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Abstract: The strong effects of climate change are expected to negatively impact the long-term
resilience and function of forest ecosystems, which could lead to changes in forest carbon balance
and productivity. However, these forest responses may vary with local conditions and forest types.
Accordingly, this study was carried out to determine gross primary productivity (GPP) sensitivity
to changes in environmental parameters. Central European beech (at Štítná) and spruce species (at
Bílý Kr̆íz̆ and Rájec), growing under contrasting climatic conditions, were studied. The comparative
analyses of GPP were based on a five-year-long dataset of eddy covariance fluxes during the main
growing season (2012–2016). Results of forest GPP responses with changes in environmental factors
from a traditional Stepwise multiple linear regression model (SMLR) were used and compared with
Random forest (RF) analyses. To demonstrate how actual GPP trends compare to potential GPP
(GPPpot) courses expected under near-optimal environmental conditions, we computed normalized
GPP (GPPnorm) with values between 0 and 1 as the ratio of the estimated daily sum of GPP to GPPpot.
The study confirmed the well-known effect of total intensity of the photosynthetically active radiation
and its diffuse fraction on GPPnorm across all the forest types. However, the study also showed the
secondary effects of other environmental variables on forest productivity depending on the species
and local climatic conditions. The reduction in forest productivity at the beech forest in Štítná was
presumed to be mainly induced by edaphic drought (anisohydric behaviour). In contrast, reduced
forest productivity at the spruce forest sites was presumably induced by both meteorological and
hydrological drought events, especially at the moderately dry climate in Rájec. Overall, our analyses
call for more studies on forest productivity across different forest types and contrasting climatic
conditions, as this productivity is strongly dependent on species type and site-specific environmental
conditions.

Keywords: eddy covariance; European beech; Norway spruce; potential GPP; normalized; regression
modeling

1. Introduction

Gross primary productivity (GPP) constitutes an essential part of net ecosystem CO2
exchange (NEE) between the atmosphere and the forest ecosystems [1–3]. GPP provides
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important information about the photosynthetic capacity of the ecosystem and is modulated
by numerous environmental factors leading to changes in forest growth [4–7]. Nonetheless,
the accurate quantification of forest GPP on a global scale remains challenging due to the
spatio-temporal heterogeneity of forest ecosystems [8]. At the plot scale (within the area
of the flux-tower footprint), the eddy covariance (EC) technique has emerged as a direct
state-of-the-art approach to study the seasonality of carbon fluxes between the atmosphere
and forest ecosystems, and thus represents an indirect yet reliable measure of GPP [9–12].

Seasonal trends of GPP demonstrate the forest response to variations in environmental
factors. However, these forest responses vary from site to site depending on the species,
age, local climate, and additional factors. For instance, rising temperatures within the
optimum range and water availability in most temperate forest ecosystems is positive to
reduce the freezing stresses and increase ecosystem productivity by enhancing the rate
of ecosystem photosynthesis. However, higher temperatures (beyond the optimum level)
may induce varying physiological and biochemical responses to heat stress at different
forest ecosystems based on the acclimation processes of specific plant species to changes
in their environment [13,14]. Such contrasting GPP responses (due to the shift in plant
functional traits) of specific species to different environmental stress conditions at different
sites are poorly understood [15]. Therefore, through ecosystem carbon flux measurements,
physiological responses of individual plant species to certain climatic anomalies such as
heat and water stress can be studied [16,17]. Furthermore, as multiple climatic factors affect
forest carbon uptake, there is the need to identify near-optimal environmental conditions
for different species, under which GPP can reach maximal theoretically attainable values
termed potential GPP (GPPpot).

GPP is primarily driven by available photosynthetically active radiation (PAR) cou-
pled with other physiological processes like stomatal conductance that control carbon
fluxes between the ecosystem and the atmosphere [18,19]. Moreover, the physiological
processes that affect carbon uptake are also affected by complex interactions between a set
of environmental drivers, including the quality of incoming solar radiation, temperature,
atmospheric humidity, and soil moisture [18,20]. For example, the work in [19] has shown
that photosynthesis of the upper spruce canopy could be severely depressed during clear
sunny days due to the abrupt closure of stomata under high values of vapour pressure
deficit. However, under cloudy conditions, the rate of photosynthesis of the lower spruce
canopy increases due to the effective penetration of anisotropic diffuse radiation into the
canopy, thus leading to an enhanced carbon gain and light use efficiency [21].

The main goal of this study is to determine the main environmental variables influenc-
ing the ratio between observed GPP and GPPpot of three forest ecosystems with contrasting
plant species using two types of regression models. Forests dominated by Norway spruce
(Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) were selected for this study
due to their sensitivity to climate and high commercial and ecological importance in Central
Europe [22,23]. Furthermore, the current distribution of spruce species at often unsuitable
locations with sub-optimal climate conditions make them vulnerable to both biotic and
abiotic stresses [24–27]. Thus, it is important to study the physiological responses of dif-
ferent plant species to the local environmental conditions across different forest sites. EC
data were collected from two Norway spruce forest sites (Bílý Kr̆íz̆ and Rájec) with distinct
climatic conditions, and a beech forest (Štítná) from 2012–2016 during the main growing
season (May–September) to exclude the impact of phenology.

2. Materials and Methods
2.1. Sites Description

This study uses multi-year (2012–2016) EC measurements from three forest ecosystem
stations located in the Czech Republic (Central Europe) that are part of the CzeCOS (Czech
Carbon Observation System; http://www.czecos.cz/, accessed on 6 March 2021) and
FLUXNET Network (Flux Tower Network; https://fluxnet.fluxdata.org/, accessed on
6 March 2021). FLUXNET site IDs are CZ-BK1 (wet spruce forest at Bílý Kr̆íz̆), CZ-RAJ

http://www.czecos.cz/
https://fluxnet.fluxdata.org/
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(dry spruce forest at Rájec), and CZ-Stn (beech forest at Štítná). CZ-BK1 is also a candidate
for ICOS (Integrated Carbon Observation System; https://www.icos-cp.eu/, accessed
on 6 March 2021) network. All forest stands are even-aged monocultures. Their main
characteristics are presented in (Table 1). The reference evapotranspiration amount at each
forest stand was computed from in situ data and was additionally used for quantifying the
atmospheric evaporative demand from 2012 to 2016.

