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Abstract: Green infrastructure has a role to play in climate change adaptation strategies in cities.
Alternative urban spaces should be designed considering new requirements in terms of urban
microclimate and thermal comfort. Pervious pavements such as green parking lots can contribute to
this goal through solar evaporative cooling. However, the cooling benefits of such systems remain
under debate during dry and warm periods. The aim of this study was to compare experimentally
the thermal behavior of different parking lot types (PLTs) with vegetated urban soil. Four parking lots
were instrumented, with temperature probes buried at different depths. Underground temperatures
were measured during summer 2019, and the hottest days of the period were analyzed. Results show
that the less mineral used in the surface coating, the less it warms up. The temperature difference
at the upper layer can reach 10 ◦C between mineral and non-mineral PLTs. PLTs can be grouped
into three types: (i) high surface temperature during daytime and nighttime, important heat transfer
toward the sublayers, and low time shift (asphalt system); (ii) high (resp. low) surface temperature
during daytime (resp. nighttime), weak heat transfer toward the sublayers, and important time shift
(paved stone system); and (iii) low surface temperature during daytime and nighttime, weak heat
transfer toward the sublayers, and important time shift (vegetation and substrate system, wood
chips system, vegetated urban soil). The results of this study underline that pervious pavements
demonstrate thermal benefits under warm and dry summer conditions compared to conventional
parking lot solutions. The results also indicate that the hygrothermal properties of urban materials
are crucial for urban heat island mitigation.

Keywords: green infrastructure; green parking lot; in-situ measurement; nature-based solutions;
pervious pavement; soil temperature
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1. Introduction

The urban heat island (UHI) phenomenon is triggered by several factors, such as the
specific urban land cover, the canyon-shaped infrastructure morphology, the anthropogenic
heat emissions, and the physical properties of the urban materials [1,2]. Many studies focus
on identifying different patterns of urban expansion and their consequences on the urban
microclimate [3–6]. Cai et al. [3] studied the influence of urbanization on the urban climate.
They observed that the arrangement of urban areas in relation to water and vegetated areas
affects energy fluxes. Several methods are proposed for reporting different types of land
use. A major approach is the use of land cover indices [7,8], followed by the classification
methods [9]. Jalan and Sharma [10] used land surface temperature (LST) to quantify the
spatiotemporal changes in the UHI of Jaipur city (India). They found that urbanization
affects the LST by about 3 ◦C.

Urbanization processes tend to increase the fraction of sealed and impervious surfaces.
However, urban facets significantly influence the urban climate. Urban facets often demon-
strate specific hygrothermal properties (e.g., low albedo, and reduced water absorption
and retention), which lead to extreme surface temperature.

The development of sustainable and resilient cities requires alternative solutions
and concepts, such as nature-based solutions (NBS) or green infrastructure (GI) [11].
Zölch et al. [12] reported that GI affects pedestrians’ thermal comfort. They conducted a
study on high-density residential areas under current and future climatic conditions. GI
(planting trees) demonstrates the strongest impact with an average physiological equiva-
lent temperature (PET) reduction of 13% compared with existing vegetation. At ground
level, several new pavement technologies are emerging, including pavement watering,
reflective pavement, pervious pavement, and heat storage pavement [13].

Green parking lots (GPLs) are now being suggested as potential solutions for urban
water management and UHI mitigation [14]. Onishi et al. [14] studied the influence of
vegetation on urban parking in Nagoya city, Japan, during the warm period (spring and
summer). They showed that parking with grass slightly reduced the LST (maximum LST
decreased by 7.26 ◦C in the summer for one GPL). Park et al. [15] conducted a study of GPLs
in Ulsan, Korea. They observed that the replacement of pavement materials reduces the
radiant temperature of the surface. Considering the anthropogenic nature of its soil layers,
a GPL can be considered as an urban soil or Technosol [16]. Pervious GPL systems included
porous layers that retain water. Evaporation of stored water contributes to a cooling down
perception for pedestrians and a sensible reduction of air ambient temperature [17]. In
addition, GPLs could reduce surface temperature if vegetation is included [18].

