
atmosphere

Article

Research and Optimization of Meteo-Particle Model for
Wind Retrieval

Jiahui Zhu 1, Haijiang Wang 1,* , Jing Li 2 and Zili Xu 2

����������
�������

Citation: Zhu, J.; Wang, H.; Li, J.; Xu,

Z. Research and Optimization of

Meteo-Particle Model for Wind

Retrieval. Atmosphere 2021, 12, 1114.

https://doi.org/10.3390/atmos

12091114

Academic Editors:

Cesar Azorin-Molina and

Qiusheng Li

Received: 14 July 2021

Accepted: 27 August 2021

Published: 30 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China;
3190301012@stu.edu.cn

2 The Second Research Institute of CAAC, Chengdu 610041, China; lijing@caacsri.com (J.L.);
xuzili@caacsri.com (Z.X.)

* Correspondence: whj@cuit.edu.cn; Tel.: +86-28-859-668-98

Abstract: As the aviation industry has entered a critical period of development, the demand for
Automatic Dependent Surveillance Broadcast (ADS-B) technology is becoming increasingly urgent.
Real-time detection of aviation wind field information and the early warning of wind field shear
by atmospheric sounding system are two important factors related to the safe operation of aviation
and airport. According to the advantages of ADS-B and Mode S data, this paper uses the Meteo-
Particle (MP) model proposed by Sun et al., in their previous research to retrieve high-altitude wind
field. Comparing the precision and accuracy of wind field retrieved results, and the optimization
parameters of MP model suitable for meteorological model are further studied. To solve the problem
of incomplete wind field coverage obtained by retrieval, an extrapolation algorithm of wind field
is proposed. The results show that: (1) a comprehensive evaluation index is introduced, which can
more effectively evaluate the comprehensive difference of wind field retrieval results in wind speed
and direction. (2) The adaptability results of MP model in different periods and altitudes provide
some reference for the research of other scholars. (3) The new parameter setting can improve the
accuracy of the retrieved results, and the appropriate extrapolation of wind field fills in the blank
part of aviation and meteorology.

Keywords: automatic dependent surveillance broadcast; wind field retrieval; meteo-particle; aircraft
data; extrapolation of wind field

1. Introduction

The distribution of high-altitude wind fields affects the daily operation of aircraft, and
its unprovoked changes often lead to air traffic accidents. At the same time, the saturated
air routes also force the Civil Aviation Authority and the Air Traffic Control Bureau to
control the air traffic flow to ensure the basic safety of flight. With the rapid increase of
travel frequency and the increasing congestion of air traffic, researchers need to adopt
measures to improve the aircraft volume ratio in the airspace. Accurate and high-precision
meteorological information, especially the changes in the wind field, can effectively reduce
the flight interval of the aircraft and expand the capacity over the airport [1,2]. The weather
conditions on the route are the main factors affecting flight operation and scheduling. Some
weather professionals, though, can provide some low-level wind information from weather
radar, lidar, etc., or use weather forecasting models to reanalyze the data. Low-level wind
information may also be obtained from telescopes (there are some methods based on the
analysis of the optical distortions to detect turbulent layers, inversion layers, low-level
jets) [3,4]. However, this information is relatively smooth wind data, there are no wind field
details required by ATC [5]. Compared with other meteorological observation data, the
high-resolution observation data of high-altitude wind fields is especially scarce, and the
existing data are far from enough to serve as reference data for air traffic control. Therefore,
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the technology of secondary radar and Automatic Dependent Surveillance Broadcast need
to be developed rapidly to make up for this deficiency.

As a mature and reliable surveillance technology, the Secondary Surveillance Radar
(SSR) has been widely used in air traffic control systems. However, the SSR system has
some disadvantages, such as low update frequency, large monitoring error, and high cost,
complex installation and maintenance, and so on [6–8]. Automatic Dependent Surveillance
Broadcasting (ADS-B) is a new type of air traffic control and monitoring technology based
on the Global Navigation Satellite System (GNNS). The application of ADS-B is an impor-
tant technical means to ensure flight safety, improve operational efficiency, increase air
traffic flow, and reduce construction investment. ADS-B and SSR need to complement each
other and gradually realize the transition from secondary radar to ADS-B [9–11].

In recent years, with the rapid development of the civil aviation transport industry
and the rapid increase in the number of flights, aircraft performance has been continuously
improved. This further aggravates the impact of important weather on the safety and
efficiency of flight operation and makes the impact of important weather on flight operation
more significant [12,13]. Therefore, the research on the wind field in the high-altitude area
has become an urgent need in the field of civil aviation. In order to solve this problem
effectively, this paper improves the existing retrieval method of high-altitude wind fields on
the basis of the study of high-altitude wind fields at the present stage. Based on the previous
research of Sun et al., this paper further explores the applicability of the Meteo-Particle
(MP) model at different height levels and combining with meteorological knowledge. Its
parameters can be adjusted to improve its scope of application and accuracy, thus as to
improve the accuracy and stability of the wind field. This method can provide real-time
and high-altitude wind field observation for aircraft with higher time resolution, wide
range, and better fineness. At the same time, the results of wind field extrapolation can
provide data reference for aviation, meteorology, and other fields, which is convenient for
further research.

The main contributions of this paper are as follows:

(1) A scheme is proposed to verify the accuracy of wind field retrieval.
(2) The applicability of instantaneous wind field data estimated by linear extrapolation

model in wind field retrieval verification is studied.
(3) Summarize the differences of MP models at different altitudes.
(4) Find the MP model parameters suitable for the aviation weather field.
(5) The extrapolation method of the retrieval of the high-altitude wind field is studied,

and the complete wind field data are obtained.

