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Abstract: The outbreak of COVID-19 necessitates developing reliable tools to derive safety measures,
including safe social distance and minimum exposure time under different circumstances. Transient
Eulerian–Lagrangian computational fluid dynamics (CFD) models have emerged as a viably fast
and economical option. Nonetheless, these CFD models resolve the instantaneous distribution of
droplets inside a computational domain, making them incapable of directly being used to assess
the risk of infection as it depends on the total accumulated dosage of infecting viruses received by a
new host within an exposure time. This study proposes a novel risk assessment model (RAM) to
predict the temporal and spatial accumulative concentration of infectious exhaled droplets based
on the bio-source’s exhalation profile and droplet distribution using the CFD results of respiratory
events in various environmental conditions. Unlike the traditional approach in the bulk movement
assessment of droplets’ outreach in a domain, every single droplet is traced inside the domain at each
time step, and the total number of droplets passing through any arbitrary position of the domain is
determined using a computational code. The performance of RAM is investigated for a series of case
studies against various respiratory events where the horizontal and the lateral spread of risky zones
are shown to temporarily vary rather than being fixed in space. The sensitivity of risky zones to
ambient temperature and relative humidity was also addressed for sample cough and sneeze cases.
This implies that the RAM provides crucial information required for defining safety measures such
as safety distances or minimum exposure times in different environments.

Keywords: CFD; Eulerian–Lagrangian modeling; respiratory droplets; COVID-19; risk assessment

1. Introduction

Risk assessment of COVID-19 transmission via airborne pathogen droplets (APDs)
is essential for the development of safe distance guidelines [1] and ventilation designs in
various types of spaces [2]. Early risk assessment models (RAMs) dominantly involved
statistical analysis of disease propagations. These models are based on simplifying assump-
tions or use collected statistics to find key factors for various infectious diseases, which can
be used to predict the effects of different interventions.

Examples of RAMs include the model proposed by Kermack and McKendrick [3],
which is a classical model for understanding the propagation of real-life epidemics. Another
example is the Wells–Riley [4] model, which is well known for the prediction of the risk
of new infection within a group of people in a specific period of time. The Wells–Riley
model [4] is, however, limited by its steady-state and uniform distribution assumptions for
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the suspended infectious aerosols in the air. Rudnick et al. [5] improved the Wells–Riley
model to estimate the risk in unsteady conditions. This model was successfully embedded
in some of the later research works [6–8]. During the past decades, RAMs have been
shifting from statistical approaches to deterministic approaches of tracing respiratory
droplets’ trajectories towards a more detailed consideration of their movement in the
background air. Such approaches became more popular since 2002, after the spread of the
severe acute respiratory syndrome known as SARS-CoV-1. A summary of the existing
models can be found in [9–12]. In this respect, computational fluid dynamics (CFD) has
been broadly utilized to trace the spreading patterns of respiratory droplets in different
environmental situations.

