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Abstract: More than seven years of remote sensing data with high spatial and temporal resolution
were investigated in this study. The 20-min moving averaged wind profiles form the acoustic
sounding with Scintec MFAS sodar were derived every 10 min. The profiles covered from 30 to 600 m
height with vertical resolution of 10 m. The wind speed probability and the Weibull distribution
parameters were calculated by the maximum likelihood method at each level and then the profiles
of the Weibull scale and shape parameters were analyzed. Diurnal wind speed at heights above
200 m has shown a well-expressed increase in the averaged values during the night hours, while
during the day lower wind speeds were observed. The reversal height was explored from spatially
and temporally homogenized diurnal wind speed data with applied quadratic functions for better
interpretation of the results. In addition, analyses by type of air masses (land or sea air mass) were
performed. One of the outcomes of the study was assessment of the internal boundary layer height,
which was estimated to 50–80 m at the location of the sodar. The obtained information forms the
basis for climatological insights on the vertical structure of the coastal boundary layer and is unique
long-term data set important not only for Bulgaria but for coastal meteorology in general.

Keywords: Black Sea; coastal boundary layer; wind speed profiles; remote sensing data; sodar; Weibull
distribution; scale and shape parameters; reversal height; internal boundary layer; climatological studies

1. Introduction

A significant progress has been made over the last years with the technological devel-
opment of the ground-based instruments for remote sensing measurements of atmospheric
characteristics and they have been established as reliable and indispensable tools in a
number of innovative scientific methods for the study of the Planetary Boundary Layer
(PBL) [1–10]. On the other hand, the complexity of the observed coastal processes includes
the air masses transformation when passing the sharp change in the physical characteristics
of the surface and the formation of an Internal Boundary Layer (IBL). The unique sodar
data set of this study provides the challenge to investigate the IBL development at the
site, which is a new achievement. The IBL height grows with the distance from the shore
when marine airflow comes over land [11–13]. The interest in this phenomenon is related
to the fact that many cities and industrial facilities are located near or on the shores of the
seas, oceans or large lakes, and the low height of the IBL creates conditions for fumigation
or increased air pollution level, compared to regions with a homogeneous surface [14].

The wind profiles and Weibull distribution parameters profiles are also influenced
by the air mass transformation processes and depends on the distance to the shoreline in
the direction of the airflow. In this case, studies show that there is a relationship between
the height of the maximum in the profile of the shape parameter and the height of the
IBL [4,15,16], but no theoretical connections have been found for this dependence.

The two-parameter Weibull distribution is one of the most commonly used and
preferred distributions for the assessment of wind energy potential and it is reviewed in a
number of scientific studies [17–21]. The vertical profiles of the shape parameter as well as
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the diurnal wind speed variation are used to determine the so-called “reversal height”—
the height at which the shape of the diurnal wind speed variation is reversed [17,22–24].
Above a flat and homogeneous surface, the reversal height coincides with the height of
the maximum in the shape parameter profile. During the night, the dynamics of the
air masses is influenced by the relatively cooler ground and the formation of a Stable
Boundary Layer (SBL) theoretically determines a linear increase in wind speeds with
height in the adjacent atmospheric layer. On the other hand, the changed thermodynamic
state of the atmosphere during the day, under the influence of the relatively warmer
ground, theoretically determines higher wind speeds close to it and significantly less
variation in height due to the presence of a neutral or unstable stratified atmospheric
layer. The height of these two theoretical profiles (defining the variation of wind speed in
height for two different thermodynamic states of the atmosphere—neutral or unsustainable
during the day and stable stratification in the evening) intersect is called “reversal height”
and characterizes the quasi-static state of the diurnal wind speed variation in different
thermodynamic atmospheric conditions determined by the direct influence of the ground
surface on the adjacent atmospheric layer during the day and night. Above this layer, the
atmosphere is distanced from the direct influence of the surface. The height at which no
change is observed in the diurnal wind speed variation (in this paper, its square function is
a straight line) and divides a diurnal speed variation with opposite curvatures (protrude
from concave) is defined as “reversal height”.