The rest of this article is structured as follows. The next section introduces the research
data set in this paper and gives an overview of the data processing methods. The third
part introduces the theoretical algorithm of wind field retrieval, including the derivation of
wind vector, the principle of MP model, and the verification scheme of retrieval results. The
fourth part is the research experiment of this paper, which mainly includes the wind field
retrieval and verification experiment, the applicability experiment of the linear difference
model, the different experiment of the MP model in each height layer, the improvement
of the model, and the wind field extrapolation experiment. The final two parts give the
conclusion of this paper.

2. Materials and Processing Methods
2.1. Study Data

ADS-B data has the characteristics of high precision and fast updating speed. The
system integrates a variety of advanced and complex technologies, such as satellite naviga-
tion, communication, aircraft equipment, ground equipment, and so on. It is also a modern
meteorological information perception and sharing technology with a high update rate and
high precision. At the same time, there are still some civil aircraft that are not equipped
with ADS-B airborne response equipment, thus there are some problems with missing
data. As a mature and reliable monitoring technology, SSR has been widely used in air
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traffic control systems, but its data have the disadvantages of low update frequency, large
monitoring error, and high cost [14]. Therefore, this paper will take advantage of these two
kinds of data at the same time and give full play to their complementary advantages to
retrieve the high-altitude wind field.

ADS-B data begins with 17 downlink formats, with a total of 112 bits, which transmits
the aircraft position, speed, and other information through Mode S extension (1090 MHz).
The main parameters include ICAO address, air position information, altitude information,
and airspeed. Typically, ADS-B data are sent once or twice a second. Mode S data begins
with a format of 20 or 21 in the following uplink format, with a total of 112 bits. The
principal parameters include ICAO address, BDS4,0 height, BDS5,0 heading angle, ground
speed, true airspeed, and Mach number [15].

Part of the experimental data used in this paper was received by ADS-B/Mode S
receiver (longitude: 4.37◦ E, latitude: 51.99◦ N) installed at Delft University of Technol-
ogy [16,17], which can be obtained at https://doi.org/10.6084/m9.figshare.6970403.v1, 16
November 2020. The data used for wind field retrieval included ADS-B data and Mode S
data at 09:00–10:00 UTC on 1 January 2018 and a half an hour before and after 00:00, 06:00,
12:00, and 18:00 UTC on 1 January 2018. The rest of the data comes from the OpenSky plat-
form [18,19], which can be obtained at http://www.opensky-network.org, 20 November
2020, and the differences between ADS-B and Mode S data are shown in Table 1.

Table 1. Comparison of monitoring means.

Monitoring Means Precision Update Rate Construction of
Ground Stations

SSR
200 n miles:388 m

4–10 s attended station, high-cost60 n miles:116 m
18 n miles:35 m

ADS-B ≥10 m 0.5/1 s unattended station, low-cost

The reference data used in this paper are the ERA5 reanalysis data from the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF), including instantaneous
wind data at 00:00, 06:00, 12:00, and 18:00 UTC on 1 January 2018, with a spatial reso-
lution of 0.25◦. ECMWF ERA5 integrates a large number of historical observations into
global estimates using advanced modeling and data assimilation systems. It provides the
estimation of atmospheric parameters with a horizontal grid accuracy of 31 km and an
output frequency of hourly. At present, some studies have given the vertical distribution
of wind speed, which shows that the reanalyzed wind data of NCEP/NCAR et al., were
robust [20]. However, as the comparative data of this paper, ERA5 has some defects, which
are explained in this paper. Firstly, the horizontal grid resolution (31 km) of ERA5 is still
limited, and the rough grid resolution will lead to the difference in the evaluation results in
this paper. Secondly, because the grid of ECMWF ERA5 weather forecast model is fixed
and the data update interval is large, the data set obtained is usually too smooth, and there
is no local change of wind field retrieved in this paper. Finally, the time resolution of ERA5
is limited, which can only provide instantaneous parameters of wind field-related informa-
tion and cannot correspond to the experimental data one by one. However, it is difficult
to directly detect the wind field information in the corresponding area due to its special
geographical location. Moreover, the existing wind field data have some shortcomings,
such as small monitoring range, low spatial resolution, and so on. The real verification
data of this experiment are difficult to obtain and lack of factual basis. Therefore, in order
to initially evaluate the accuracy of the wind field retrieval method, ERA5 reanalysis data
has to be used as reference data in this paper, which is very important for the optimization
of MP model.

https://doi.org/10.6084/m9.figshare.6970403.v1
http://www.opensky-network.org
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2.2. Data Processing

Data decoding. The received ADS-B source data need to be decoded for further appli-
cation. In this paper, the pyModeS of Python [21] is used to decode the 28-bit hexadecimal
ADS-B and Mode S source data directly to obtain time, latitude, and longitude, altitude,
ground speed, vacuum speed, Mach number, indicated airspeed, magnetic heading, and
other information.

Data screening. This paper sifts and sorts the data from the Delft University of
Technology and its surrounding areas, centering on the location of the receiver (longitude:
4.37◦ E, latitude: 51.99◦ N), within a radius of 300 km and an altitude of 5 km to 12 km.

3. Wind Field Retrieval and Verification Indexes
3.1. Calculation of Wind Vector

There is no absolute wind speed and direction information in the source data of ADS-B
and Mode S, thus it was necessary to calculate the wind vector according to the kinematic
relationship of the aircraft. In theory, the airspeed of an airplane is equal to the ground
speed under the ideal condition of no wind. In fact, due to the existence of the wind, the
airspeed collected by the sensors will change with the wind. When the wind is downwind,
the airflow is in the same direction as the aircraft, and the collected airspeed becomes
smaller, that is, the airspeed is less than the ground speed. When the airflow is opposite to
the aircraft in the headwind, the collected airspeed becomes larger, that is, the airspeed
is greater than the ground speed. Then, the wind information is calculated according to
this internal relationship. The relationship among airspeed vector, ground speed vector,
and wind vector is shown in Figure 1, and the relationship between them can be simplified
into Equation (1). In the actual calculation, in order to simplify the calculation, it needs
to be decomposed into a horizontal component and a vertical component, as shown in
Equations (2) and (3) [22–25].