The existing CFD studies of respiratory air jets and droplets can be classified into two
main categories. In the first group of studies, the formation of the respiratory droplets
and their evaporation and breakdown are investigated, where the models have provided
detailed insights into the thermodynamics of the droplets in different environmental condi-
tions, such as at varying temperatures and humidity levels [13]. Nonetheless, these models
barely interpreted the results into the risk factors. In the second category, however, the
focus is on the risk assessment associated with the spreading of particles of infectious dis-
eases [14]. In such studies, the risk assessment requires CFD simulations and experiments
in a wide range of environmental conditions (e.g., varying temperature and humidity) as
well as clinical information of APDs (e.g., size distribution, velocity magnitude, velocity
profile, etc.). For example, Villafruela et al. [15] and You et al. [16] used the Wells–Riley-
based method to calculate the infection risk in enclosed spaces based on the results of their
CFD simulations. In another study, Watanabe et al. [17] introduced two dose–response
models for SARS-CoV based on exponential as well as beta-Poisson models. The former
study used an exponential function to predict the probability of infection under a certain
dosage of viral load, while the latter applied a beta distribution to demonstrate the proba-
bility of infection [18]. In another work, Wang et al. employed a continuous random walk
model (CRW) to solve the turbulent fluctuation of violent respiratory events. The CRW
model was implemented into a Lagrangian model for particle dynamics and evaporation
and a simple respiratory jet model to improve the prediction of median-sized droplets’
spreading [19]. Moreover, Buonanno et al. [20] presented a simple approach to estimate the
viral load emitted by a contagious subject based on the type of respiratory event, inhalation
rate, and activity level. This model hypothesized that the droplets emitted by an infected
subject have the same viral load as sputum. Hence, by knowing the concentration of virus
in sputum and the number of emitted droplets with a diameter of 10 µm or smaller, the
viral load can be determined through a mass balance equation [21]. This model has been
further employed to estimate the change in infection risk by the ventilation and behaviors
in public transportation spaces [22]. In another research work, Guo et al. developed a
mathematical approach to determine the spatial distribution of the probability of infection
(PI) [23]. Their method is based on combining the spatial flow impact factor (SFIF) and
the Wells–Riley model to find the optimal arrangement of people and/or air purifiers in
indoor spaces.

Since December 2019, the COVID-19 outbreak remarkably accelerated the efforts for
introducing more accurate CFD-based RAMs. For example, only a few months after the
pandemic, Vuorinen et al. [24] proposed a multi-level approach with different degrees of
complexity to investigate the airborne transmission of COVID-19. They studied susceptible
and infected individuals in generic public places by Monte Carlo modeling. The droplet
evaporation model was also applied to a CFD model to capture the shrinkage of large
droplets to small nuclei. They showed that depending on the local concentration of aerosols,
the recommended social distance at the time could be misleading. Instead, they calculated
the time required to receive the sufficient dosage of pathogens as the exposure time, which
can be in the order of a few seconds to an hour depending on the local concentration
of aerosols. Furthermore, Mittal et al. [25] combined fluid mechanics and a simplified
mathematical technique to assess the risk of airborne transmission of a respiratory infection
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caused by the COVID-19 virus. The model was inspired by the Drake probabilistic model to
estimate the number of active, communicative extraterrestrial civilizations in the Milky Way
galaxy [26]. Accounting for the factors affecting the generation of infectious droplets in the
respiratory system of a host and the environmental parameters impacting the transmission
of infectious droplets to the vicinity of a susceptible person, they provided a probabilistic
model for the risk of infection that reasonably estimates the relative changes in the risk
with some controversial behaviors and factors such as wearing a mask, physical distancing,
and intensity of physical activity. In another work, Karimzadeh et al. [27] suggested the
minimum infective dosage of the disease be around 100 droplets. Some other studies have
instead presented a more advanced description of the infective dosage as they used data
of viral load in the sputum and determined infectious quantum by defining conversion
factors [24].

Many of the existing assessment models suffer from over-simplification of zero-
dimensional steady-state assumptions, which do not take the spatial distribution of air
velocity throughout the field, air–droplet interactions, and the time-dependent behavior
of droplets into account. To overcome this shortage, this paper proposes a novel risk
assessment model (RAM) to calculate the risk of virus transmission over time using an
Eulerian–Lagrangian CFD approach. This model interprets different respiratory activities
into a risk factor by calculation of the accumulated number of respiratory droplets passing
a certain location within a period of exposure. The droplets’ temporal position and veloc-
ity are analyzed via a proposed algorithm to estimate the regions having more than the
threshold of the number of droplets accounted as the minimum dose needed for infection
of COVID-19; here, the suggested number is 100 following [27]. The exhaled droplets have
multiple components, including a non-evaporative nucleus with an evaporating hydro-
surface to give a more realistic representation of respiratory droplets. The performance of
the proposed prediction method is assessed under different relative humidity values and
temperatures as well as different respiratory events, including sneeze and cough. Section 2
introduces the governing equations of the Eulerian–Lagrangian CFD model and all the
applied sub-models. Section 3 then presents the proposed RAM and its underlying as-
sumptions. Section 4 demonstrates sample cases to assess the performance of the proposed
method for different exhalation activities in various thermal conditions. Section 5 presents
the results, and Section 6 provides conclusions and recommendations for future work.