Table 1. Characteristics of the investigated sites.

Site Name CZ-BK1 CZ-RAJ CZ-Stn

Location Moravian-Silesian Beskids
Mountains Drahany Highland White Carpathian

Mountains

Coordinates 49◦30′08′ ′ N, 18◦32′13′ ′ E 49◦26′37′ ′ N, 16◦41′48′ ′ E 49◦02′09′ ′ N, 17◦58′12′ ′ E

Elevation (in m a.s.l) 875 625 540

Topography
Mountainous (13◦ slope
with SSW exposure, located
close to a mountain ridge)

Hilly (5◦ slope with NNE
exposure)

Mountainous (10◦ slope
with WSW exposure)

Ecosystem Type Coniferous evergreen forest Coniferous evergreen forest Deciduous broadleaf forest

Prevailing species Norway spruce (Picea abies
(L.) Karst.)

Norway spruce (Picea abies
(L.) Karst.)

European beech (Fagus
sylvatica L.)

Canopy height (m) 16 (mean, as of 2015) 33 (mean, as of 2015) 31 (mean, as of 2015)

Stand age (years) 35 (as of 2016) 113 (as of 2016) 115 (as of 2016)

Mean seasonal air
temperature
(May-September; ◦C)

14 * 16 * 17 *

Total seasonal precipitation
(May-September; mm) 2730 * 1635 * 1719 *

Seasonal sum of reference
evapotranspiration
(May-September; mm)

2036 * 2325 * 2166 *

Soil type Haplic and Entic Podzol Modal Cambisol
oligotrophic Eutric Cambisol

References [28] [29] [23]

* 2012–2016 study period.

2.2. Eddy Covariance and Ancillary Measurements

At each station, the EC system consisted of an infrared gas analyzer (LI-COR, Lincoln,
NE, USA) and an ultrasonic anemometer (Gill Instruments, Lymington, UK) measuring
at 20 Hz frequency (detailed description in Table A1). Each system was mounted on a
tower at height above the forest canopy (as specified in Table A1). EC measurements were
complemented by an extensive set of sensors to collect the required auxiliary meteorological
data.

Measurements included air temperature (Tair) and relative humidity at the top of the
forest canopy with the EMS33 temperature and humidity sensors (Embedded Moisture
Sensor, Vancouver, BC, Canada). Hourly precipitation (P) was determined using a Pre-
cipitation Gauge 386C (Met One Instruments, Grants Pass, OR, USA). Measurements for
the incoming photosynthetic active radiation (PAR) were made with a LI-190R Quantum
Sensor (LI-COR, NE, USA) at both Bílý Kr̆íz̆ and Štítná and with an EMS12 sensor (EMS,
CZ) at Rájec. Additionally, profiles of soil moisture were measured using the CS616 (Camp-
bell Scientific, North Logan, UT, USA) sensors at both spruce forest sites (in Bílý Kr̆íz̆ and
Rájec) and with the ThetaProbe (ML2x 355, Delta-T, Burwell, UK) sensors at Štítná. An
overall description of the instrumentation at the study sites including soil temperature
measurements (Ts) is given in Table A2.

To analyze the effects of diffuse and direct radiation on daily mean GPP values, the
dataset was divided into sunny and cloudy days based on the clearness index (CNI). CNI
is defined as the ratio of solar irradiation transmitted through the atmosphere onto the
Earth’s surface relative to extraterrestrial irradiation. Sunny days were classified as days
with CNI > 0.7 during daytime hours, cloudy days were characterized with CNI < 0.4, and
CNI values of 0.4–0.7 were grouped as partly cloudy days [30].

https://www.icos-cp.eu/
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The vapour pressure deficit (VPD; hPa) for each site was computed from Tair (◦C) and
relative air humidity (RH; %) according to [31]. The daily sum of PAR (MJ m−2 day−1) was
derived following the work in [32].

2.3. Soil Water Content Simulations

As the soil volumetric water content (SVWC) was not measured over the entire
period of the study (the measurements started at the beginning of 2016), the simulated
daily SVWC was used. The simulations were performed by soil water balance model
R-4ET (R package for Empirical Estimate of Ecosystem EvapoTranspiration, [33]). This soil
water balance model was calibrated using the Bayesian statistics implemented in the R
package BayesianTools [34] with Differential-Evolution Markov chain Monte Carlo sampler.
In calibration using the Bayesian statistics, the model input parameters were updated
iteratively to provide a probability distribution of the calibrated parameters representing
the uncertainty in the measured data and structure of the model. These simulations were
repeated several times (4.8 × 106), with the first 1.8 × 106 simulations based on the prior
distribution and the remaining 3 × 106 runs restricted by the posterior distribution that
resulted from the first set of processes. This high number of iterations was significant
in attaining a good input parameter convergence with narrow distribution. The Gelman
diagnostics based on a criterion for potential scale reduction factor (less than 1.2 for all
parameters) as used in [35,36] was used to inspect the convergence. Additionally, a final
selection of parameters from their probability distributions was made using a maximum
posteriori probability estimate.