Several studies show the importance of vegetation and biobased materials (e.g., wood
chips) on the GPL behavior [19]. Wood chips may be locally produced and originate from
sustainably managed forest. In addition, Buchanan et al. [20] argued that wood chips can
be a solution adapted to the urban context because of their effectiveness in controlling soil
erosion on a steeply sloping construction site.

Wang et al. [21] presented two types of driving factors for the evaporative cooling
performance of pervious materials, namely the climatic parameters [22] and the hygrother-
mal parameters (albedo, water absorption, and water retention properties) [23]. Solar
radiation has been reported to be the most significant climatic parameter, followed by air
temperature, relative humidity, and wind speed [22].

Hygrothermal properties of pervious pavement are usually assessed under controlled
conditions [24]. However, performance observed during laboratory experimental tests
must be consolidated with summertime case studies of pervious pavement implemented
at full scale. During dry and warm periods, water availability within pervious pavements
may shrink dramatically. In these conditions, evaporation may be strongly reduced,
and the cooling benefits of GPLs may be weakened. In the case of pervious concrete,
Nemirovsky et al. [25] suggest that water stored far from the surface does not participate
in the evaporation process.
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Previous studies have shown that, without precipitation, pervious pavements may
increase the urban overheating due to their high specific heat capacity and reduced evap-
oration [26]. Therefore, thermal performance of full-scale GPLs needs to be analyzed to
investigate the extent to which pervious pavements can be considered as heat sinks during
warm and dry periods. This study aimed to analyze experimentally the thermal behavior
of four full-scale parking lot systems under dry and warm summer conditions. To highlight
the thermal dynamics and the heat transfer patterns between the different layers, heat and
cooling rates were calculated.

This analysis is organized as follows. Section 2 illustrates the study area, data, and
methods. It also presents the design of the studied GPL. Section 3 analyzes and discusses
the characteristics of the GPLs in terms of thermal performances.

2. Materials and Methods
2.1. Study Site

This study was conducted in northern France within the conurbation of Lille (Figure 1A).
It is the sixth largest French conurbation and has 1,100,000 inhabitants. Located approxi-
mately 50 km south of the North Sea, Lille experiences a temperate oceanic climate (Cfb
climate in the Köppen Geiger classification system [27]). July is the warmest month of the
year, with an average maximal (resp. minimal) air temperature of 23.3 ◦C (resp. 13.8 ◦C) [28].
July is also the wettest month of the summer, with 68.5 mm of precipitation on average.
The mean month insolation values for June, July, and August are, respectively, 206, 211,
and 199 h [28].

Figure 1. (A) Location of the cities of Lille, Arras, and Valenciennes (France); (B) location of the
city of Lesquin compared to Arras and Valenciennes cities; (C) aerial view of the experimental site
environment (location of the platform marked with a black box); (D) location of the studied parking
lots (sources: Google Earth).

To date, the urban climate of Lille has been little investigated; therefore, data to esti-
mate the amplitude of Lille’s UHI are scarce. However, under a calm and clear sky, several
values of the UHI amplitude are available for nearby cities with a similar background
climate: 4.4 ◦C for Nancy, France (conurbation population: 286,000 inhabitants) [29]; a
maximum of 6 ◦C for Ghent, Belgium (conurbation population: 560,000 inhabitants) [30];
and up to 8 ◦C for Paris, France (conurbation population: 10,800,000 inhabitants) [31].
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According to these results and to the conurbation size, the UHI amplitude of Lille could be
estimated to be between 4 and 7 ◦C under a calm and clear sky.

The studied parking lots are situated in the city of Lesquin (50◦34′56.35′′ N 3◦07′8.40′′ E),
in the southern part of the conurbation (Figure 1B). At the local scale, the experimental
site belongs to a small industrial settlement, which was built between a highway and
agricultural fields (Figure 1C,D).

2.2. Structure and Composition of Studied Parking Lots

Eight parking places were built on the Experimental Platform (EP) of Lesquin by
construction companies (Figure 2). Due to technical issues, data are available for only four
parking lots. The composition of the parking lots is presented in Figure 3 and in Table 1.

Figure 2. View of the experimental site. Studied parking lots are 1 (red round), 3 (green round), 4 (blue round), 5 (orange
round), and control zone 9 (pink round). The other parking lots were not considered due to experimental issues.