In summary, it can be noted that in the literature, there are many short-term studies
dedicated to the coastal boundary layer using acoustic remote sounding in different places
around the world for short periods [25–31] and they have proved the great capabilities of
the sodar measurements for the study the wind structure of the PBL. The novelty and the
contribution to science of this paper consist in the statistical analyzes of sodar long-term
wind speed data, which brings new information for the vertical structure of the atmosphere
in coastal regions, and particularly for the Bulgarian Black Sea coast. Except for theoretical
research, the created database can be used for wind and turbulence regime studies, such as
extreme wind events, numerical models evaluation, air pollution, assessment of the wind
resource, etc.

2. Study Area and Remote Sensing Equipment

Meteorological Observatory (MO) Ahtopol is the southernmost coastal synoptic station
from the operational meteorological network of National Institute of Meteorology and
Hydrology (NIMH) and is situated in southeastern Bulgarian Black Sea coast at about
2 km from the town of Ahtopol (Figure 1). The study area is under the influence of
the Continental-Mediterranean climate zone in Bulgaria and has been identified into the
Black Sea coastal Strandzha climate region, which is a part of the Black Sea climatic sub-
region [32]. Well expressed breeze circulation in the warm half of the year is typical for
this climate region, whereas during the cold season lower frequency and smaller temporal
and spatial scales of coast circulations are registered [33]. MO Ahtopol is located on a flat
grassy terrain at 30 m height above sea level and at about 400 m inland. The shore near the
observatory is steep about 10 m high and the coastline has an approximate direction from
NNW to SSE (Figure 1).

Wind profile measurements in this study are obtained from acoustic sounding of the
coastal PBL with a mono-static Doppler multi-frequency remote sensing system—SCINTEC
Flat Array Sodar MFAS with working frequency range of 1650–2750 Hz and multi-beam
operation of 9 emission/reception angles (0◦, ±9.3◦, ±15.6◦, ±22.1◦, ±29◦). The spatial
resolution of 10 m and range from 150 m to 1000 m in the vertical direction are laid out
in instrument specifications with wind speed measurement accuracy of 0.1–0.3 ms−1 and
2–3 Deg for the wind direction [34]. The first measurement level is 30 m and the maximum
vertical range for these study reaches 600 m.
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Figure 1. Location of Meteorological Observatory (MO) Ahtopol in southeastern Bulgaria (left) with views of the terrene
(middle—Google Earth) and sodar system on the roof of the administrative building of MO Ahtopol (right). The maps are
elaborated based on Google Earth.

The sodar is mounted at an approximate height of 4.5 m above the ground on the roof
of the administrative building of the MO Ahtopol (Figure 1) and data records were made
every 10 min with moving averaging period of 20 min.

3. Data Analysis and Overview

The wind speed profiles analysis in this paper have covered a period of more than
seven years of acoustic atmospheric sounding in the MO Ahtopol from 20 Jul 2008 to
31 Jan 2016. During that period, the measurements were limited at night hours in the
summer months of 2008 and 2009 and the remote technical support was practically ham-
pered by the lack of Internet access in the observatory until 2011. After December 2009
there were no restrictions set for the operation hours. In addition, the continuous sodar
operating mode was interrupted by frequent accidents of the main power supply on the
territory of the MO Ahtopol.

The data availability during the different months of the study period is presented in
Table 1 where the range of availability above 70% is given in green, between 40% and 70%
in yellow, and below 40% in red. The exact availability is given with the number in %.

The maximum of the actual (effective) sodar range in Table 1 is presented as height
(m) and graphically with small charts of 4 bars, where one filled bar denotes a range of
450 m, 2 filled bars—a range over 540 m, 3 filled bars—a range over 640 m and 4 filled
bars—a range over 740 m.