Moreover, the input variables for the soil water balance model comprised meteoro-
logical data and leaf area index (see in [33] for more details). The soil at each of the sites
was then stratified into 12 layers, increasing in thickness with depth to ~3 m. These soil
layers were selected in a manner that matched the depths of all sensors with an extra
±2.5 cm due to the volume measured by these sensors. At all sites, the available SVWC
measurements were available throughout the main root zone region. At the wet spruce
forest site in Bílý Kr̆íz̆, the CS616 (Campbell Scientific, Inc., Logan, UT, USA) sensors were
placed and measured at depths of 0.05, 0.1, 0.22, 0.34, and 0.42 m. Furthermore, at the dry
spruce forest site in Rájec, the same type of sensors was placed and measured at depths
of 0.05, 0.1, 0.2, 0.5, and 0.8 m. At the beech forest site in Štítná, the ThetaProbe (ML2x
355, Delta-T, UK) sensors were placed and measured at depths of 0.05, 0.1, 0.3, 0.6, and
0.9 m. The optimized model parameters included soil parameters such as the SVWC at
saturation, field capacity, wilting point, and saturated hydraulic conductivity—all opti-
mized at all 12 depths [33]. There were also additional single parameters of relevance to
the SVWC simulations, which were optimized. These included the rooting depth with
the Beta parameter, which described the root profile shape [37], surface resistance and
the degree of isohydricity [38], the water interception capacity of leaf and bark area, and
curve number representing a runoff parameter [33]. A uniform distribution of priors was
applied if the lower and upper limits were set to be within ±50% of the values based on
field measurements of wilting point, field capacity, and saturated water content and±100%
for the remaining parameters that were estimated from literature or previous anecdotal
analysis. In providing the model with sufficient spin-up time to stabilize and provide
reliable and robust parameterization, the model simulations were initiated at the start of
2010 with initial conditions of SVWC set to the field capacity estimated from soil texture
(note that 2010 was one of the wettest years across all forest sites according to a computed
standardized precipitation-evapotranspiration index over the region). Overall, the entire
simulation was conducted from 2010–2019, with the observed data for the Bayesian cali-
bration spanning from 2016 to 2019. The simulated SVWC averaged over all the depths
produced a root mean square error of 0.037 m3 m−3 at the wet spruce forest site in Bílý
Kr̆íz̆, 0.017 m3 m−3 for the dry spruce forest site in Rájec and 0.032 m3 m−3 for the beech
forest site in Štítná, suggesting realistic SVWC estimates.
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2.4. Data Processing and Analysis
2.4.1. Turbulent Flux Measurements

Across all the three study forests, the EC data from the main growing season (May–
September) of 2012–2016 were used for the analyses. Processing of EC data (wind compo-
nents, sonic temperature, CO2, and water vapour mixing ratios) was performed using an
open-source software EddyPro (Li-COR, Lincoln, NE, USA). The most recent methods for
flux corrections, conversions, and thorough quality control scheme [39,40] were applied.
This process involves raw data despiking and statistical screening, basic quality checking
of turbulent fluxes (i.e., flux stationarity and integral turbulence characteristics tests), co-
ordinate rotation using the planar fit method [41], spectral correction [42–44], detecting
and compensating for time lags of signals from the ultrasonic anemometer and the gas
analyzer [43], footprint estimation and calculating half-hourly final fluxes. Flux measure-
ments over periods with insufficiently developed turbulence, i.e., low friction velocity (u*)
were detected and filtered out. This filtering procedure, according to the most current
methodology [45], assured the exclusion of CO2 fluxes not necessarily representative of the
ecosystem-scale biotic flux due to insufficient mixing across the canopy [46–48].

The R software [49] package ‘REddyProc’ [45] was used to gap-fill the EC data at
all sites, using marginal distribution sampling [47]. CO2 flux (subsequently considered
to be equal to NEE) was partitioned into GPP and ecosystem respiration (Reco). The flux
partitioning approach by [47] using daytime data was applied to estimate half-hourly GPP
((µmol m−2 s−1)) values. The half-hourly GPP values were aggregated to obtain daily and
monthly sums of GPP values.

2.4.2. Estimation of Potential and Normalized GPP

GPPpot is defined here as the estimate of daily GPP sum that would be attainable
under near-optimal environmental conditions (PAR, CNI, SVWC, VPD, Tair, Ts, and P) at
given site and day of the year (DOY [50]). The GPPpot thus forms the boundary line of a
scatter plot of GPP against DOY (especially for the growing season periods) pooled over
multiple years of data. Specifically, to estimate the GPPpot, the following procedures were
applied until there were no outliers as described in [50]:

• Compute the 95th percentile from the daily sum of GPP pooled over years 2012–2016
for each DOY over a 7-day window (applied iteratively);

• Outliers were detected and removed based on the percentiles method (all observations
that positioned outside the interval formed by the 1 and 99 percentiles were considered
as outliers).

To better compare the variation in GPP response across all the investigated forest
stands, daily normalized GPP (GPPnorm) was derived for each forest station as the ratio
of the estimated GPP to the GPPpot. Therefore, GPPnorm values ~1 represent days with
maximum assimilation rates, whereas GPPnorm values ~0 represent days with extreme
adverse effects on forest productivity. A smoothing spline curve was applied to depict the
main trends in seasonal courses of GPPnorm during the growing seasons of 2012–2016.

A Pearson’s correlation coefficient matrix was calculated to determine the statistical
relationship between GPPnorm and the environmental variables based on a covariance
method at a significance level of 0.05 (Figure A2).

2.4.3. Multi-Linear and Tree-Based Regression Model Analyses

In order to assess the response of GPPnorm to the environmental factors (PAR, CNI,
SVWC, VPD, Tair, and Ts) at each site, two methods were tested: (i) a stepwise multi-linear
regression (SMLR) and (ii) random forest algorithm (RF). P was excluded from the analyses
as it is not a direct measure of soil moisture; thus, SVWC was used for the regression
analysis. The SMLR selection with interaction terms was designed using the stepwise
regression method (in both forward and backward direction), to determine the significant
terms in the model and eliminate the nuisance (i.e., non-significant) variables with 95%
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probability. In addition, quadratic terms were included to test for nonlinearity of the
environmental variables with GPPnorm. All statistical analyses were performed using the
R software package ‘stepAIC’ (Version 7.3-54, [51]) for computing stepwise regression in
both forward and backward direction [49].

We trained and applied RF to predict GPPnorm at each of the forest ecosystems and
for benchmarking the performance of the SMLR model. We used the R software package
‘randomForest’ (Version 4.6-14, [52]), with the following parameters established: number
of trees of the model (ntrees) = 300, number of variables in each mode (nodesize) = 5,
and the number of variables used in each tree (mtry) = one third of the total number
of samples, as in [53] for regression RF. As part of the byproduct of the RF, the built-in
variable importance measure that ranks the environmental variables (i.e., the features)
according to their relevance in predicting GPPnorm at each of the forest ecosystems has
been provided [54]. These feature scores are computed from permuting data points that
were not included in the RF analyses (Out-Of-Bag samples) based on the mean decrease in
accuracy. The higher the value of the mean decrease in accuracy, the higher the importance
of the variable in the model.