2. Methodology

In this study, an Eulerian–Lagrangian CFD model is used to simulate the aerodynamics
and thermodynamics of droplets released from respiratory events in several thermally
conditioned spaces. The model solves the transport equations for the continuous phase
(air) with the Eulerian approach while the trajectories of the droplets are determined by
a Lagrangian method. Moreover, the CFD model includes the heat and mass transfer
between droplets and the surrounding air to account for relative humidity and temperature
alterations. Additionally, each droplet is assumed to be composed of a non-evaporative
nucleus in a soluble evaporative liquid.

To predict the temporal accumulated distribution of droplets and, hence, calculate
the associated risk of disease aerosol transmission, a novel framework was developed,
as shown in Figure 1. The input to the algorithm is the CFD simulation output data,
including the diameter, position, and velocity of the droplets. The algorithm then predicts
the accumulated number of droplets passing different locations within a fixed time interval.
The computed concentrations will then be used to calculate the risk of disease transmis-
sion in a specific location in the space according to the available data for the minimum
infective dosage.



Atmosphere 2021, 12, 986 4 of 25
Atmosphere 2021, 12, x FOR PEER REVIEW 4 of 27 
 

 
Figure 1. The framework of the risk assessment model (RAM) of pathogen airborne droplet trans-
mission. 

2.1. Eulerian CFD Model 
The governing equations of the Eulerian model for an unsteady incompressible flow 

include conservation of mass, momentum, and energy, as represented in Equations (1)–
(3): 𝜕𝑢𝜕𝑥 = 0 (1)𝐷𝑢𝐷𝑡 = − 1𝜌 𝜕𝑃𝜕𝑥 + 𝜗𝛻 𝑢 + 𝐹  (2)𝜌𝐷𝑒𝐷𝑡 = −𝑃 𝜕𝑢𝜕𝑥 + 𝜏 𝜕𝑢𝜕𝑥 + 𝜕𝜕𝑥 𝜅 𝜕𝑇𝜕𝑥  (3)

where x, u, 𝜌, 𝜗, P, and F represent direction, velocity, density, kinematic viscosity, pres-
sure, and body force, respectively; D denotes the material derivate; and e and T represent 
the internal energy and temperature of the flow, respectively. The simulations also con-
sider the buoyancy force. 

Furthermore, the realizable k-epsilon model was used to solve the turbulence inside 
the flow field. 

The main simulations, regardless of the number of droplets and the droplet distribu-
tions for sneeze and cough events, included energy equations in the droplet phase as well. 
While the transport of the discrete phase (droplets) was solved using a Lagrangian ap-
proach, the realizable k-epsilon turbulence model was employed for simulation of the 
continuous phase (air). 

2.2. Lagrangian Discrete Phase Model 
The respiratory droplets were modeled as Lagrangian particles [21] using the com-

mercial CFD solver of Simcenter STAR-CCM+, where the conservation equations of mass, 
momentum, and energy of the discrete phase are derived for each droplet in a Lagrangian 
form to calculate their trajectories: = 𝐹 (𝑢 − 𝑢 ) + 𝑔 ( ) + 𝐹  , (4)

where i symbolizes the coordinate direction (i=x, y or z), subscript p represents particles, 𝐹  
is the force per unit particle mass (acceleration), and the term 𝐹 𝑢 − 𝑢  represents the 
drag force (force per unit particle mass) calculated as: 𝐹 =   , (5)

where 𝜇 is the molecular dynamic viscosity of the fluid, and  𝑑  is the particle diameter. 𝑅𝑒 is the particle Reynolds number, given as follows: 𝑅𝑒 = 𝜌(𝑢 − 𝑢 )𝑑 /𝜇 (6)

Figure 1. The framework of the risk assessment model (RAM) of pathogen airborne droplet transmission.