The maximum of the vertical range during the different months has been determined
by both the availability of turbulent temperature inhomogeneous in the sounded atmo-
sphere layer above the sodar which can return the backscatter signals to the antenna
receiver and the updates of the sodar software which have been provided periodically from
the manufacturer over the years. The available remote sensing data (Table 1) with high spa-
tial and temporal resolution from 2485 days of the possible 2752 days have been analyzed.
The profiles selection that are presented in this paper is related to the data availability
check at a height of 110 m above the ground (level at which the sodar data availability
is relatively high) and continuity of the profiles after this height (no data interruption is
allowed in the involved profiles after 110 m).
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Table 1. Monthly data availability (%) and maximum effective height (m) reached by the sodar for the study period. Circles
show availability above 70% when green, between 40% and 70% when yellow, and below 40% when red. The range is
presented graphically with small charts of 4 bars, where one filled bar denotes a range of 450 m, 2 filled bars—a range over
540 m, 3 filled bars—a range over 640 m and 4 filled bars—a range over 740 m.
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max range (m) 520 520 680 680 680 680 680 680 680 680 680 680
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2011 97% 95% 100% 97% 97% 96% 92% 100% 39% 79% 99% 81%

max range (m) 510 460 510 510 510 510 510 510 560 620 620 620
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2016 80% - - - - - - - - - - -
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The sodar data recordings were performed in local time until 26 Oct 2014 (i.e., during 
the cold half of the year-GMT + 2, and during the warm one- GMT + 3). After this period, 
the sodar worked only in winter time mode (i.e., GMT + 2). Most of the performed here 
analyzes are independent of the time zone (Analysis I, Analysis II), but for the purposes 
of Analysis III the data were adjusted to GMT + 2. Although a period of more than seven 
years was analyzed, it is impossible to deduce homogeneous 24-h wind speed profiles 
data (up to 110–140 m high) or the resulting diurnal data is insignificant in some of the 
analyzes. Difficulty in conducting Analysis III is due to the presence of local coastal circu-
lation (wind direction changes over a given day not only during the warm half of the year 
[33]), as well as the insufficient availability of continuous sounding data of marine and 
land air masses over time and space during the distinct periods (interruptions caused by 
the night operating mode limitations as well as by the accidents occurrence with the mains 
electricity). 

For the purposes of wind speed distribution analysis (Analysis I) the values of each 
involved profile under reviewed periods (total, summer, and winter) and for the different 
types of air masses (all, sea, and land) are processed sorting them by height (every 10 m) 
and by wind speed intervals from 0 to 40 ms−1 as follows: 

 calm interval—at wind speed values ≥ 0 ms−1, but <0.5 ms−1 
 1 ms−1 interval—at wind speed values ≥ 0.5 ms−1, but <1.5 ms−1 

Commented [M1]: 1) Please change the form into 
an editable format. 
2) generally, only the cited references are [], please 
change [] to () 

The conditions set for the data selection have limited the analysis to 2357 days and
aims to avoid the accumulation of a large number of short profiles that have not exceeded
110 m in height, while allowing profiles that have not started from the lowest sodar vertical
range to be involved in the analyzes (profiles beginning from 30 m to 40 m above the
ground are often seen). The statistical analyzes of wind speed profiles comprise: Analysis
I—Wind speed distribution in height; Analysis II—Weibull scale and shape parameters
profiles; Analysis III—Average diurnal variation of wind speed at different heights. These
three types of analysis are performed for all air masses and separately for marine and land
air masses.

The sodar data recordings were performed in local time until 26 Oct 2014 (i.e., during
the cold half of the year-GMT + 2, and during the warm one- GMT + 3). After this period,
the sodar worked only in winter time mode (i.e., GMT + 2). Most of the performed here
analyzes are independent of the time zone (Analysis I, Analysis II), but for the purposes
of Analysis III the data were adjusted to GMT + 2. Although a period of more than seven
years was analyzed, it is impossible to deduce homogeneous 24-h wind speed profiles data
(up to 110–140 m high) or the resulting diurnal data is insignificant in some of the analyzes.
Difficulty in conducting Analysis III is due to the presence of local coastal circulation
(wind direction changes over a given day not only during the warm half of the year [33]),
as well as the insufficient availability of continuous sounding data of marine and land
air masses over time and space during the distinct periods (interruptions caused by the
night operating mode limitations as well as by the accidents occurrence with the mains
electricity).