2.4.4. Accuracy Test of Regression Models

To assess the performance of both the SMLR model and RF techniques in predicting
GPPnorm at each of the forest ecosystems, model prediction accuracy indicators such as the
Pearson correlation, the percentage of the variance explained (R2) in relation to estimated
and predicted GPPnorm, and root mean square error (RMSE) values were derived and
compared.

3. Results
3.1. Variation in Meteorological Conditions at the Experimental Stations

Seasonal sum of precipitation during the main growing season period of the studied
years at the wet spruce forest site in Bílý Kr̆íz̆ was approximately 40% and 37% higher than
the seasonal sum of precipitation values at the dry spruce and the beech forest sites in Rájec
and Štítná, respectively (Table 1 and Figure A1). Furthermore, the months of July–August
were characterized mainly by hot and dry conditions across all forest stations, especially at
the dry spruce forest in Rájec with high mean monthly Tair (10% higher than at the wet
spruce forest site and 6% lower than at the beech forest) and low mean monthly SVWC
values (14% and 52% lower than at the wet spruce and beech forest sites respectively)
(Figure 1). However, the highest Tair values were consistently observed at the beech forest
in Štítná and the lowest at the spruce forest in Bílý Kr̆íz̆. There were also statistically
significant differences (p < 0.01) in the mean monthly VPD and SVWC values between
the months of June–September in Bílý Kr̆íz̆ (with comparatively low monthly VPD values;
Figure 1c) as compared to that in both Rájec and Štítná. These results indicate a drier
climate at the dry spruce forest site in Rájec as compared to a humid climate in Bílý Kr̆íz̆.
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Figure 1. Monthly averages of (a) air temperature, (b) the soil volumetric water content, and (c)
vapour pressure deficit for May–September of 2012–2016 in the spruce forest in Bílý Kr̆íz̆ (CZ-BK1),
Rájec (CZ-RAJ) and the beech forest Štítná (CZ-Stn) sites. The thick horizontal line in the box plot
represents the median value and the box indicates the upper and lower quartiles, with the vertical
dotted lines representing the minimum and maximum values. The error bars (whiskers) portray the
standard deviation.
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3.2. Effect of Meteorological Conditions on GPP

The annual course of mean daily sums of estimated GPP values in all the forests
studied are shown in Figure 2. The area under the red curve represents the seasonal course
of GPPpot, indicating how much the forest ecosystem could potentially assimilate carbon
over the year under near-optimal environmental conditions. The systematic changes in
estimated GPP during the growing season representing phenological responses to warming
and other microclimatic conditions were well captured in Figure 2. Results show that the
maximum GPPpot value of approximately 15.81 gC m−2 day−1 at the wet spruce forest site
in Bílý Kr̆íz̆ was the highest across all the forest sites. This maximum GPPpot value was
obtained on DOY values from 197–203 (within July) characterized by lower mean Tair and
high SVWC values (Figure 1). Additionally, maximum GPPpot values of approximately
12.97 gC m−2 day−1 and 14.48 gC m−2 day−1 were obtained during June for the dry spruce
(with DOY values from 170–177) and beech (with DOY values from 165–166 and 178) forest
sites in Rájec and Štítná, respectively. Furthermore, the seasonal variations in the daily
derived GPPnorm values over the growing season across all forest sites were compared for
each of the studied year (Figure 3). Lower GPPnorm values were found in 2015 depicting
GPP depression especially at the dry spruce forest site in Rájec during the main growing
season of that year. The GPPnorm values were comparatively higher at the beech forest site
in Štítná than at both spruce forest sites over the entire study period (Figure 3).

Our results from the Pearson correlation matrix revealed a moderate positive linear
relationship between GPPnorm and PAR across all forest stands (Figure A2). However,
CNI only showed a moderate positive linear relationship with GPPnorm in only the dry
spruce and beech forest with a nonlinear relationship with GPPnorm at the wet spruce forest
(Figures A2 and A3). Additionally, we found statistically significant correlation coefficients
(p < 0.05) between GPPnorm and other environmental variables such as PAR, P, VPD, SVWC,
and Tair at the wet spruce forest. Furthermore, at the dry spruce forest, there were also
statistically signifcant correlation coefficients between GPPnorm and PAR, CNI, SVWC, P,
and Ts. Statistically significant correlation coefficients (p < 0.05) between GPPnorm and PAR,
CNI, VPD, SVWC, Tair, and P were also observed at the beech forest site.

3.2.1. GPPnorm Prediction through Stepwise Multi-Linear Regression (SMLR)

To identify the main environmental variables influencing GPPnorm across the beech
and both spruce forest sites, an SMLR model was built and evaluated (Figure 4). The
accuracy indicators of the SMLR showed a good model quality in predicting significant
environmental variables that influenced GPPnorm values (Table 2). The model over pre-
dicted for low GPPnorm values and under predicted for high GPPnorm values for all the
three forest sites.

The Pearson correlation for all forest stations shows strong linear relationship between
the predicted and estimated GPPnorm values (Table 2). Furthermore, the R2 of the SMLR
model used across each forest ecosystem revealed that approximately 40–49% of the
variance in GPPnorm was well predicted by the environmental variables used (PAR, CNI,
SVWC, VPD, Tair, and Ts). The prediction error RMSE of the interaction model was found
to be 0.18, 0.14 and 0.15 for the wet spruce, dry spruce and beech forests, respectively. This
shows that model performance was comparable for all sites.

At both spruce forest sites, similar statistically significant (p < 0.01) environmental
variables affecting GPPnorm were PAR, SVWC, VPD, and Ts (Tables A3 and A4). In addition
to these similar environmental variables, CNI was also found to have secondary effects
on GPPnorm values at the wet spruce forest site in Bílý Kr̆íz̆ (Table A3). At the beech forest
site in Štítná, all the environmental variables used in the SMLR analyses were found to be
statistically significant (p < 0.01) in influencing GPPnorm values, especially for PAR, Ts, and
CNI (Table A5).