Figure 3. Composition of the Parking Lot Types (PLTs): asphalt (P1), concrete paving stone (P3),
vegetation and soil (P4), wood chips (P5), and control zone (CZ9). The red crosses indicate the
positions of thermal sensors.
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Table 1. Description of the four parking lots (P) and the control zone (CZ9).

Material Composition Plot Type-Thickness
P1 P3 P4 P5 CZ9

Asphalt (ASP) 5 cm - - - -
Slab filled with concrete

paving stone (SPS) - 6 cm - - -

Slab with mix soil and sand 90% of soil and compost 0/10 mm, 10% of sand
0/4 mm (SCS) - - 5 cm - -

Slab filled with wood chips 10/20 mm wood chips (SWC) - - - 5 cm -
Grass (GRA) - - x - x

Mineral bed 2/4 mm (MB) - 3 cm - - -

Fertile laying bed 60% gravel 4/6 mm + 20% sand 0/4 mm + 20%
soil and compost 0/10 mm (SSC) - - 3 cm 3 cm -

Foundation
Gravel 0/20 mm * (G0/20) 15 cm - - - -
Gravel 2/32 mm + (G2/32) - 15 cm - - -

75% of gravel, 25% of soil and compost (GSC) † - - 15 cm 15 cm -
Subfoundation Gravel 20/40 mm (G20/40) 20 cm 20 cm 20 cm 20 cm -

* represents information about P1. + represents information about P3. † represents information about P5.

The control zone CZ9 is defined as a grass-covered area with silty soil (thickness
55 cm). The four parking lot systems (P1, P3, P4, and P5) are laid on a subfoundation of
20/40 mm gravel (thickness 20 cm). Their composition and structure are described from
upper layer to deeper layer:

• The parking lot P1 is a conventional system composed of asphalt (thickness 5 cm) with
a 0/20 mm gravel foundation (thickness 15 cm).

• The parking lot P3 is composed of a slab filled with concrete paving stones (thickness
6 cm), a 2/4 mm mineral bed (thickness 3 cm), and a 2/32 mm gravel foundation
(thickness 15 cm).

• P4 is built up of a grass-covered slab filled with a mix of soil and sand (90% soil and
compost, 10% sand 0/4 mm, thickness 6 cm), a fertile laying bed (60% sand, 20% sand
0/4 mm, and 20% soil and compost 0/10 mm, thickness 3 cm) and a mixed foundation
(75% gravel, 25% soil and compost, thickness 15 cm).

• P5 is composed of a slab filled with 10/20 mm wood chips (forest mulch, thickness
5 cm), a fertile laying bed (70% sand, 30% soil and compost, thickness 3 cm), and a
mixed foundation (75% gravel, 25% soil and compost, thickness 15 cm).

The slab is a plastic structure made of recycled polypropylene and polyethylene, which
provides the required mechanical properties for parking lot use (Figure 4). It represents
approximately 39% of the total surface of the parking lot.

Table 1 summarizes the information of the four PLs and CZ9, and Tables 2 and 3
present the physical properties of the studied materials.

2.3. Materials

Probes were placed during the construction phase of the four parking lots. Different
depths were chosen to analyze different construction materials (filling, bedding, foundation,
and subfoundation).

Five probes were installed in each of the four parking lots and in an adjacent grassed
area (control zone, CZ9). Two types of thermal probes were used: Campbell Scientific
CS107 (temperature accuracy of ±0.4 ◦C) probes were buried at depths of −3, −8, −24,
and−55 cm; and Campbell Scientific CS255 (temperature accuracy of±0.4 ◦C) probes were
buried at −16 cm (Figures 3 and 4). The probes were located in the center of the parking
lot, assuming that this center point was not affected by other adjacent parking lots. The
width of the parking lot was 2.4 m. The distance between the center of a given parking lot
and an adjacent parking lot was 1.2 m.
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Figure 4. Example of sensor position at a depth of 3 cm in concrete paving stones (CS107). The sensor
was placed inside a paving stone.

Table 2. Description of the four parking lots (PLs) and the control zone (CZ9).

Material Thermal Conductivity Heat Capacity Emissivity Albedo Ref.