For the purposes of wind speed distribution analysis (Analysis I) the values of each
involved profile under reviewed periods (total, summer, and winter) and for the different
types of air masses (all, sea, and land) are processed sorting them by height (every 10 m)
and by wind speed intervals from 0 to 40 ms−1 as follows:
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• Calm interval—at wind speed values ≥ 0 ms−1, but <0.5 ms−1

• 1 ms−1 interval—at wind speed values ≥ 0.5 ms−1, but <1.5 ms−1

• 2 ms−1 interval—at wind speed values ≥ 1.5 ms−1, but <2.5 ms−1

• . . .
• 40 ms−1 interval—at wind speed values ≥39.5 ms−1;

The wind speed distributions in height from the selected profiles have allowed at
each vertical level the histograms to be generated and their probability distributions to be
determined. In Analysis II, the two-parameter Weibull distribution for the wind speed at
each measurement level has been applied using the maximum likelihood method [35]:

f (u; c, k) = f (x) =


k
c
( u

c
)k−1e−(u/c)k

, u ≥ 0

0, u < 0
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k =
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− 1

N

N
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i
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The probability density function (pdf) also known as the Weibull distribution is
described in Equation (1). The two distribution parameters are given in the Equations (2)
and (3), respectively, for a shape parameter “k” and the scale parameter “c”. The shape
parameter “k” has a non-dimensional value and defines the shape of the probability density
distribution curve. The scale parameter “c” assumes the dimensionality of the variable (in
the present analysis-(ms−1)) and represents the 63.2th percentile of the distribution [36,37].
These equations have been applied to each level of measurement and as results vertical
profiles of the shape “k” and scale “c” parameters with 10-metre resolution have been
obtained.

The vertical profiles of the shape parameter “k” from Analysis II, as well as the diurnal
wind speed variation from Analysis III, have been used to determine the so-called “reversal
height”.

4. Results
4.1. All Air Masses

Wind speed histograms with fitted Weibull distributions and statistics for differ-
ent measurement levels (minimum, maximum and average wind speeds and the values of
the two parameters of the corresponding Weibull distribution) for the study period in the
MO Ahtopol are shown in Figure 2. A total of 327,009 time series with selected profiles are
included in this analysis, which represents 82.2% data availability over the reviewed total
period. The data availability at each presented height is graphically indicated by the pink
bar on the right of each histogram. It can be seen that the number of the involved mea-
surements in the output of the statistical graphs in Figure 2 have sharply decreased in
height due to the lower number of profiles reaching the respective measurement level. The
highest level of the pink bar of 99.8% data availability from all processed time series is
observed at 100 m above the ground, while at 600 m is only 3.4%, which is equal to just
over 11,100 profiles reaching this height. A shift of the maximum to higher wind speeds is
seen at the histograms as the height increases, which is characteristic of the wind speed
height variation. The extent of “stretch” or “concise” of the Weibull distribution graph is
determined by the shape parameter “k”. The distribution graph is more stretched with
higher value of “k”. The existence of the information presented in Figure 2 from 30 m to
600 m above the ground at every 10 m height has allowed the graph of the variation of the
wind speed probability distribution in height for the whole study period to be presented in
Figure 3.
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Figure 2. Wind speed histograms (green bars) and data availability (pink bars) at four different measurement levels
((a)—100 m, (b—300 m, (c)—400 m, (d)—600 m) with statistics values and fitted Weibull distributions (red curves) for
a measurement period from 20.07.2008 to 31.01.2016 in MO Ahtopol (interval coverage: 82.2%—327,009 data sets).

The color bar in Figure 3 shows the variance of the probability distribution in height.
Its color range is limited to 10% to achieve better visualization of the results (values of the
probability distributions above 10% are colored in the same color bending 10%). The area
with maximum values of the wind speed probability distribution is clearly visible at the
presented graph (Figure 3), where up to 180 m it is highest for winds speed up to 3 ms−1,
at 300 m the highest probability is observed for the winds in the range of 3 to 6 ms−1, and
at 600 m it is highest for the winds at speeds of 10 to 13 ms−1.