Moreover, similar quadratic terms such as PAR2, Ts
2, and CNI2 with negative coef-

ficients were found to be statistically significant (p < 0.01) across both spruce forest sites,
indicating a decrease in GPPnorm values (downward sloping) with an increase in PAR, Ts
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and CNI values (Tables A3–A5). Furthermore, at the beech forest site in Štítná, VPD2 and
CNI2 proved to be inversely related to GPPnorm and statistically significant (Table A5).
However, the positive coefficient value for SVWC2 across all the forest sites showed an
increase in GPPnorm values with increasing SVWC values (Tables A3–A5).

Figure 2. Annual trend of the daily potential gross primary productivity (red line) using daily sums of gross primary
productivity (GPP) for (a) the wet spruce forest in Bílý Kr̆íz̆ (CZ-BK1), (b) the dry spruce forest in Rájec (CZ-RAJ), and
(c) the beech forest in Štítná (CZ-Stn) from 2012 to 2016. The vertical lines represent the main growing season period of
May–September.
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Figure 3. Annual variations of estimated Normalized gross primary productivity (GPPnorm) within (a) the wet spruce forest
in Bílý Kr̆íz̆ (CZ-BK1), (b) the dry spruce forest in Rájec (CZ-RAJ), and (c) the beech forest in Štítná (CZ-Stn) from May to
September of 2012–2016. The smoothing spline curves was depict the trends in seasonal courses of GPPnorm during the
growing seasons of 2012–2016. The smoothing spline curves (λ = 0.95) depict the trends in changes of daily GPPnorm values
over the growing seasons of 2012–2016.
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Figure 4. Comparison between estimated daily normalized gross primary productivity (GPPnorm)
derived from eddy covariance measurements and predicted daily GPPnorm estimated from the
stepwise multiple linear regression model (SMLR) within (a) the wet spruce forest in Bílý Kr̆íz̆
(CZ-BK1), (b) the dry spruce forest in Rájec (CZ-RAJ), and (c) the beech forest in Štítná (CZ-Stn).
1:1 relationship between the predicted GPPnorm and estimated GPPnorm values from the SMLR are
represented by the red line. The shaded blue area represent the 95% confidence interval.

For the statistically significant (p < 0.01) interaction terms of SMLR, the VPD:SVWC
term was common across all the forest sites showing the interactive effects of VPD and soil
water availability on GPPnorm values. At the wet spruce forest site in Bílý Kr̆íz̆, interactive
effects between VPD and other environmental variables such as SVWC, PAR, and Tair
were statistically significant. At the dry spruce forest site in Rájec, statistically significant
(p < 0.01) interactive terms between SVWC and other environmental variables such as CNI,
PAR, and VPD were observed. Furthermore, at the beech forest site in Štítná, statistically
significant (p < 0.01) interactive terms such as Ts:SVWC, Tair:SVWC, Tair:PAR, CNI:PAR,
VPD:Ts, and VPD:SVWC were all found to have effects on GPPnorm values.

3.2.2. GPPnorm Prediction through Random Forest Analyses (RF)

The validation statistics of the RF modeling are shown in Table 2. Note that higher
R2 (>0.54) and Pearson correlation values (>0.70) with low RMSE (<0.15) were obtained in
GPPnorm predictions with RF than with SMLR. This suggests that the RF model presents a
greater potential for predicting changes in GPPnorm with the environmental factors across
the forest ecosystems studied (Figure 5).
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Table 2. Statistical values from the stepwise multiple linear regression model (SMLR) and random
forest (RF) analyses showing the accuracy indicators in predicting the Normalized GPP (GPPnorm)
values across the wet spruce forest in Bílý Kr̆íz̆ (CZ-BK1), the dry spruce forest in Rájec (CZ-RAJ) and
the beech forest in Štítná (CZ-Stn) for May–September of 2012–2016. The Pearson correlation, R2, and
root mean square error (RMSE) values have all been shown.

Variants CZ-BK1 CZ-RAJ CZ-Stn

SMLR RF SMLR RF SMLR RF
Pearson correlation 0.63 0.76 0.71 0.81 0.67 0.75
R2 0.40 0.57 0.49 0.65 0.45 0.55
RMSE 0.18 0.15 0.14 0.12 0.15 0.13

Figure 5. Comparison between estimated daily normalized gross primary productivity (GPPnorm)
derived from eddy covariance measurements and predicted daily GPPnorm estimated from the
random forest (RF) analyses within (a) the wet spruce forest in Bílý Kr̆íz̆ (CZ-BK1), (b) the dry spruce
forest in Rájec (CZ-RAJ), and (c) the beech forest in Štítná (CZ-Stn). 1:1 relationship between the
predicted GPPnorm and estimated GPPnorm values from the RF are represented by the red line. The
shaded blue area represent the 95% confidence interval.

3.2.3. Importance of Environmental Variables in Random Forest Analyses

All the forest ecosystems predicted PAR as the most important environmental variable
(Figure 6). The variable importance score of PAR was higher at the beech forest site in
Štítná than at both spruce forest sites. Additionally, at the wet spruce forest site in Bílý Kr̆íz̆,



Atmosphere 2021, 12, 1128 13 of 25

the second and third most important environmental variables in GPPnorm prediction were
VPD and SVWC. On the other hand, SVWC and VPD were also the second and third most
significant environmental variables, respectively, in GPPnorm prediction at the beech forest
site in Štítná. This shows the significant effect of VPD at the wet spruce forest site and
soil water availability at the beech forest site on GPPnorm prediction. Furthermore, at the
dry spruce forest site in Rájec, the second and third most important variables in GPPnorm
prediction were VPD and Ts, respectively. Overall, VPD had more significant effect on
GPPnorm prediction at both spruce forest sites, especially in Bílý Kr̆íz̆ (with the highest
variable importance score of 0.18 for VPD).

Figure 6. Predictor variable importance measures from the random forest analyses for (a) the wet
spruce forest in Bílý Kr̆íz̆ (CZ-BK1), (b) the dry spruce forest in Rájec (CZ-RAJ), and (c) the beech
forest in Štítná (CZ-Stn). CNI: clearness index; PAR: photosynthetic available radiation; Tair: air
temperature; Ts: soil temperature; SVWC: the soil volumetric water content; and VPD: vapour
pressure deficit.