Unit (W m−1 K−1) (J kg−1 K−1) (-) (-)

ASP 0.88 1094–1203 0.99 0.15 [32,33]
SPS 0.85 2200–2800 0.99 0.178 [34,35]
SCS 810–973 0.92 0.39 [34]
SWC 0.07 to 0.08 - - - [36]
GRA - - 0.90–0.96 0.18–0.22 [37]
MB - - ND ND -
SSC - - ND ND -

G0/20 0.38–1.1 ND ND ND [38]
G2/32 0.38–1.1 ND ND ND [38]
GSC 1.6–2.1 ND ND ND [39]

G20/40 0.38–1.1 ND ND ND [38]
Soil 0.073–0.203 ND ND ND [40]

Table 3. Physical properties of aggregates.

Properties Asphalt (ASP) Paving Stone Fertile Laying Bed (SSC) Mineral Bed (MB)

Maximum diameter (mm) 8 1 6 4
Bulk density (kg m−3) 8 2292 1300 1600
Solid density (kg m−3) 2350 2527 2900 2660
Bitumen content (%) 5–6 N/A N/A N/A

Table 2 summarizes the physical properties of the constituent materials of the four GPLs
and the CZ9.

Outdoor temperature and relative humidity probes (Campbell Scientific CS215) and a
rain gauge (Campbell Scientific Kalyx-RG, Loughborough, UK) were also installed. These
sensors were connected to a data logger (Campbell Scientific CR1000× Series) powered
by a battery connected to a solar panel (Campbell Scientific SP30) (Figure 5). Temperature
values were recorded with a 5-min time step between 1 June 2019 and 31 August 2019.
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Figure 5. Data acquisition facility: outdoor temperature and relative humidity probe (CS215) on the
left, rain gauge on the right (Kalyx-RG).

2.4. Key Performance Indicators of Parking Lot Dynamics

To evaluate the dynamics of the parking lots, several key performance indicators were
used. Hourly variation of underground temperature between 1 June 2019 and 31 August
2019 was analyzed. The temperature difference with respect to the control zone (CZ9)
was calculated (Equation (1)). The ∆T experimental error was ±0.8 ◦C based on the
temperature measurement:

∆T =
(
Tj cm

)
Pi −

(
Tj cm

)
CZ (1)

where Tj cm is the temperature (◦C) at each depth j = −3, −8, −16, −24, −55 cm, for each
parking lot Pi = 1, 3, 4, 5.

The rate of change (RC) was considered to investigate the thermal behavior of the
parking lots over time, because this approach has been adopted in previous urban climate
studies [41–44]. The analysis was based on the sixty-minute average temperature to
calculate the hourly RC (◦C h−1) (Equations (2) and (3)):

RC =
Tmean

t
(2)

where Tmean (◦C) is the average temperature during the previous 60 min and t is time (hour).
Tmean was used to calculate RC. The RC experimental error was ±0.4 ◦C h−1 based on the
temperature measurement.

The standard deviation function was also used. This expresses the dispersion of a
dataset relative to its mean [45]:

Sd =

√
(∑ xi − µ)2

N
(3)

where Sd is the population standard deviation, N is the size of the population, xi is the
value from the population, µ is the population mean.

2.5. Local Air Temperature and Rainfall Observations

Data (outdoor temperature and rainfall quantity) from the weather station were
obtained over a 3-month period from June to August 2019 (Figure 6). During this period, the
outdoor temperature was particularly high and set new records [46,47]. The air temperature
varied from 7.7 to 41.0 ◦C, with an average value of 19.2 ◦C, and a total rainfall of 7.4 mm.
The end of June 2019 demonstrated very warm weather. The outdoor temperature reached
35.2 ◦C on 29 June. This period (24 June–1 July 2019) was selected to evaluate the thermal
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behavior of the GPLs during very warm weather. RC was analyzed during the warmest
period of summer 2019 (25–26 June 2019).

Figure 6. Hourly variation of outdoor temperature (red continuous lines with round markers—◦C)
and rainfall (dark blue histogram—mm) measured by the experimental platform weather station
between 1 June 2019 and 30 August 2019.