2.1. Eulerian CFD Model

The governing equations of the Eulerian model for an unsteady incompressible flow
include conservation of mass, momentum, and energy, as represented in Equations (1)–(3):

∂ui
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where x, u, ρ, ϑ, P, and F represent direction, velocity, density, kinematic viscosity, pressure,
and body force, respectively; D denotes the material derivate; and e and T represent the
internal energy and temperature of the flow, respectively. The simulations also consider
the buoyancy force.

Furthermore, the realizable k-epsilon model was used to solve the turbulence inside
the flow field.

The main simulations, regardless of the number of droplets and the droplet distri-
butions for sneeze and cough events, included energy equations in the droplet phase as
well. While the transport of the discrete phase (droplets) was solved using a Lagrangian
approach, the realizable k-epsilon turbulence model was employed for simulation of the
continuous phase (air).

2.2. Lagrangian Discrete Phase Model

The respiratory droplets were modeled as Lagrangian particles [21] using the com-
mercial CFD solver of Simcenter STAR-CCM+, where the conservation equations of mass,
momentum, and energy of the discrete phase are derived for each droplet in a Lagrangian
form to calculate their trajectories:

dup

dt
= FD

(
u− up

)
+ gi

(
ρp − ρ

)
ρp

+ Fi , (4)

where i symbolizes the coordinate direction (i = x, y or z), subscript p represents particles,
Fi is the force per unit particle mass (acceleration), and the term FD

(
u− up

)
represents the

drag force (force per unit particle mass) calculated as:

FD =
18µ

ρpd2
p

CD Re
24

, (5)

where µ is the molecular dynamic viscosity of the fluid, and dp is the particle diameter. Re
is the particle Reynolds number, given as follows:

Re = ρ
(
u− up

)
dp/µ (6)

In the present study, the respiratory droplets released from the human mouth are
considered as a discrete phase dispersed and carried out with the background airflow of the
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respiratory air jet. If the dispersed phase is volatile, soluble, or reactive, then mass transfer
occurs between the phases accompanied by an inter-phase heat transfer. Hence, heat
transfer can take place because of the inter-phase temperature differences. The inter-phase
mass transfer causes a size change in the dispersed material particles as described in the
following sections.

While collision between particles [28,29] is the main source of energy transfer in
many two-phase flows—for instance, granular flows [30–32]—past studies showed that
collision and break-up of respiratory droplets can be safely skipped when simulations
aim at characterizing the flow over a large distance and a long time [33,34]. Inter-droplet
interactions such as collision [28,31,35] or agglomeration are not considered because of the
low concentration of the discrete phase as well as the rapid evaporation of released droplets,
which drastically reduces the size of the droplets in a very short time and consequently
reduces the chance of any interactions between the droplets.

2.3. Particle Mass Balance

The conservation of the mass of particles can be expressed as follows:

dmp

dt
=

.
mp , (7)

where mp denotes the mass of the particle, and
.

mp represents the rate of mass transfer from
the particle. The latter has a non-zero value due to the evaporation process.

2.4. Droplet Evaporation

In the case of internally homogeneous droplets having a single liquid, such as a
chemical species, the rate of change of droplet mass due to quasi-steady evaporation can
be formulated as follows:

.
mp = −g∗As ln(1 + B), (8)

where g∗ represents the mass transfer conductance and B is known as the Spalding
transfer number.