From the green bars showing the change in the number of profiles availability reaching
a certain height it is seen that it is sharply decreasing after 200 m above the ground, with
a maximum of data in the layer from 70 to 110 m. The data availability at the first level of
sodar measurements (30 m above the ground) is about 5% lower than the layer at which
the maximum data is observed.
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Figure 3. Variation of the wind speed probability distribution in height (color cross-section of height and wind speed
intervals) with the processed data availability (green bars) for the study period.

Profiles of the shape and the scale parameters in Figure 4 (respectively left and right
charts) are derived from the applied two-parameter Weibull distribution to the retrieved
wind speed histograms from 30 to 600 m above the ground at every 10 m height.

1 
 

 

                    (a)                                         (b) 
 

 
                    (a)                                         (b) 
 

 
                   (a)                                       (b) 
 

 
                     (a)                                         (b) 

Figure 4. Shape parameter “k” (a) and scale parameter “c” (b) profiles of the two-parameter Weibull distribution applied
to measured wind speed from 30 to 600 m above the ground at every 10 m.

The color bars on the right side of the graphs show the percentage of the data avail-
ability with height. An almost linear change of the values in height is observed in the
scale parameter profile (right), while two weak peaks at 50 and 80 m above the ground are
distinguished, followed by a major peak at a height of 270–300 m and a slightly sharper
change in profile values at a height of 500 m. As mentioned above, the dimensionality of
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this profile is the same as the wind speed (ms−1) and its values are proportional to the
average wind speed values [20,38]. The values of the profile close to the ground start at
nearly 2 ms−1, at a height of 300 m they reach approximately 6–7 ms−1, and at 600 m from
the ground the values of the scale parameter are close to 12 ms−1. Relatively small peaks
at a height of 50 and 80 m above the ground are observed in the shape parameter profile
(Figure 4a) with values close to 1.05, a pronounced peak at 260 m with values around 1.65,
relatively sharp change in the values at 500 m and at a height of 600 m the value is nearly
2.45. Lower peaks can be associated with the height of IBL or surface layer [4,16].

The graphs of the diurnal wind speed data availability variations from the acoustic
sounding of the atmosphere (b—color bar indicates percentage availability) and the diurnal
wind speed variations in height determined by the corresponding data availability (a—the
color bar indicates the wind speed value in ms−1) are shown in Figure 5. The inhomogeneity
of the data, both on the vertical (in height) and the horizontal (on the twenty-four-hour
time scale) is observed on the right graph. The vertical inhomogeneous of the data is
determined by the different effective sodar range over the various days of the considered
period. There is a well-expressed laminar layout of the data availability in height, which
is largely determined by the continuity condition after the 110 m height of the involved
profiles in the analysis. The highest data availability (over 80%) is observed in the first
180 m, and at a height of 300 m the availability is close to 50%.

1 
 

 

                    (a)                                         (b) 
 

 
                    (a)                                         (b) 
 

 
                   (a)                                       (b) 
 

 
                     (a)                                         (b) 

Figure 5. Averaged diurnal wind speed variation in height (a) diurnal data availability (b) for continuous profiles from
100 m above the ground.

After a height of 500 m the data availability does not exceed 10%. Data at 30 m height
is characterized by the lowest availability in the layer up to 180 m, due to the fact that a
large number of profiles involved in this analysis do not start at the lowest sodar mea-
surement level. In the horizontal direction (the diurnal variations) the homogeneity of the
data is relatively more evenly distributed, but due to changes in the sodar’s continuous
operation mode until Oct 2009, there is a highest availability of data throughout the day.
The missing data cause different number values available for averaging the wind speed
variations in height at the left graph in Figure 5. Low wind speed values are observed in
the layer defined approximately from the first 90 m above the ground. The increase of the
wind speeds in height is well expressed during the night hours, while during the day low
wind speeds are also observed in the higher layers. The minimum values in the averaged
diurnal wind speed are around 5 ms−1 close to the surface and the maximum speeds of
14 ms−1 are reached at altitudes above 400 m.