Figure 7 compares the air temperature measurements from the Experimental Platform
(EP) presented in Figure 5 with the nearby weather station operated by Météo France (MF),
located at Lesquin Airport. The Lesquin MF weather station is part of the national weather
observation network, and is located 4 km from the EP. It appears that the EP air temperature
and the air temperature from the MF weather station of Lesquin were similar during the
analysis period (Sd-MF Lesquin = 4.53 ◦C and Sd-EP = 4.41 ◦C) (Figure 7a). Figure 7b shows
that the correlation between the two temperature datasets was strong (R2 = 0.98). Therefore,
the difference in the weather between the EP and Lesquin airport can be considered as
negligible. A small amount of precipitation was recorded between 15 June and 19 June
(14.9 mm). From 20 June to 5 July, no rain was observed.

Figure 7. (a) Hourly variation of outdoor temperature (red continuous lines with round markers—◦C) measured by the Météo
France (MF) weather station of Lesquin and hourly variation of the Experimental Platform (EP) outdoor temperature (blue
continuous lines with star markers) between 15 June 2019 and 15 July 2019. (b) Comparison between the air temperatures of
the EP and the MF weather station located in Lesquin.
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To gather climatic information regarding the period of interest, the weather observa-
tion datasets of Arras and Valenciennes were analyzed. These two cities are located 42 and
38 km, respectively, from the EP (Figure 1).

Figure 8 presents weather variables for three Météo France weather stations in Lesquin,
Valenciennes, and Arras during the study period (24 June to 30 June 2019). During this
period, global irradiance (experimental error of ±7 W.m−2) increased to 300 W m−2, except
for 30 June (cloudy day), when the radiation was less than 250 W m−2 and recorded
drops to between 100 and 130 W m−2 (Figure 8b). Air temperatures were very similar
(1–2 ◦C difference) between the three cities (Figure 8a). Based on this similarity in terms of
outdoor temperature, it can be hypothesized that the global downward solar radiation is
similar at the Météo France weather station of Valenciennes and the Experimental Platform
of Lesquin.

Figure 8. (a) Outdoor temperature representation of the three different Météo France weather stations:
Valenciennes (50◦21′36′′ N 3◦05′24′′ E), Arras (50◦15′36′′ N 2◦52′12′′ E), and Lesquin (50◦20′24′′ N
3◦04′12′′ E) between 24 June 2019 and 30 June 2019. (b) Global downward irradiance of the Valenci-
ennes (50◦21′36′′ N 3◦05′24′′ E) weather station between 24 June 2019 and 30 June 2019.

The frequency distribution of wind speed and wind direction between 24 June 2019
and 30 June 2019 are presented in Figure 9 for different Météo France weather stations:
Lesquin (a)–(b), Valenciennes (c)–(d), and Arras (e)–(f). The prevailing wind is North-East
for the three cities. The mean wind speeds are between 4 and 4.5 m s−1 for all locations.
The most frequent wind speed is 4.5 m s−1 for Lesquin (frequency 11.2%), 4.5 m s−1 for
Valenciennes (frequency 10.5%), and 4.8 m s−1 for Arras (frequency 13.0%). As in the case
of the temperature, the wind profiles of these three weather stations were very close.
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Figure 9. Frequency distribution of wind speed for: (a) Météo France (Lesquin–50◦20′24′′ N
3◦04′12′′ E), (c) Météo France weather station at Valenciennes (50◦21′36′′ N 3◦05′24′′ E), and (e) Météo
France weather station at Arras (50◦15′36′′ N 2◦52′12′′ E). Wind direction distribution for: (b) Météo
France weather station at Lesquin, (d) Météo France weather station at Valenciennes, and (f) Météo
France weather station at Arras. All data were recorded between 24 June 2019 and 30 June 2019.

3. Results
3.1. Impact of Depth on Temperature Dynamics

Temporal variations of temperature of the parking lots (P1, P3, P4, and P5) and control
zone (CZ9) at −3, −8, −16, −24, and −55 cm depths between 24 June and 30 June are
shown in Figure 10. In general, the daily amplitude of temperature variations tended to
decrease with increasing depth. The outdoor air temperature varied between 13.4 and
33.8 ◦C during this period. Temperatures at −3 cm were higher than the outdoor air
temperature for all parking systems.

For the depth of −3 cm (Figure 10a), P3 was the warmest area during daytime and
reached a maximum temperature of 51.0 ◦C. This confirms the existence of an energy
storage effect, which induces an increase in the temperature. P3 also exhibited the highest
daily temperature amplitude.