⇀
Vgs =

⇀
V tas +

⇀
Wind (1)

⇀
Wind_x =

⇀
Vgs_x −

⇀
V tas_x (2)

⇀
Wind_y =

⇀
Vgs_y −

⇀
V tas_y (3)

where,
⇀
Vgs is the ground speed vector,

⇀
V tas is the airspeed vector and

⇀
Wind is the wind

speed vector.

Figure 1. Vector relation of aircraft motion.

3.2. Structure of Wind Field

The wind field information obtained from the ADS-B and Mode S data is almost all
distributed on the air route, while there is still a lack of wind observation in some areas
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outside the route. Therefore, in order to calculate the wind field in the area with low
measured density, the MP model proposed by Junzi Sun et al., was used in this paper to
extend the wind vector information to obtain more abundant wind field data [17]. This
paper only studies the applicability and improvement measures of the MP model for wind
field retrieval. In order to make the results independent and try to minimize the influence
of irrelevant factors, this paper makes some adjustments on the basis of the original MP
model in the course of the experiment. The specific adjustments are as follows: (1) reduce
the temperature estimation module, only focus on the wind field retrieval module. (2) The
confidence part is removed, and the difference of confidence of each point is not considered
temporarily. The MP model is based on the following three assumptions:

• The true state of the wind is geographically stable at the level of dozens of kilometers.
Then the distribution of wind fields in other locations can be calculated from the
observed data in the neighborhood.

• The true state of the wind is stable at the level of a few minutes. This assumption is
usually correct because aircraft try to avoid extreme atmospheric conditions.

• The sudden error rate of a single aircraft observation will not be too high.

This paper discusses the MP model of Sun in order to help readers better understand
the model and the work of this article. In order to better reflect the details of the optimiza-
tion of the parameters in the latter part of the article, this paper gives a brief overview of
the MP model proposed by Sun et al., according to our understanding. The key algorithms
of the model and the model parameters involved later are explained, which is convenient
for readers to understand and think. For the more detailed MP model algorithm and
implementation steps, readers can refer to the relevant literature [17], in which there is a
detailed formula expression and model description. This section mainly introduces the key
algorithms of the MP model and combs its implementation process [17]. Figure 2 is the
flow chart of the MP model combed in this paper.

Figure 2. Flow chart of MP model.

3.2.1. Probabilistic Rejection Mechanism

In order to reduce the impact of the abrupt error rate of aircraft observation on
the results, the probabilistic rejection mechanism was adopted. For the new measured
value x : (u, v), the probability density function will be constructed based on the current
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measured value, and the mean and variance (µu, σ2
u) and (µv, σ2

v ) of the particles of the
same height near it will be calculated. The probability density function p is shown in
Equation (4). Then any new observed sample will be accepted with the probability of p.

p = e−
1
2 (x−µ)T(K1β)−1(x−µ) (4)

where, µ = (u, v), β =

[
σ2

u
σ2

v

]
, K1 is the control parameter.

3.2.2. Random Walks Model

In order to expand the wind field information, the random walk model is adopted.
N particle objects with wind vector state are generated at the observed position, and each
particle follows a different model to propagate and attenuate over time. The random walk
model is shown in Equations (5) and (6). xp,i,t+1

yp,i,t+1
zp,i,t+1

 =

 xp,i,t
yp,i,t
zp,i,t

+ ∆Pt (5)

∆Pt ∼ N


 K2up

K2vp
0

,

 σ2
px σpxy 0

σpxy σ2
py 0

0 0 σ2
pz


 (6)

where t represents the current moment and t + 1 represents the next moment, up and vp are
the horizontal and vertical components of the wind vector, respectively. In the horizontal
position, the horizontal component of the wind performs a random walk with a small bias
σ2

pi
along the direction of the wind with a proportional coefficient K2, and K2 can control

the propagation direction. In the vertical direction, the propagation follows the zero-mean
Gaussian walk.

Each particle generated in the random walk model is assigned an age parameter
with an initial value of zero, and the age of the particle grows with each step of particle
propagation. At the end of each update, all current particles are resampled. First, the
particles propagated outside the edge region are eliminated, and the age probability p(α)
of the remaining particles is calculated, as defined in Equation (7). Finally, the particles
with high age probability are left.

p(α) = e
− α2

2σ2
α (7)

where, α is the age of the particle and σα is the control parameter.

3.2.3. Gridding of Wind Information

The wind vector of each grid point consists of the weighted values of adjacent particles,
and the weight of each particle depends on the distance from the current position of the
particle to the grid point, d1, and the distance from its original position, d0. The weight
values of each factor are shown in Equations (8) and (9). The weight of each particle is
determined by the above two factors, thus the total weight of the particle is defined as
Equation (10).

fd1 = e
− d2

1
2C2

0 (8)

fd0 = e
− d2

0
2C2

0 (9)

wp = fd1 · fd0 (10)
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Therefore, the wind vector of each grid point can be calculated by Equation (11).

[
u
v

]
=

∑p∈P (wp ·
[

up
vp

]
)

∑p∈P wp
(11)

where fd1 and fd0 are different factor weights, C0 is the control parameter and wp is the
total weight of particles.