Due to the time and space inhomogeneity of data distribution (Figure 5b), a different
number of individual values, both in height and at specified 10-min intervals of the day,
are involved in the calculation of the averaged diurnal wind speed variations which are
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presented with dashed lines from 30 m to 110 m with step of 10 m height in different colors
in Figure 6a.

1 
 

 

                    (a)                                         (b) 
 

 
                    (a)                                         (b) 
 

 
                   (a)                                       (b) 
 

 
                     (a)                                         (b) 

Figure 6. Average (of 2357 days) diurnal variation of wind speed at different heights (colors of dashed lines: 30 m—brown,
40 m—red, 50 m—green, 60 m—pink, 70 m—black, 80 m—blue, 90 m–100 m—orange, 110 m—grey) with applied quadratic
functions (a) and display of the quadratic functions only (b).

Quadratic functions (lines with the same color for the specified heights) are applied
to describe the diurnal change of wind speed at the observation levels. For clarity, the
variation of the same quadratic functions is presented in Figure 6b. The height at which
straight or close to a straight line is observed (no diurnal variation) separates the wind
regime close to the ground from the one aloft. An almost straight line is observed at a level
of 50 m (green color) above the ground. The curve at 60 m is also almost straight line. The
curve at 70 m shows near ground regime with maximal wind speed around noon. Thus, it
is difficult to attribute just one level for the value of “reversal height”, and the reason is
that all data are averaged including marine and land air masses and all seasons. The height
of 50 m can be related to the characteristic height of a formed IBL at 500 m from the shore,
and the height of 90 m may be related to the wind regime over the land.

The results of the data homogenization processes in both up to 180 m height and
10-min time series are shown in Figure 7. Due to the process of temporal homogenization
(determining uninterrupted diurnal data), the number of days is reduced from 2457 to
1538 days (Figure 7a). The highest data availability (less than 60%) is observed in the layer
between 60 and 120 m, and it is rapidly decreasing in altitudes (over 330 m it is below
1%). Continuous twenty-four-hour time series are also recorded at 600 m height, but their
availability is less than 0.2%, and the color bar (percent availability scale) does not cover
such low values. Sufficient data availability is observed in the layer from 30 to 180 m, for
which layer a further process of spatial homogenization (in height) is applied. The final
outcome from the data homogenization by time and up to 180 m (Figure 7b) results in a
total of 456 days, which are just under 20% of the whole study period.
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                    (a)                                         (b) 
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                     (a)                                         (b) 

Figure 7. Only temporally homogenized diurnal data availability variation ((a)—availability up to 1538 days out of a total
of 2357) and simultaneously spatially (up to 180 m above the ground) and temporally homogenized diurnal data availability
variation ((b)—availability up to 456 days) for the study period.

Diurnal wind speed variations of these 456 days at levels from 30 to 110 m at 10 m
height with corresponding applied quadratic functions are shown in the graphs in Figure 8.
No wind speed variations at 40 m level (red dashed line, red lines, and red equations) are
seen in the graphs. Below this level a slightly protrude shape of the quadratic function
curve (brown color) is observed (at 30 m). The applied quadratic functions curves are with
concave forms at all other levels above 40 m, and taking into account that a spatially and
temporally homogenized data is used in these results (Figure 7b) the “reversal height” can
be defined at 40 m height. 