A decision tree representation showing regions with high and low GPPnorm daily
values from the RF analyses were plotted for each forest ecosystem (Figure 7).
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Figure 7. Prediction of normalized GPP (GPPnorm) at the wet spruce forest in Bílý Kr̆íz̆ (CZ-BK1), the
dry spruce forest in Rájec (CZ-RAJ) and the beech forest in Štítná (CZ-Stn) in a form of a decision
tree using random forest analyses. The mean square error (mse) indicates the closeness of the
predicted GPPnorm to the estimated GPPnorm. The values are daily GPPnorm values. Light colored
and white areas represent regions of low GPPnorm, and areas with deep color represent regions of
high GPPnorm. CNI: clearness index; PAR: photosynthetic available radiation; Tair: air temperature;
Ts: soil temperature; SVWC: the soil volumetric water content; and VPD: vapour pressure deficit.
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As already observed from both the SMLR and RF analyses, PAR is the most important
environmental variable in separating GPPnorm values into two distinct groups (high and
low values) across all forest ecosystems (Figure 7). For both spruce forest sites, the group
with mostly higher GPPnorm values (right branches in Figure 7) were separated above
similar PAR threshold values (approximately 4 MJ m−2 day−1), while high GPPnorm values
were attainable at the beech forest in Štítná above a PAR threshold of approximately
4 MJ m−2 day−1. The left branch in Figure 7 likely represents exceptional cases with low
PAR and GPPnorm values. Such conditions are the most common in the wet spruce forest
in Bílý Kr̆íz̆ with 72 cases as compared to 38 cases in the dry spruce forest and 62 cases
in the beech forest. Lower GPPnorm values were realized during periods with extremely
low PAR (~1 MJ m−2 day−1) values at the wet spruce forest in Bílý Kr̆íz̆ (6 cases) and the
beech forest site in Štítná (7 cases). Unlike in the wet spruce and beech forest sites, lower
GPPnorm values were obtained at the dry spruce forest site in Rájec on periods with low
SVWC (<0.16 m3 m−3; 4 cases) and CNI (<0.2; 13 cases).

Moreover, apart from PAR, other environmental variables were also observed to
be important for group separation. SVWC (≤0.16 m3 m−3; 250 cases) and Tair (≤19 ◦C;
28 cases) values had secondary effects on GPPnorm values at the wet spruce forest Bílý
Kr̆íz̆. At the dry spruce forest site in Rájec, other limiting factors for GPPnorm values were
also found to be Ts (≤20 ◦C; 255 cases) and SVWC (≤0.16 m3 m−3; 24 cases). There were
periods (193 cases) when higher GPPnorm values were realized with Ts < 20 ◦C and PAR
threshold value of approximately 6 MJ m−2 day−1 at the dry spruce forest site. As was
observed in both Figures 6 and 7, SVWC (≤0.26 m3 m−3; 255 cases) and VPD (≤9 hPa;
51 cases) values were found to have secondary effects on GPPnorm values at the beech
forest site. However, at similar PAR threshold values of approximately 5 MJ m−2 day−1

and different SVWC threshold values, higher GPPnorm values were realized at both the
wet spruce (SVWC values of approximately 0. 16 m3 m−3; 197 cases) and beech forest sites
(SVWC values of approximately 0.26 m3 m−3; 192 cases).

4. Discussion

This study used two sets of regression models (SMLR and RF) to identify the main
environmental variables influencing the ratio between actual and optimal gross primary
productivity (termed as GPPnorm) across central European beech (at Štítná) and Norway
spruce (at Bílý Kr̆íz̆ and Rájec) species growing under contrasting climatic conditions.
The presented results illustrate that the RF regression model outperformed SMLR and
was highly effective for GPPnorm prediction at all the studied forest ecosystems (Table 2).
Though these statistical analyses may not show the mechanistic cause of the observed
patterns, the RF model also provided useful information about the variable importance
(Figure 6) and the effect of their significant interactions (that are highly correlated; Figure 7)
on GPPnorm. Similarly, the authors of [17] used a path analysis approach to evaluate the
sensitivity of GPP to environmental drivers during the summer drought of 2018, but our
study evaluated in broader terms the general limiting environmental conditions of GPP
across each of the studied forest sites.

As PAR is already a well-known primary driver of forest GPP, the results from our
study revealed its overall significance in influencing GPPnorm across all the forest sites.
However, aside from PAR, there were other site-specific environmental variables that also
had significant impact on GPPnorm prediction. It is mostly hard to distinguish the direct
impact and importance of Tair, VPD, and SVWC as they are mutually dependent [55–57].
However, our results show that the second most important environmental variable in
GPPnorm prediction was VPD at the wet spruce forest site and SVWC at the beech forest
site. Thus, indicating the contrasting water use strategies of both spruce and beech species.
This is in line with earlier findings which show that the isohydric Norway spruce species
has tighter stomatal control in response to increasing VPD than the anisohydric European
beech species, which can tolerate drought stress better [29,58–60]. Therefore, as more
frequent heatwaves and drought spells characterize the proceeding climate change, an
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unavoidable shift of the Central Europe silviculture strategy is expected, providing likely
higher opportunity for growing European beech while a higher risk for the coniferous
Norway spruce [61,62]. Additionally, GPPnorm reduction within the beech forest site was
presumably mainly induced by edaphic drought stress (low soil moisture) conditions,
further stressing the significant impact of SVWC on forest GPP, especially at the beech
forest stand due to its different soil properties (more clayey soil) from the other forest
sites [23,63–67].

Moreover, at both spruce forest sites, a more detailed analysis of the variables split-
ting branches within RF (Figure 7) showed that Tair or Ts typically grouped subspaces
with high and low (drought-reduced) GPPnorm values. Interestingly, at the wet spruce
forest site in Bílý Kr̆íz̆, Tair split the subspace with lower values of GPPnorm at high Tair
threshold values above 19 ◦C during days with lower SVWC values (<0.16 m3 m−3). This
suggests that high Tair values limit the forest productivity at the mountainous wet spruce
forest site in Bílý Kr̆íz̆. Furthermore, at the dry spruce forest in Rájec, the three most
important variable (VPD, Ts, and SVWC) had the highest scores among all the forest sites
(scores > 0.1; Figure 6). This shows that the spruce forest productivity within a drier climate
is often significantly impacted by both meteorological and hydrological drought events
(decrease in atmospheric water content) [68–72]. Thus, under warmer climatic conditions,
the impact of drought stress conditions on forest productivity will be more severe at spruce
forests sites situated within drier climates [73].