3.2.4. Verification Indexes

In order to quantitatively measure the error of wind field retrieval, this paper intro-
duces the evaluation indexes, analyzes the error size and error source from many aspects,
and then puts forward the corresponding model improvement method.

• Direct evaluation index

The direct evaluation index in this paper includes amplitude difference and angle
difference, in which amplitude difference refers to the difference of wind speed and angle
difference refers to the difference of wind direction, as defined in Equations (12) and (13).

∆V =

∣∣∣∣∥∥∥∥⇀VRetr

∥∥∥∥ · ∥∥∥∥⇀VTrue

∥∥∥∥∣∣∣∣ (12)

∆θ = arccos


⇀
VRetr ·

⇀
VTrue∥∥∥∥⇀VRetr

∥∥∥∥ · ∥∥∥∥⇀VTrue

∥∥∥∥
 (13)

• Regression evaluation index

The regression evaluation indexes in this paper include average mean absolute error
(MAE), root mean square error (RMSE), Pearson correlation coefficient (COR), and cosine
similarity coefficient (R), whose definitions are as follows.

MAE =
1
N

N

∑
i

∣∣∣∣⇀VRetr −
⇀
VTrue

∣∣∣∣ (14)

RMSE =

√√√√√∑
(
⇀
VRetr −

⇀
VTrue

)2

N
(15)

COR =
∑
(
⇀
VRetr −VRetr

)(
⇀
VTrue −VTrue

)
√

∑
(
⇀
VRetr −VRetr

)2
√

∑
(
⇀
VTrue −VTrue

)2
(16)

R =
∑

⇀
VRetr ·

⇀
VTrue√

∑
⇀
V

2

Retr ·
⇀
V

2

True

(17)

• Comprehensive evaluation index

Combined with the characteristics of wind field retrieval from ADS-B and Mode S
data, its high-precision data makes the wind field have more details than the ERA5 data. By
comparing the experimental results, it was found that there was sometimes a big difference
between COR and R, which made it impossible to judge the results. Therefore, this paper
studies the difference between them from the definition and nature of the above two
indicators. In theory, a vector is a quantity with both size and direction. Judging whether
the two vectors are similar, only considering the size or direction may lead to errors in the
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evaluation of the model. Therefore, this paper attempts to combine these two methods
to define a mixed similarity model. This index can measure not only the deviation of the
two vectors in the direction but also the deviation of the distance of the two vectors, which
makes the measurement of the results more scientific and reasonable [26–28]. In this paper,
the mixed model is used to improve the calculation of similarity measurement, and the
weight parameters are used to synthesize the Pearson correlation coefficient and cosine
similarity. In the similarity calculation of the mixed model, a weight parameter α is defined
to adjust the proportion of COR and R. The constructed model is shown in Formula (18).

Combine
(→

X,
→
Y
)
= α · COR

(→
X,
→
Y
)
+ (1− α) · R

(→
X,
→
Y
)

(18)

where α is the adjustment coefficient, which is given by the empirical value of each exper-
iment. In the process of use, different parameters can be adjusted repeatedly according
to the application scenario. In this paper, α = 0.5 is set according to experience, and the
definition is shown in Formula (19).

Combine =
1
2
· COR +

1
2
· R (19)

4. Experiment and Result Verification
4.1. Retrieval and Verification of the Wind Field

In this paper, ADS-B and Mode S data at 00:00, 06:00, 12:00, and 18:00 UTC on
1 January 2018 were selected for wind field retrieval. It includes the data of half an hour
before and after the above four moments, and this experiment uses the data of every 100 s
to output a wind field chart. The duration of the input data used has a certain impact
on the results, but this effect is beneficial. The increase of real-time length can make the
results more accurate, and the model can invert the wind field results from a few minutes
to several hours in real-time. However, for the sake of the development of this study and
the independence of the results, only short-term and long-term results are reflected in
the study. In order to understand the specific distribution of wind speed and direction
errors, this paper makes statistics as shown in Figures 3 and 4 [29]. At the same time,
the variation trend of wind speed and wind direction is relatively consistent, in which
the consistency of wind direction is higher than that of wind speed, and the retrieved
data reflect more detailed fluctuations. There are some large abrupt changes in the wind
speed, which may be outliers or normal abrupt changes in wind speed, but the specific
reasons need to be further studied. A uniform grid point with a horizontal resolution of
60 km, vertical resolution of 1 km, and total specification of 600 × 600 × 12 is established
in space. Figure 5 shows the retrieval of the wind field from 17:59:10 to 18:00:50. In order
to evaluate the accuracy of the retrieved wind field and the MP model, the instantaneous
wind in the ECMWF ERA5 reanalysis data is selected as the reference data. First of all,
the detailed distribution of wind field information is compared intuitively, and the ERA5
wind field map at 18:00:00 is obtained after the reference data being grid processed by
the method of Section 3.2. A preliminary comparison of the two wind field maps shows
that the distribution of the wind field is basically the same. Figure 6 is the wind field
distribution map after homogenization, which is the smoothed data and lacks the details
of wind field changes. Compared with the retrieved wind field in Figure 5, the latter has
higher accuracy and contains more details.

This paper studies the correlation between retrieved wind vector and ERA5 wind
vector. In order to better reflect the actual situation of the retrieved error, this paper
calculated the relevant evaluation indexes of the error analysis, and the results are shown
in Table 2. It can be found that the u and v components of the wind vector can be retrieved
from each set of data, and the overall accuracy is basically above 60%. Among them, the
COR index of the retrieved result around 00:00:00 was less than 40%. Further analysis
showed that the main reason was that, compared with other periods, the amount of data
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around 00:00:00 was very small, and the number of particles in the retrieved only accounted
for a small part of the rest of the periods. In general, the MP model has an ideal effect and
high accuracy in the retrieval of high-altitude wind fields. By comparing Figures 5 and 6, it
is found that the retrieved wind field and the ERA5 wind field have the same wind field
profile. The former has a more detailed wind field and more subtle changes, which is of
great significance for aviation operation safety and meteorological research. Meanwhile, the
distribution of wind speed amplitude difference and wind direction amplitude difference
was statistically analyzed, as shown in Figure 7. The results show that the accuracy of
wind speed was better than that of wind direction, and the overall effect was ideal. The
difference in wind speed was mainly concentrated in (0,4), and the difference in wind
direction was mainly distributed in (0,8).