2 

 
                     (a)                                         (b) 
 

 
                     (a)                                         (b) 
 

 
                     (a)                                         (b) 

 

                     (c)                                          (d) 

 

Figure 8. Diurnal variation of wind speed at different heights (colors of dashed lines: 30 m—brown, 40 m—red, 50 m—green,
60 m—pink, 70 m—black, 80 m—blue, 90 m–100 m—orange, 110 m—grey) from spatially and temporally homogenized data
with applied quadratic functions (a) and individually displayed quadratic functions (b) out of a total of 456 days retrieved
from the study period.
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4.2. Land and Sea Air Masse

The analysis of marine air masses derived during the whole reviewed period is
determined by winds with a direction in the range of 0–120 Deg. The number of profiles
in this wind direction interval is just over 47,700 and represents 12% of the total period
considered. The number of days with registered marine air masses is 821 out of 2357 days,
where the 110 m condition and continuity of data after this height are met. The analysis
of land air masses is determined by wind direction range of 170–290 Deg. The number of
registered land profiles is just over 45,500 and represents nearly 11% of the study period,
which is and covers 561 days.

The diurnal data availability of marine and land air masses is shown in Figure 9 (left
and right graphics, respectively).
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Figure 9. Spatially and temporally diurnal data availability of marine air masses (a) and land air masses (b) of profiles with
data availability at 100 m above the ground and continuity data after this height.

In comparison with Figure 5b it can be seen that during the whole study period, the
night air masses are predominantly from the land, and the daytime from the sea. That
specific spatially and temporally inhomogeneous distribution of the two defined main
types of air masses has been the reason Analysis III to be invalidated in these cases. The
sea air masses data homogenization over time scale has remained at most 11 days (from
821 days) at certain altitudes, and after the next homogenization up to a height of 110 m
that number is reduced to only 8 days (too insufficient to retrieve representative results
for marine air masses). Due to similar reasons, homogenization of land air masses data up
to 110 m has been impossible. On the other hand, the inhomogeneous data distribution
during the day indicates the breeze cells characteristic time scales at south-eastern Bulgarian
Black Sea coast [33,39–41].

The results from the applied two-parameter Weibull distribution in height are pre-
sented in Figure 10 for marine (a and b) and land (c and d) air masses with graphs of
shape (a and c) and scale (b and d) parameters profiles. With the shape parameter of
the marine air masses, similar peaks are observed in the values at almost the same heights
as in Figure 4—two small peaks at a height of 50 and 80 m and one pronounced peak at
270–280 m above the ground. The small peaks could again be associated with IBL height,
while the 270–280 m peak with the mean height of the upper edge of the breeze cells
core with maximum speed in the wind field (an indication of the maximum wind zone
in the quasi-stationary period of the sea breeze) [33]. Higher values of this parameter are
observed at land air masses with a marked peak of 50 m reaching values of 1.70, followed
by a sharp decrease in the profile values up to 110 m, and then raising again to form a
pronounced peak with a value close to 2.1 at 270–290 m, which height is close to those have
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been previously reviewed (260 m at all air masses in Figure 4a, and 270–280 m at marine
air masses in Figure 10a). After this pronounced peak, the land air masses shape profile
values grow almost linearly reaching 3.4 at 600 m height, with a very low peak observed
at 430 m height. In the marine air masses scale parameter profile (Figure 10b) a slower
increase of the values in height compared to that in Figure 4b is observed as well as a small
peak at 80–90 m height and a significantly more pronounced peak at 230–250 m. The land
air masses scale parameter profile (Figure 10d) has the highest values of those considered
so far, starting with 3 ms−1 and growing almost linear. At 300 m height the value is close
to 10 ms−1, at 500 m–14 ms−1 and at 600 m over 18 ms−1. Peaks are also observed with it,
but due to the relatively rapid increase in height, they are not clearly expressed. Two peaks
are observed close to the ground at 50 and 80 m height and one at about 290–300 m.
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Figure 10. Shape parameter “k” (left—(a,c)) and scale parameter “c” (right—(b,d)) profiles of the two-parameter Weibull
distribution applied to measured wind speeds from 30 to 600 m above the ground at every 10 m height for marine (up—(a,b))
and land (down—(c,d)) air masses.

The analysis of applied quadratic functions to the averaged diurnal variation of wind
speed from inhomogeneous data (Figure 11, marine air masses—a; land air masses—b) for
the two main types of air masses at different heights indicates the reversal height in land
air masses at about 40 m, while in the marine air masses it is at 100 m height.