Comparatively across all forest sites, the variable importance score of PAR was higher
at the beech forest site in Štítná than at both spruce forest sites in Bílý Kr̆íz̆ and Rájec
(Figure 6). Although incoming PAR with a larger fraction of diffuse light was previously
shown to be more effectively utilized by the forest canopy [19,74], generally lower scores of
CNI suggest limited modulation of GPPnorm by sky conditions. Relative to other assessed
variables, CNI played the most important role at the beech forest site in Štítná. At both
the beech and dry spruce forest sites, GPPnorm was observed to increase with CNI until
it became saturated at some point (Figures A1 and A2). Thus, high GPPnorm values are
realized under partly cloudy conditions, especially within the beech forest ecosystems,
possibly due to the deep penetration of light into its canopy due to its west–southwest
slope orientation [75]. On the contrary, within the wet spruce forest site in Bílý Kr̆íz̆ with a
mountainous ridge, high GPPnorm values were mainly realized under cloudy conditions
due to the effective penetration of anisotropic diffuse radiation at all layers within the
forest canopy, especially in shaded leaves (Figures A3 and A4) [19,76].

5. Conclusions

In this study, we identified the main environmental variables influencing the ratio
between actual and optimal gross primary productivity across Central European beech
(at Štítná) and Norway spruce (at Bílý Kr̆íz̆ and Rájec) species by comparing statistical
analyses from the traditional Stepwise multiple linear regression model (SMLR) and Ran-
dom forest (RF) regressional model. Across all the studied forest ecosystems, anisotropic
diffuse radiation entering the forest canopy under cloudy conditions within the wet spruce
forest and partly conditions within the dry spruce and beech forest was the main limiting
environmental factor of photosynthesis. However, other environmental factors relating to
water availability, such as the vapour pressure deficit, soil moisture, and temperature (air
and soil), also had significant effects on the ecosystem photosynthesis depending on the
local conditions and forest type. The sensitivity of both spruce forest sites to the vapour
pressure deficit and high temperatures, especially in the drier climate at Rájec, indicate
that the Norway spruce is currently one of the most threatened commercial tree species
in Central Europe under the recent changes in climatic conditions. Moreover, reduction
in forest productivity at the beech forest was presumed to be mainly induced by edaphic
drought than meteorological and hydrological drought events, as in the spruce forest
sites. Our findings provide useful insights potentially applicable for land surface models
and further assessment of the impacts of climate change on forests in the Central Europe
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and their sequestration capacity. At the same time, our findings call for more studies
on forest productivity across different forest types and contrasting climatic conditions,
as productivity is strongly dependent on species type and site-specific environmental
conditions.
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Appendix A

Figure A1. Monthly sums of precipitation for May–September from 2012–2016 at the wet spruce
forest in Bílý Kr̆íz̆ (CZ-BK1), the dry spruce forest in Rájec (CZ-RAJ) and the beech forest in Štítná
(CZ-Stn) sites.
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Figure A2. Pearson correlation coefficient matrix showing correlation coefficient between the envi-
ronmental variables and the normalized gross primary productivity (GPPnorm) across the wet spruce
forest in Bílý Kr̆íz̆ (CZ-BK1), the dry spruce forest in Rájec (CZ-RAJ) and the beech forest in Štítná
(CZ-Stn) sites for May–September of 2012–2016 (shown in the upper panel). CNI: clearness index;
PAR: photosynthetic available radiation; Tair: air temperature; Ts: soil temperature; AWR1: available
water resource; VPD: vapour pressure deficit; P: precipitation.
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Figure A3. Correlation between the estimated Normalized gross primary productivity (GPPnorm) for
May–September of 2012–2016 in the wet spruce forest in Bílý Kr̆íz̆ (CZ-BK1), the dry spruce forest in
Rájec (CZ-RAJ) and the beech forest in Štítná (CZ-Stn) sites.
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Figure A4. Correlation of daily Diffusion Index (DI) with daily Clearness Index (CNI) for May–
September of 2012–2016 in the wet spruce forest site in Bílý Kr̆íz̆ (CZ-BK1), showing diffuse radiation
on partly cloudy days (highest point).

Table A1. Description of the eddy covariance systems at the investigated sites.

Site Name CZ-BK1 CZ-RAJ CZ-Stn

Ultrasonic Anemometer

Instrument Gill HS-50 (Gill Instruments,
UK)

Gill R3-100 (Gill Instruments,
UK) but later changed to Gill
HS-50 on 5 June 2015

Gill R3-100 (Gill Instruments,
UK)

Gas Analyser

Instrument LI-7200

Initially LI-7000 (IRG-0226)
closed-path gas analyser, but
later changed to LI-7200 on 5
June 2015

LI-7000 closed-path gas
analyser

Measurement Height for the
Eddy covaiance set-up (m)

Initially 20.5 m, but later
changed to 25 m on 7 June
2016

41 m 44 m

Table A2. Description of ancillary climatic measurements at the investigated sites.

Site Name CZ-BK1 CZ-RAJ CZ-Stn

Air Temperature and
Humidity Profile

Instrument EMS33 temperature and
humidity sensor

EMS33 temperature and
humidity sensor

EMS33 temperature and
humidity sensor

Height (m) 2.0, 7.6, 12.6, 13.5, 14.3, 14.8,
15.4, 16.5, 18.7 2.0, 11.0, 23.0, 29.0, 35.0, 42.0 2.0, 12.0, 22.0, 28.0, 33.0, 38.0,

44.0

Net Radiation

Instrument CNR1 net radiometer (Kipp &
Zonen)

CNR1 net radiometer (Kipp &
Zonen)

CNR1 net radiometer (Kipp &
Zonen)

Height (m) Initially 20 m, then changed to
22 m in August, 2013 42 m 42 m

Soil Temperature

Instrument Pt 1000 Pt 100 Pt 1000

Depth (m) 0, 0.05, 0.10, 0.20, 0.30, 0.50 0, 0.05 0, 0.05, 0.10, 0.20, 0.30, 0.50
Environmental Measuring System—EMS.
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Table A3. Results of the stepwise multi-linear regression model on the significant environmental
variables that influenced the normalized gross primary productivity (GPPnorm) at the wet spruce
forest site in Bílý Kr̆íz̆ (CZ-BK1). CNI: clearness index; PAR: photosynthetic available radiation; Tair:
air temperature; Ts: soil temperature; SVWC: the soil volumetric water content; and VPD: vapour
pressure deficit.