Figure 3. Contrast of retrieved wind speed and ERA5 wind speed.

Figure 4. Contrast of retrieved wind direction and ERA5 wind direction.
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Figure 5. Retrieval map of wind field during 17:59:10~18:00:50.

Figure 6. Wind field map of ECMWF ERA5 data at 18:00:00.
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Table 2. Comparison of u and v errors in different time periods.

Time MAE(m/s) RMSE(m/s) COR R Combine

23:56:40~00:03:20

u

4.34 5.33 0.34 0.99 0.67
05:56:40~06:03:20 4.31 5.62 0.82 0.98 0.90
11:56:40~12:03:20 3.87 4.89 0.74 0.97 0.86
17:56:40~18:03:20 3.09 4.22 0.79 0.97 0.88

23:56:40~00:03:20

v

8.12 9.54 0.23 0.94 0.58
05:56:40~06:03:20 4.41 5.72 0.84 0.88 0.86
11:56:40~12:03:20 3.80 5.08 0.40 0.72 0.56
17:56:40~18:03:20 4.66 6.06 0.77 0.77 0.77

Figure 7. (a) Scatter distribution of x component difference; (b) Scatter distribution of y component difference.

4.2. Error Analysis under Linear Interpolation Model

Due to the lack of high-altitude wind field detection data, the time resolution of the
wind field data provided by each numerical weather forecast model was basically 6 h, and
only included instantaneous data of 00:00, 06:00, 12:00, and 18:00. Therefore, the linear
interpolation model was used to fill the ERA5 data set in this paper, which provided a
preliminary reference for data in other periods. This is usually correct. Considering that
the time span is too large and the wind field changes irregularly, the approximate wind
field profile in this time period can only be obtained by using a linear interpolation model
for reference.

In this paper, by using the reanalysis data of ECMWF ERA5 of 06:00 and 12:00, the
reference data of 9:00~10:00 were calculated through the linear interpolation model, which
provides a reference for the result of wind field retrieval in the same period. The error
comparison of the reference results is shown in Table 3. The result of the horizontal
component u is significantly better than that of the vertical component v, the Combine
index of the former is higher than 70%, and the latter is lower than 50%. It can be seen
that the effect of the linear interpolation model is not ideal, but considering the uniformity
and smoothness of the ERA5 data, the interpolation results can be used as a preliminary
reference and in line with the expected conjecture.

4.3. Error Analysis under Different Periods and Altitudes

The above results show that the number of wind observation samples varies greatly in
different periods and different altitudes, thus the accuracy of retrieval is also quite different.
Retrieval experiments are carried out in two cases to further analyze the applicability of MP
model in different periods and different altitudes [30], and the error results are compared
and analyzed.
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Table 3. Error comparison of different time periods based on Linear difference Model.

Time MAE(m/s) RMSE(m/s) COR R Combine

09:00:00~09:01:40

u

4.61 6.06 0.69 0.97 0.83
09:14:10~09:15:50 4.25 5.80 0.70 0.98 0.84
09:29:10~09:30:50 4.40 5.83 0.55 0.97 0.76
09:44:10~09:45:50 4.50 5.95 0.62 0.98 0.80
09:59:10~10:00:50 4.40 5.78 0.55 0.97 0.76

09:00:00~09:01:40

v

5.16 6.83 0.34 0.51 0.42
09:14:10~09:15:50 5.10 6.63 0.32 0.54 0.43
09:29:10~09:30:50 5.10 6.28 0.28 0.48 0.38
09:44:10~09:45:50 5.72 7.22 0.22 0.42 0.32
09:59:10~10:00:50 4.99 6.47 0.46 0.52 0.49

4.3.1. Error Analysis in Different Periods

Firstly, the data of 00:00, 06:00, 12:00, 18:00 and their nearby periods were selected for
wind field retrieval. The results shown in Figure 8a,b are the line charts of the changes in
wind speed and wind direction in four periods, respectively. The results showed that the
estimated stability of wind speed and direction at 00:00 was low, and there were no retrieval
values at many altitudes. This paper analyzes the possible causes of these problems: for
the MP model, the more data points, the better the retrieved effect. Compared with other
altitudes, the retrieved results at 00:00 may not be ideal because there were too few data
points in each height layer, and some height layers even had no observations. In view of
the above reasons, the results of the 00:00 period had a great impact on the applicability
and accuracy of the analysis model, thus this paper intends to exclude the data results of
the 00:00 period.

Figure 8. (a) Line chart of MAE index change of wind speed in each period; (b) Line chart of MAE index change of wind
direction in each period.

Figure 8 shows that the accuracy of wind speed retrieval is higher than that of wind
direction retrieval. Among them, the change of the MAE index of wind speed in each
period was basically the same, and its value was in the range of (1,8). The results of
the low layer were better than that of the up layer. The MAE wind direction in [4,14]
fluctuated greatly with height, but all fluctuated in an acceptable range. Combined with
the distribution of wind speed and direction, the result of 18:00 was the most stable, and
the fluctuation was relatively small, while the effect of 00:00 was not good and fluctuated
greatly. Through comparison, it was found that 18:00 had the largest amount of data, and
the corresponding retrieved result was the most accurate and stable. It can be seen that MP
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model was not suitable for wind field retrieval with too little data. In general, except for
00:00, the retrieved results of wind speed and direction were ideal and relatively stable.
The overall stability was 18:00 > 12:00 > 06:00 > 00:00.