At a depth of−3 cm, P1 was the second warmest area during daytime and the warmest
area during nighttime. For this depth, P1 was the warmest parking lot on average during
the week (33.1 ◦C).

The temperature fluctuations of P4 (vegetation and substrate) recorded at a depth
of −3 cm demonstrated a similar pattern to that of P5 (wood chips) on the first day. A
difference in temperature between P4 and P5 began to occur on the third day (3–4 ◦C at
noon). This small temperature gap may be explained by the hydrophilic properties of
wood chips (considered to be an organic mulching) because wood may capture part of the
morning dew.

CZ9 with grass and natural soil was the coolest area during most parts of the day. The
lowest surface temperatures were recorded for CZ9 (29.6 to 32.9 ◦C at noon).

The depths of −8, −16, and −24 cm demonstrated similar patterns (Figure 10b–d). P1
was the warmest area at all times (day and night). P3 and P4 were cooler than P1, and P5
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and CZ9 were the coolest areas. P3 tended to be warmer than P4 during daytime, but the
two lots exhibited similar minimum temperatures. P5 and CZ9 showed almost identical
thermal behavior. Each PLT presented a repeatable daily temperature pattern.

Figure 10. Temperature records at different depths: −3 cm (a); −8 cm (b); −16 cm (c); −24 cm (d);
−55 cm (e) during the summer period from 24 June to 30 June 2019. P1 is represented with a red
solid line with star markers. P3 is represented with a green dotted line with triangle up markers. P4
is represented with a blue dotted line with triangle right markers. P5 is represented with an orange
dotted line with diamond markers. CZ9 is represented with a pink dashed line with square markers.
The black continuous line with round markers represents air ambient temperature.

Measurements at a depth of 55 cm indicated similar patterns and described a plateau
(between 18.2 and 22.7 ◦C). The amplitudes of the variations and the temporal shift, which
were particularly visible on the temperature peaks, were negligible (Figure 10e).

3.2. Analysis of the Daily Temperature Cycle

The daily vertical heat transfer cycles were analyzed by the temperature profiles
measured at different depths (Figure 11). For all systems, the depth of−3 cm demonstrated
the highest temperature amplitude. The temperature amplitude decreased when the depth
increased. During daytime, the heat received on the surface was transferred downward
by conduction to the lower layers (−8, −16, and −24 cm depths). A daily maximum
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temperature was observed for all layers, except for the depth of −55 cm. However, the
maximum temperature time differed between layers and time shifts were observed. The
deeper the layer, the later the daily maximum temperature occurred.

At the beginning of the evening, the −3 cm depth layer started to cool due to convec-
tion and radiative transfer. During all the evenings and nights, the lower layers released
the stored heat, and the conduction transfer was oriented upward.

The outdoor temperature was much lower than the layer temperatures of P1 and P3
(Figure 11). In the cases of P4 and P5, the temperature at −3 cm (resp. at −8, −16, and
−24 cm depths) was higher than (resp. similar to) the outdoor temperature. It appears that
CZ9 exhibited a temperature at −3 cm that was comparable to or slightly higher than the
outdoor temperature (Figure 10).

Considering P1, the daytime conductive heat transfer toward the lower layers was fast
and effective. The time shifts observed for P1 between the daily maximum temperatures
(−3,−8,−16, and−24 cm depths) were the lowest of all the studied systems. Moreover, the
P1 system stored solar energy in the superficial layer (second warmest daytime temperature
at−3 cm depth) and efficiently transferred the heat toward the sublayers (warmest daytime
temperature at −8, −16, and −24 cm depths).

P3, P4, and P5 systems included a slab at the superficial layer (between 0 and −6 cm
depths). Results indicate that this element played a minor role regarding the thermal
behavior of PLT, because the P3 system showed a significantly different underground
temperature than that of the P4 and P5 systems.

3.3. Comparison between Studied Systems and Control Zone

Figure 12 presents the temperature differences between each parking lot (P1, P3, P4,
and P5) and the control area (CZ9) (cf. Equation (1)). In the case of P1 (Figure 12a), from a
depth of −3 to −24 cm, an increase in depth led to a decrease in the daily amplitude and a
time shift in the daily temperature extrema. At −55 cm depth, the difference between P1
and CZ9 was almost negligible (0 to 2.0 ◦C).