Atmosphere 2021, 12, 1122 13 of 16

 

3 

 

                    (a)                                         (b) 

 
Figure 11. Quadratic functions fit to the averaged diurnal variation of wind speed at different heights from spatially and
temporally inhomogeneous data of marine (a) and land (b) air masses.

5. Discussion

The study reveals for a first time details in the vertical structure of the wind field
within the PBL in a Black Sea coastal area. The period of eight years is among the long-term
remote sensing data sets in Europe. The results show reversal height of 40 m for all and for
land air masses and about 100 m for marine air masses. At the reversal height the wind
speed is characterized with small diurnal changes, which is important for wind energy and
other tall constructions sensitive to the variability and strength of the wind. It can be noted
that the analysis shows that the wind speed at the reversal height within marine air masses
is about 7 ms−1, within land air masses is about 5 ms−1 and for all wind directions is about
4 ms−1.

The height of the IBL at 400 m inland from the coast is assessed to be 50–80 m, a
range defined by the definition of marine air masses as those from 0–120 Degrees and
consequently different fetch over land for air from these directions. As discussed in [13,42],
the IBL height is important for air pollution assessments and forecast, as it defines much
smaller volume for dilution compared to that at homogeneous areas. When building indus-
try near the coast, the IBL height defines whether the emissions may lead to fumigation and
across which area. The IBL characteristics determine the climate and weather comfort for
recreation and tourism at coastal sites. The peak in the profiles of the Weibull distribution
scale parameter of marine air masses at about 260–300 m is related to the height of maximal
wind speed in sea breeze situations. The profiles of the scale and shape parameters of the
Weibull distribution for the marine and land air masses are in agreement with the findings
of [16,17] investigating this important for wind energy applications topic over land and
sea.

6. Conclusions

The current study period is about seven years and allows the start of climatic research
of the vertical structure of the coastal boundary layer. With reliable sodar or Doppler lidar
remote sensing longer periods of data can be reached.

The statistical analysis through the Weibull distribution have provided additional
unique information on the vertical wind structure of the coastal area. The results of the
Weibull parameter profiles for the whole considered period (Figure 4) reveal peaks close
to the ground at 50 and 80 m, at about 250 and 400 m in the case of inhomogeneous data,
which can be related to the IBL height, the height of the core with maximum wind speed
in the breeze cells and the height of a stable PBL. The pronounced peaks in the shape
parameter profile of the Weibull’s distribution were also investigated by diurnal wind



Atmosphere 2021, 12, 1122 14 of 16

speed variation in height, where characteristic heights of 40, 50, and 90 m are associated
with the reversal height depending on wind direction and the spatially and temporally
data homogenization.

A summary of some characteristics of the data samples, parameter values, and the
profiles peculiarities are outlined in Table 2.

Table 2. Analysis over a 7-year measurement period.

Characteristics of Data Samples,
Meteorological Parameters and Profiles

Type of Air Masses (Column)/Jul 2008–Jan 2016/

All Air Masses
(1)

Marine Air Masses
(2)

Land Air Masses
(3)

Number of days with data 2357 821 561
Number of profiles involved in the study 327,009 47 712 45,554

Representation of the total period (%) 82.2 12 11.4

Height (m) with maximum in scale parameter profile of the
Weibull distribution

50 80–90 50
80 230–250 80

270–300 520 290–300
560

Height (m) with maximum in shape parameter profile of the
Weibull distribution

50 50 50
80 80 80
260 270–280 270–290

390–400 370 430
450
510

550–560

Reversal height (m) of
diurnal wind speed

inhomogeneous data 90 100 40
homogeneous data 40

7. Future Work

The rich sodar data set will be used in future for various mesometeorological model
evaluation studies, such as closed sea breeze cells, other specific cases of different inter-
action of local and synoptic driving forces, wind energy and air pollution assessments.
The experience and ideas born from sodar measurements analysis will be explored with
different types of ground-based remote sensing instruments at coastal and urban sites
within international collaboration.
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