4.3.2. Error Analysis under Different Altitudes

This article also selects the data of 18:00 for wind field retrieval and calculates the
distribution of each index at different altitudes. Because the accuracy of the wind field
obtained by the retrieval method is higher than that of the reanalysis data of ECMWF ERA5,
the existing indicators cannot fully explain the validity. In order to better evaluate the
retrieval results, the combination of Pearson correlation coefficient and cosine similarity is
introduced as the comprehensive index Combine. It measures the results from two aspects
of the relative amplitude and the synchronous change of the direction of the numerical
changes, which makes up for the deficiency of a single index. Figure 9 shows the line chart
of the change of Combine index of wind speed and wind direction in each period, and
Table 4 lists the values of each index.

Figure 9. (a) Line chart of Combine index change of wind speed in each period; (b) line chart of Combine index change of
wind direction in each period.

Table 4. Error comparison of different altitudes.

Altitudes MAE(m/s) RMSE(m/s) COR R Combine

1 km

wind

2.42 3.13 0.58 0.95 0.76
2 km 2.79 3.68 0.55 0.93 0.74
3 km 3.49 4.16 0.46 0.92 0.69
4 km 2.55 3.13 0.73 0.96 0.85
5 km 2.35 2.75 0.68 0.98 0.83
6 km 2.63 3.84 0.62 0.97 0.80
7 km 3.73 4.62 0.64 0.97 0.81
8 km 4.89 6.60 0.56 0.96 0.76
9 km 5.13 6.88 0.62 0.96 0.79

10 km 4.15 5.16 0.55 0.98 0.77
11 km 3.40 4.10 0.42 0.99 0.70
12 km 3.10 3.95 0.24 0.99 0.61

1 km

direction

11.63 12.61 0.95 0.93 0.94
2 km 7.67 9.70 0.86 0.87 0.87
3 km 8.87 10.28 0.87 0.85 0.86
4 km 6.54 8.37 0.88 0.89 0.89
5 km 6.80 8.57 0.92 0.92 0.92
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Table 4. Cont.

Altitudes MAE(m/s) RMSE(m/s) COR R Combine

6 km 8.45 10.06 0.93 0.93 0.93
7 km 7.77 9.30 0.94 0.96 0.95
8 km 7.96 9.61 0.95 0.96 0.96
9 km direction 10.55 11.78 0.93 0.91 0.92

10 km 9.32 10.74 0.79 0.82 0.81
11 km 9.23 10.86 0.73 0.76 0.75
12 km 9.23 10.92 0.65 0.67 0.66

The results show that the wind speed Combine was above 50% in most periods and
more than 70% in most periods. The results have a strong correlation. The correlation of
a small part of periods was less than 50%, and the retrieved effect was not ideal. Most
of the Combine of the wind direction was above 70%, and the retrieved effect was good,
while a small part was below 50%, and the result was slightly worse. Further analysis
shows that the lower period basically appears at 06:00 for the same reason as above. Due to
the data points being relatively few and the results poor. According to the results of each
period, the accuracy of the medium-height layer was relatively stable, which was generally
higher than that of other layers. However, the stability of the low altitude was relatively
low, which was mainly affected by the amount of data.

5. Optimization of Wind Field Results

The MP model is actually a particle model proposed to study the performance of
aircraft. If it is to be applied to meteorology and aviation meteorology, the model needs to
be adjusted. In order to strengthen aerial target surveillance, increase airspace flow, apply
the retrieved wind field to air traffic control and early warning, and fill the gap of wind field
detection data in high altitude, more precise and complete wind field information is needed.
However, the wind field obtained by the MP model is still missing in some areas. In view
of the above problems, this paper puts forward the following improvement methods.

5.1. Optimization of Meteo-Particle Model Parameter

In this paper, combined with the characteristics of the high-altitude wind field and
meteorological knowledge [31], some empirical constant parameters and control factors of
the MP model were adjusted to obtain a more real and accurate retrieval of the wind field.
ADS-B and Mode S retrieval data and ECMWF ERA5 data were randomly sampled. Each
kind of data was randomly divided into 60% and 40%, of which 60% was used as the test
data for model parameter optimization, and the experiment was carried out independently.
The wind field was retrieved from 60% of the test set data through the MP model, and then
the retrieved results were compared with 40% of the original randomly sampled real data.
Finally, the accuracy comparison was obtained by calculating the relevant indicators, thus
as to optimize the model. In order to reduce the random influence of random walk bias, the
mean value of 1000 runs was used to balance the random error, which makes the results
more referential and avoids accidental deviation. The influence factors of the main research
are shown in Table 5. Through a large number of experiments, the ideal reference values of
the factors affecting the retrieval accuracy of the high-altitude wind field and the relevant
differences before and after the improvement were obtained. Because the calculated results
of each component are similar, only the comparative results of vertical wind components
are listed in this paper.

The values of the evaluation indicators are shown in Table 6. Compared with the
results of the original model, the indexes of the improved model were significantly opti-
mized. The observation results show that the optimized algorithm greatly improved the
accuracy of the 00:00 period. In fact, the optimization model reduced the sensitivity to the
amount of data and broadened the scope of application.
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Table 5. Main influencing factors.

Influence Factor Original Value Optimized Value

Measurement acceptance probability factor K1 3 7
Particle random walk factor K2 10 8

particles of per aircraft N 250 300
Particle aging parameter σα 180 500

number of particles to compute M 10 8
Weighting parameter C0 30 21

Table 6. Comparison of the accuracy of indexes.