The P3 system remained cooler than P1 on average (Figure 12b) for all depths except
that of −3 cm. The paved stone was up to 19.5 ◦C warmer than the control zone during
daytime but was cooler than grass during nighttime (−3.5 ◦C). The paving stone layer (P3)
stored a significant amount of heat and increased its temperature. However, it transferred
less heat toward the lower layers than P1.

P4 and P5 systems were consistently cooler than P1 (0 to 5.0 ◦C) (Figure 12c,d). During
nighttime, the temperature at a depth of −3 cm was similar to that of CZ9. The difference
in temperature reached approximately +9.0 ◦C for P4 and +5.0 ◦C for P5 during daytime.
P4 demonstrated a positive difference in temperature for −8, −16, and −24 cm depths
(average of 2.3 ◦C), and no temperature gap for the −55 cm depth. Except for the −3 cm
depth, the temperature differences between P5 and CZ9 were not significant.

3.4. Cooling and Heating Rates

The cooling and heating rates were calculated for the −3 cm depth on 25 June and
26 June 2019 (cf. Equations (2) and (3)) (Figure 13). Two hours before and after sunrise,
all RC rates tended to be similar (between 0.0 and 1.0 ◦C h−1). Heating started 1–2 h after
sunrise (positive value of temperature rate, i.e., heating rate). The heating rates increased
and reached their daily maximum around noon. The −3 cm depth layers started to cool
around 5 pm (negative value of temperature rate, i.e., cooling rate). The daily minimum in
the cooling rate was reached around sunset.



Atmosphere 2021, 12, 994 13 of 19

Figure 11. Representation of temperature curves at different depths for P1 (a), P3 (b), P4 (c), P5 (d),
and CZ9 (e) systems from 25 June to 26 June 2019. Temperature at −3 cm depth is represented with
a red solid line with star markers. Temperature at −8 cm depth is represented with a green dotted
line with triangle up markers. Temperature at −16 cm depth is represented with a blue dotted line
with triangle right markers. Temperature at −24 cm depth is represented with an orange dotted line
with diamond markers. Temperature at −55 cm depth is represented with a pink dashed line with
square markers. The black continuous line with round markers represents air ambient temperature.
t1 represents maximum temperature at −3 cm depth. t2 represents maximum temperature at −8 cm
depth. t3 represents maximum temperature at −16 cm depth. t4 represents maximum temperature at
−24 cm depth.
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Figure 12. Representation of the temperature difference ∆T (◦C) based on Equation (1) at the different
depths for the P1 (a), P3 (b), P4 (c), and P5 (d) systems compared to the control area (CZ9) from
25 June–26 June 2019. Temperature at −3 cm depth is represented with a red solid line with star
markers. Temperature at −8 cm depth is represented with a green dotted line with triangle up
markers. Temperature at −16 cm depth is represented with a blue dotted line with triangle right
markers. Temperature at −24 cm depth is represented with an orange dotted line with diamond
markers. Temperature at −55 cm depth is represented with a pink dashed line with square markers.
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Figure 13. Representation of the rate of change (RC) (◦C h−1) in five PLTs at −3 cm depth (25 to 26
June 2019). P1 is represented with a red solid line with star markers. P3 is represented with a green
dotted line with triangle up markers. P4 is represented with a blue dotted line with triangle right
markers. P5 is represented with an orange dotted line with diamond markers. CZ9 is represented
with a pink dashed line with square markers.

Results illustrate that P3 had the highest RC (corresponded to the heating phase
during daytime (up to 6.0 ◦C h−1 at noon, UTC + 2) and the lowest RC during nighttime
(−5.0 ◦C h−1). P1 demonstrated less intense temperature rates than P3 (maximum RC
4.0 ◦C h−1, minimum RC −3.0 ◦C h−1). The P4 and P5 systems had very similar thermal
behavior during both day and night. The RC of P4 was, on average, 0.2 ◦C h−1 higher than
the temperature rate of P5. CZ9 showed the smallest amplitude of RC (+2.0 ◦C h−1 during
daytime, −1.5 ◦C h−1 during nighttime).

