over China and
seven sub-regions.

Region Above Normal Near Normal Below Normal
Model SDBC SDDBC Model SDBC SDDBC Model SDBC SDDBC

Northeast China −0.07 −0.13 −0.11 −0.02 −0.07 −0.09 0.16 0.12 0.14
North China 0.07 0.03 0.11 −0.04 −0.07 −0.03 0.18 0.14 0.22
East China 0.06 0.01 0.08 −0.04 −0.08 −0.05 0.18 0.13 0.21

South China −0.02 −0.07 0.00 −0.08 −0.12 −0.07 0.02 −0.04 −0.02
Central China 0.07 0.03 0.08 −0.03 −0.08 −0.05 0.20 0.15 0.23

Northwest China 0.09 0.05 0.12 −0.09 −0.12 −0.05 0.11 0.07 0.17
Southwest China 0.04 −0.01 0.03 −0.03 −0.07 −0.07 0.02 −0.03 0.05

China 0.04 0.00 0.06 −0.05 −0.09 −0.06 0.12 0.08 0.15
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5. Discussion

SDBC can reduce model error by eliminating systematic bias, and this agrees with
existing studies [32–35]. However, it did not improve the forecast skills. SDDBC not
only retains the advantages of SDBC, but also effectively improves probabilistic and
deterministic forecast skills by correcting the temperature trend bias. All the results
showed that correcting temperature trend bias is urgent in the post-processing of model
outputs. SDDBC performs well in forecasting climatic factors which have obvious variation
trends and whose trends cannot be appropriately simulated by the model. It can be used for
the forecasting of climatic factors with obvious trends, such as temperature, solar radiation,
extreme temperature events, wind speed, atmospheric circulation indexes, subtropical
height field, sea surface temperature, and sea ice.

Moreover, the results also showed that improving the forecasting ability of the model
for the temperature trend would significantly improve the forecasting ability for seasonal
temperature. Future efforts should thus focus on improving the accuracy of the model in
simulating trends in climate.

In terms of the lower ACC, MSSS, ROCSS, and BSS, SDDBC was less skillful than
the BCC_CSM and SDBC were in Northeast and South China. This is mainly due to the
insignificant trend of spring air temperature for these two areas. Trend correction cannot
improve the TCC between the BCC_CSM and the observation, and so the forecast skill
drops. Therefore, SDDBC may not improve the forecast skill when the trend of climatic
factors is not significant, the nonlinear characteristics of the trend are obvious, or the trend
is already forecasted well by the model.

6. Conclusions

This study assessed the prediction skill of the BCC_CSM, SDBC, and SDDBC for
spring air temperature over China by employing deterministic and probabilistic forecast
verification methods from 1991 to 2020. The influence of temperature trend correction on
the seasonal prediction capability of the model was analyzed. The main conclusions with
discussions can be summarized as follows.

Although the BCC_CSM simulated a significant trend of increasing spring air temper-
ature, the warming rate was obviously underestimated. SDDBC was more skillful than
SDBC as it corrected the underestimated air temperature trend.

The BCC_CSM showed a severe cold bias for the spring temperature forecast in China.
The RMSE was larger in the west and north than in the east and south. The results of
TCC, ACC, and MSSS indicated that the BCC_CSM was skillful for spring air temperature
forecast in China, and the skill was higher in the north than in the south. In terms of the
probabilistic forecast, the BCC_CSM showed considerable skill in forecasting temperature
and was found to be more skillful with a greater BSS for BN forecasts than for AN forecasts,
while having minor skill for NN forecasts.

SDBC and SDDBC can effectively eliminate the systematic error of the model and
obviously reduce the root mean square error (RMSE). Compared with the model, SDBC
cannot improve the anomaly correlation coefficient (ACC) and the mean squared skill score
(MSSS) of air temperature forecasts, while SDDBC performed better than the model in
terms of ACC and MSSS and was also more skillful than SDBC due to the correction of the
temperature trend bias, the increase in temporal correlation between the model, and the
observation and the improvement in skill of the model for phase forecast, resulting in the
better MSSS and ACC. The relative operating characteristic skill score (ROCSS) and the
Brier skill score (BSS) of SDDBC for the three categorical forecasts were higher than those
of the model, while the scores given by SDBC were lower. The improvement in resolution
exceeded the decrease in reliability, leading to the increase in BSS.
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