Evaluation Index Original Value Optimized Value

MAE(m/s)

u

1.37 1.24
RMSE (m/s) 2.21 1.89

COR 0.95 0.96
R 0.99 0.99

Combine 0.97 0.98

MAE (m/s)

v

1.76 1.54
RMSE (m/s) 2.68 2.36

COR 0.93 0.95
R 0.93 0.95

Combine 0.93 0.95

5.2. Continuity of Wind Field

According to the distribution of the ADS-B and Mode S datasets in different peri-
ods and different heights, and the lack of wind observation data at low altitudes or at
00:00~06:00, the incompleteness of the wind field was not conducive to its further applica-
tion. In this paper, the missing data in the retrieved results were analyzed, and the scattered
data with irregular intervals needed to be extrapolated. Therefore, a method to reduce the
discontinuous wind field was proposed, and the extrapolation method based on Delaunay
triangulation was used to obtain more abundant data [32].

The grid wind information retrieved from 4.1 can be expressed as (xi, yi, ui) and
(xi, yi, vi), and the two components are extrapolated respectively. Firstly, all the informa-
tion points on the x and y planes are triangulated to form an edge continuous piecewise
triangular surface with point (xi, yi, ui) as a node. Then, the triangle to which the extrap-
olating points belong are found and linear extrapolation is applied within each triangle.
Let the points P1(x1, y1, u1), P2(x2, y2, u2) and P3(x3, y3, u3) be three vertices of an arbitrary
triangle on the x and y planes. The ui of any point P1(x1, y1, u1) in the triangle can be
derived by the following two methods [33,34].

The first method is the binary linear extrapolation given by Equation (20). The linear
Equation (21) are obtained by inserting P1, P2, and P3 into the equation. Solve the system
to obtain the coefficients a, b, and c, and then the rest of the information on the plane can
be obtained by calculation.

u1 = ax + by + c (20)
u1 = ax1 + by1 + c
u2 = ax2 + by2 + c
u3 = ax3 + by3 + c

(21)

The second method is obtained by barycentric extrapolation. The position (x1, y1)
of any point P1 can be uniquely represented as the weighted average value of the three
vertex positions shown in the Equation (22) and the ui, vi shown in Equation (23), where
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the weights a1, a2, and a3 refer to the coordinates of the barycenter point P, which can be
obtained by solving the system of Equation (22).

x = a1x1 + a2x2 + a3x3
y = a1y1 + a2y2 + a3y3

a1 + a2 + a3 = 1
(22)

{
ui = a1u1 + a2u2 + a3u3
vi = a1v1 + a2v2 + a3v3

(23)

Although the results obtained by the two methods [35] were different in form, in
fact, the linear extrapolation results obtained by the two methods were actually the same
because the binary linear polynomials passing through the three different given points in
space were unique. In this paper, the extrapolation experiment was carried out by using
the data at 18:00. Figure 3 is the retrieval of wind field from 17:59:10 to 18:00:50. Compared
with the ECMWF ERA5 wind field map at 18:00:00 in Figure 4, there is a serious lack of
data in the retrieved wind field data. In order to solve this problem, the extrapolation
experiment was carried out by using the above method, and the experimental results are
shown in Figure 10. The algorithm completely retains the outline of the retrieval wind
field and fills the missing parts of the data. However, considering the shortcomings of
the extrapolation method, incorrect estimates may be obtained, and the reliability of the
extrapolation results is not as reliable as the retrieval results. Therefore, in the results shown
in Figure 10, the retrieval results are represented by black arrows, and the extrapolation
results are represented by gray arrows, representing the difference in credibility between
the two. In addition, this paper also compares the extrapolation results of each period with
ERA5 data. Tables 7 and 8 are the corresponding verification indicators for each period,
and the effect is not bad for this experimental data set. It is similar to the results before
extrapolation and does not reduce the accuracy of the results, thus the extrapolation results
have a certain reference value.

Figure 10. Extrapolation of the retrieval of wind field from 17:59:10 to 18:00:50 (the black arrow represents the retrieved
wind field from the MP model, and the gray arrow represents the extrapolated estimate).
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Table 7. Comparison of u and v errors in different time periods.

Time MAE(m/s) RMSE(m/s) COR R Combine

05:56:40~06:03:20
u

5.11 6.56 0.69 0.97 0.83
11:56:40~12:03:20 5.21 6.81 0.63 0.95 0.79
17:56:40~18:03:20 3.78 4.94 0.72 0.96 0.84

05:56:40~06:03:20
v

7.98 9.65 0.82 0.89 0.85
11:56:40~12:03:20 8.30 9.94 0.70 0.87 0.79
17:56:40~18:03:20 9.21 10.86 0.91 0.91 0.91

Table 8. Comparison of wind speed and direction errors in different time periods.

Time MAE(m/s) RMSE(m/s) COR R Combine

05:56:40~06:03:20
u

5.25 6.70 0.67 0.97 0.82
11:56:40~12:03:20 5.24 6.76 0.62 0.96 0.79
17:56:40~18:03:20 4.21 5.59 0.73 0.96 0.85

05:56:40~06:03:20
v

4.88 6.26 0.70 0.80 0.75
11:56:40~12:03:20 5.32 6.89 0.33 0.59 0.46
17:56:40~18:03:20 5.51 7.11 0.69 0.69 0.69

It is found that the linear extrapolation method has great limitations and is only
suitable for relatively uniform wind fields. It just so happens that the wind field of
the Netherlands selected in this paper is a relatively uniform westerly wind, thus the
extrapolation result is better. Although the application of the model is based on the
exclusion of extreme wind conditions (aircraft avoid extreme atmospheric conditions as
far as possible), the application of the extrapolation method is harsh, thus it is not a good
method. When we change the dataset with a lot of changes in the wind field, we find that
the extrapolation result becomes so bad that it is difficult to apply to other situations. In
future work, this paper considers more advanced weather assimilation methods such as
4DVAR to optimize the results.