4. Discussion

As stated by Hendel et al. [37], the surface material acts as a solar energy receiver
and the underground material acts as a form of energy storage. In this study, several solar
energy receivers were investigated. The high surface temperature reached by the asphalt
cover (P1) is in line with the work of Ca et al. [48], who studied the impact of asphalt paved
parking lots in Tokyo, Japan, during the warm period (August to September 1994). Results
highlight that the surface temperature at noon rose to 55 ◦C. Therefore, the solution with
asphalt causes an increase in the adjacent air temperature through sensible heat release [49].

The results show the capacity of the paving stone to store a remarkable amount of
heat during daytime, and to release it rapidly during the evening and night [50]. Qin and
Hiller [51] conducted an experimental study on the pavement-surface energy balance in the
Mediterranean climate of dry, hot summers in Davis, California, USA. In this study, most
of the absorbed solar energy was transferred into the material via thermal conduction.

The grass cover of P4 and CZ9 appears to be beneficial to the thermal behavior. The
presence of vegetation may attenuate the daily amplitude of the temperature [52,53].

Foundations play a role in thermal storage. From a depth of 24 to 55 cm, the founda-
tions of P1, P3, P4, and P5 systems were mineral. As a result, the heat transfer from the
surface to the underlying layers was reduced due to the low energy storage capacity of the
gravel [51,54,55].

This experimental study suggests that improvements can be undertaken on several
PLTs. A modification of the paving stone color (P3) and slab color (P3, P4, and P5) would
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impact their albedo and may reduce the peak daytime temperature. For instance, Wang and
Akbari [56] showed that higher albedo paving can reduce the UHI effect during the day.

5. Conclusions

This study investigated the reaction of pervious pavement, such as green parking lots,
in terms of thermal behavior during warm and dry weather conditions. It compared the
thermal behavior of different parking lot types (PLTs): a conventional asphalt parking lot
(P1), a grass-covered natural soil (CZ9), and three alternative parking lot systems (concrete
paving stone (P3), grass-covered slab filled with a mix of soil and sand (P4), and slab filled
with wood chips (P5); the latter lots are considered as green parking lots (GPLs)). Results
underline that the less mineral the surface coating, the less it warms up. The temperature
difference at the upper layer can reach 10 ◦C between mineral and non-mineral PLTs.

It was found that P1 is the least appropriate modality in an urban heat island context: it
heats up quickly, reaches very high temperatures, and transmits heat to the deeper layers of
soil. P3 is an intermediate solution. It heats up very quickly and reaches high temperatures
that warm the boundary layer. It also cools very quickly and does not store heat over
several days. The two solutions that provide results closest to the thermal behavior of
natural soils are the P4 and P5 solutions. The lawn became partially dried during this
study, which clearly reduced the action of vegetation on soil temperature.

This study highlights that the parking lots systems can be grouped into three types:
(i) high surface temperature during daytime, moderate temperature during nighttime,
important heat transfer toward the sublayers, and low time shift (P1); (ii) high surface
temperature during daytime, low temperature during nighttime, weak heat transfer toward
the sublayers, and important time shift (P3); and (iii) low surface temperature during
daytime, low temperature during nighttime, weak heat transfer toward the sublayers, and
important time shift (vegetation and substrate P4, wood chips P5, control zone CZ9). This
highlights that pervious pavements demonstrate thermal benefits during warm and dry
periods compared to conventional parking lot solutions. In these weather conditions, GPLs
including vegetation or wood chips can obtain thermal performances close to those of
grass-covered areas with silty soil.

Results provide insights into how alternative parking lots can affect atmospheric and
underground urban heat islands. Because the size of parking lots may range from hundreds
to thousands of square meters, urban materials and innovative parking lot solutions need to
be assessed in real conditions before being installed at a larger scale. Moreover, the thermal
behavior of PLTs should be investigated under warm and dry weather conditions, which
are likely to be frequently observed in the coming decades. The output of this research
can be valuable for modelling purposes, which is also an important field of climate-smart
urban decision making. Subsurface heat transfer for nontraditional solutions must be better
understood and modelled. The experimental results presented in this study are worthy to
be integrated into numerical modelling approaches.
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