Estimate Standard Error t Value Pr (>|t|)

(Intercept) −6.397× 10−1 1.397× 10−1 −4.581 5.47× 10−6 ***
PAR 1.659× 10−1 1.541× 10−2 10.772 <2× 10−16 ***
PAR2 −8.813× 10−3 1.025× 10−3 8.601 <2× 10−16 ***
SVWC2 1.095× 101 1.938 −5.649 2.34× 10−8 ***
PAR:Tair −5.234× 10−3 9.454× 10−4 −5.536 4.36× 10−8 ***
SVWC 5.048× 101 9.514× 10−1 5.305 1.51× 10−7 ***
Ts:PAR 4.884× 10−3 1.062× 10−3 4.598 5.04× 10−6 ***
Ts

2 −2.002× 10−3 4.817× 10−4 −4.155 3.64× 10−5 ***
VPD:SVWC 9.490× 10−2 2.389× 10−2 3.972 7.84× 10−5 ***
CNI2 −3.623× 10−1 1.025× 10−1 −3.533 0.000437 ***
CNI 4.589× 10−1 1.326× 10−1 3.461 0.000571 ***
VPD2 −2.191× 10−3 7.005× 10−4 −3.128 0.001830 ***
VPD −3.745× 10−2 1.525× 10−2 −2.456 0.014300 *
Ts 2.550× 10−2 1.077× 10−2 2.367 0.018214 *
VPD:PAR 3.094× 10−3 1.367× 10−3 2.264 0.023906 *
CNI:Tair 1.066× 10−2 5.007× 10−3 2.128 0.033690 *
CNI:PAR −1.544× 10−2 7.571× 10−3 −2.039 0.041772 *
VPD:Tair 1.937× 10−3 9.802× 10−4 1.976 0.048507 *

Signif. code: p < 0.001 ‘***’ ; p < 0.05 ‘ *’.

Table A4. Results of the stepwise multi-linear regression model on the significant environmental
variables that influenced the normalized gross primary productivity (GPPnorm) at the dry spruce
forest site in Rájec (CZ-RAJ). CNI: clearness index; PAR: photosynthetic available radiation; Tair:
air temperature; Ts: soil temperature; SVWC: the soil volumetric water content; and VPD: vapour
pressure deficit.

Estimate Standard Error t Value Pr (> |t|)

(Intercept) 1.2416627 0.2834895 4.380 1.39× 10−5 ***
PAR 0.1957506 0.0157165 12.455 <2× 10−16 ***
PAR2 −0.0055807 0.0006615 −8.436 <2× 10−16 ***
Ts:SVWC 0.2931591 0.0448089 6.542 1.25× 10−10 ***
Tair

2 −0.0009479 0.0001752 −5.409 8.97× 10−8 ***
CNI2 −0.9090371 0.1592056 −5.710 1.74× 10−8 ***
Ts

2 −0.0015452 0.0002921 −5.290 1.68× 10−7 ***
SVWC:CNI 4.0751744 0.8162736 4.992 7.71× 10−7 ***
Ts:Tair 0.0016139 0.0003835 4.208 2.94× 10−5 ***
PAR:SVWC −0.352378 0.0896162 −3.932 9.35× 10−5 ***
SVWC −8.4537169 2.2630082 −3.736 0.000204 ***
VPD −0.0364140 0.0102154 −3.565 0.000392 ***
Ts 0.0404096 0.0149492 −2.703 0.007053 ***
VPD:SVWC 0.1377881 0.0518878 2.656 0.008118 ***
SVWC2 10.9036492 5.0661812 2.152 0.031754 *

Signif. code: p < 0.001 ‘***’ ; p < 0.05 ‘ *’.
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Table A5. Results of the stepwise multi-linear regression model on the significant environmental
variables that influenced the normalized gross primary productivity (GPPnorm) at the beech forest
site in Štítná (CZ-Stn). CNI: clearness index; PAR: photosynthetic available radiation; Tair: air
temperature; Ts: soil temperature; SVWC: the soil volumetric water content; and VPD: vapour
pressure deficit.

Estimate Standard Error t Value Pr (> |t|)

(Intercept) 1.6324051 0.2913214 5.603 3.00× 10−8 ***
PAR 0.1035450 0.0089856 11.523 <2× 10−16 ***
Ts:SVWC 0.4954805 0.0627527 7.896 1.08× 10−14 ***
Ts −0.1794898 0.0233970 −7.671 5.56× 10−14 ***
CNI 0.8213389 0.13378886 5.957 4.04× 10−9 ***
Tair 0.0988082 0.0178532 5.534 4.38× 10−8 ***
SVWC −6.3883130 1.3261064 −4.817 1.78× 10−6 ***
Tair:SVWC −0.2274474 0.0467787 −4.862 1.43× 10−6 ***
Tair:PAR −0.0024049 0.0005103 −4.713 2.93× 10−6 ***
CNI:PAR −0.0558883 0.0148897 −3.753 0.000189 ***
VPD2 −0.0008560 0.0002309 −3.708 0.000225 ***
VPD:Ts 0.0021074 0.0006005 3.510 0.000477 ***
VPD −0.0561466 0.0176605 −3.179 0.001540 ***
SVWC2 4.9409576 1.5641808 3.159 0.001651 ***
VPD:SVWC 0.1048877 0.0339888 3.086 0.002107 ***
CNI2 −0.5376705 0.2101539 −2.558 0.010718 ***

Signif. code: p < 0.001 ‘***’.
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