6. Results and Discussion

At present, the main detection methods of aerial wind fields still rely on sounding
balloons, radiosondes, and anemometers. However, the coverage of wind field data
obtained by these methods is relatively sparse and cannot meet the research needs of
mesoscale meteorology and aeronautical meteorology. In order to further improve the
data of the wind field in the high-altitude area, this paper further studies the improved
algorithm of the MP model to obtain a wind field with higher accuracy and wider coverage
on the basis of the research of JunziSun. In this paper, an evaluation scheme is proposed,
which is conducive to the improvement of accuracy and the improvement of the model. It
can evaluate the accuracy of the horizontal component, vertical component, wind speed,
and wind direction of the retrieval results. Before the improvement of the model, in order
to master the characteristics and applicability of the model, the differences of the MP model
in different periods and different heights are compared and analyzed. The results show
that the MAE value of wind speed is within [1,8], and the MAE value of wind direction is
within [4,14]. The accuracy of wind speed is obviously better than that of wind direction.
Moreover, among the four periods, 18:00 is the most stable. The main factor affecting the
performance of the model is the amount of data, which shows that the model has certain
requirements for the amount of data. In addition, the main contribution of this paper is to
optimize the model and find a more suitable model parameter value of the meteorological
model. Compared with the original model, the optimization model improves the accuracy
of the model to some extent. Different wind fields are selected as the experimental data,
and the article presents the average value of multiple experimental results of multiple
data sets, thus it has high reliability. However, the limitation of this paper is that it is still
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unable to break the assumptions of the original model. According to the distribution of the
retrieval results, the integrity of the wind field is studied at the expense of some accuracy,
which makes up for the lack of data and achieves ideal results. It has to be explained here
that the linear extrapolation method has uncertainty and has a certain probability of getting
incorrect wind information, which can only be used as a reference for weather conditions
when there is no data available. Therefore, this paper also distinguishes the retrieval results
from the extrapolation results in the experimental results and emphasizes the difference in
reliability between them. Compared with the current weather forecast numerical model
ECMWF ERA5 data, the retrieval wind field in this paper has higher accuracy and can
reflect the useful details that did not exist before. The high-precision wind field obtained
by model optimization not only provides a reference for the research of high-altitude
wind fields in the meteorological field but also helps to improve air traffic management.
In the future, the research will focus on the parameter optimization of the model and
the adaptability in the meteorological field. How to make the model parameters have a
wide range of adaptability is still the focus of future research. The linear extrapolation
method should also be improved, and more advanced weather assimilation methods such
as 4DVAR used by ECWMF should be considered.

7. Conclusions

In this paper, the ADS-B and Mode S data obtained from aircraft sensors are used to
retrieve the high-altitude wind field by using the MP particle model proposed by Junzi
Sun et al., The accuracy and precision of the retrieved results are studied, and the model
improvement suggestions and result optimization methods are put forward, which has
important reference significance. Current research shows that the coverage of the retrieved
wind field is incomplete, and the filtering is usually carried out on the premise of large local
accuracy. After the introduction of aircraft data, it is of great importance to contribute to
improving the accuracy of the high-altitude wind field. In this paper, a mixed verification
index is proposed, which can more effectively evaluate the comprehensive difference of
inversion results in wind speed and wind direction. This index can measure the deviation
of two vectors in direction and distance at the same time, which makes the measurement
of the result more scientific and reasonable. This is not only conducive to the evaluation of
the performance of the model but also can be applied to other fields. The most important
thing is that the improvement of the parameters of the model improves the accuracy of
the retrieval results to a certain extent, and the wind field extrapolation fills the gap of
aviation meteorological in the off-route area. The average deviation and correlation of the
data obtained by the original algorithm are as follows: u component: 3.79 m/s, 82.75%; v
component: 5.23 m/s, 69.25%; wind speed: 4.68 m/s, 82.50%; wind direction: 7.86 m/s,
77.75%. After improvement and optimization, the average deviation and correlation of the
data results in each period are as follows: u component: 3.73 m/s, 81.75%; v component:
5.37 m/s, 73.21%; wind speed: 4.22 m/s, 82.35%; wind direction: 8.41 m/s, 78%. Although
there is no obvious difference in the numerical value of each index of the improved result,
in fact, the improved result is overall. On the one hand, the improvement of wind field
accuracy makes the retrieval results more detailed, but this optimization cannot be reflected
by comparing with ERA5 data. Because reanalyzed datasets such as ERA5 are usually
smooth and often have no local changes. Therefore, it is possible that the fine results will
reflect a larger error with ERA5, which to some extent neutralizes the advantages of the
improved algorithm. On the other hand, the extrapolation algorithm will generally lead
to large errors, which will also neutralize the advantages of the improved algorithm to a
certain extent. This model can roughly reflect the outline of the wind field and can be used
as a reference in the absence of real data. In addition, this paper also makes a comparative
analysis of the retrieval of different periods and different altitudes, which provides some
reference for other scholars to study the model. For the wind speed, the stability of the
results at the lower layer is better than that at the upper layer, and the main influencing
factor is the size of the data set. MP model is suitable for the situation with a large number
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of observations. When the amount of data are small, it will lead to low accuracy. Finally,
the expansion of the retrieved wind field is studied, which improves the overall stability of
the retrieved wind field on the premise of ensuring the accuracy of the wind field.
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