Similarly, the multi-component droplet evaporation model assumes that droplets are
internally homogeneous, consisting of an ideal mixture of liquid components subject to
vaporization. Moreover, the model assumes inert components in both the droplet and the
gas. Regarding the evaporation of multi-component droplets,

.
mpi is defined as the rate of

change of mass of each transferred component due to quasi-steady evaporation:
.

mpi = −εig∗As ln(1 + B), (9)

where i is the index of each component in the mixture, and εi represents the fractional mass
transfer rate, for which the sum of all N components complies with the following equation:

∑
i=1..N

εi = 1.0 (10)

2.5. Particle Energy Balance

By considering small-sized droplets and assuming that the particles are internally
homogenous (i.e., low Biot number (<0.1)), the conservation of energy can be derived
as follows:

mpCp
dTp

dt
= Qt + Qrad + Qs , (11)

where Qt is the rate of convective heat transfer to the particle from the continuous phase,
Qrad represents the rate of radiation heat transfer, and Qs is related to other heat sources.
In this study, radiative heat transfer is considered negligible.

2.6. CFD Model Setup

The computational domain was a 3.5 × 3.5 × 6 m room (Figure 2a). The dimensions
of the domain were selected after a series of preliminary simulations ensuring the ad-
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equacy of the room dimensions for analysis of the airborne behavior of droplets when
the exhalation jet’s normalized velocity reaches the value of 0.001. It should be noted
that since the measured velocities in all the sneeze or cough experiments depend on the
patients’ characteristics (sex, age, weight, body type, etc.), a velocity profile normalized
with respect to the sneeze or cough velocity at the location of the mouth can provide a
better non-dimensional tool for comparison. In the present research, the exhalation jet
velocity at the inlet was used to normalize the velocity field inside the domain. These
simulations were performed for different droplet sizes from 0.1 to 100 µm. The results of
the simulations, conducted within a wide time span, implied that after a long period of
simulations, droplets with a diameter of 10 µm or below had become airborne, traveling up
to 6 m from the emitting surface with a terminal velocity below 0.02 m·s−1, while droplets
with a diameter of 100 µm regimented at much smaller distances of about 1 m from the jet
inlet. The size of the final domain together with the velocity contour of the simulated air
jet is presented in Figure 2b.
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The respiratory droplets were released from a circular area located at the center of
the 3.5 × 3.5 m wall with a diameter of nearly 1.2 cm, which aligned with the reported
values in the literature [29–31]. The front boundary against the source was an outlet and
the rest of the surfaces were considered as solid walls with no-slip boundary conditions
(see Table 1). The Lagrangian droplets (discrete phase) were assumed to have spherical
shapes and were initially composed of 3% non-evaporative and 97% evaporative mass
fractions. The non-volatile fraction had a density of 1280.8 kg·m−3 and a specific heat
transfer of 2404.6 J·Kg−1·K−1 at the standard state temperature of 298.15 K. On the contrary,
the evaporative fraction was assumed to have material properties equal to those of water
(density of 997.6 kg·m−3, specific heat transfer of 4181.7 J·Kg−1·K−1 at the same standard
state temperature). In addition, the saturation pressure of the evaporative fraction was set
to 3170.3 Pa. Having assumed the multi-component droplets, the mass-weighted mixture
was used for the calculation of the density and specific heat of each droplet. In addition,
regarding the boundary condition for each droplet’s outer surface, it was assumed that the
droplets would stick to any wall surface of the room as they reached them. The Lagrangian
model also included the Schiller–Naumann drag force coefficients and pressure gradient
force to accurately simulate the droplets’ trajectories.

Table 1. The boundary conditions of the validation case.

Boundary Type Boundary Condition Boundary Value Air Density Air Dynamic
Viscosity

Inlet Velocity inlet 20 m·s−1
1.184 kg·m−3 1.855 × 10−5 Pa·sOutlet Outlet pressure 1 bar

Walls No-slip - -

The background air was simulated as a non-reactive ideal gas, composed of stan-
dard air and some amount of water vapor depending on the relative humidity of each
case. The dynamic viscosity, specific heat, and molecular weight of air were assumed
to be 1.855 × 10−5 Pa·s, 1003.6 J·Kg−1·K−1, and 28.97 Kg·Kmol−1, respectively. Like the
Lagrangian model, the weighted mixture method for the Eulerian model was employed
for the calculation of the air–water mixture. With all the previous settings, the cases were
solved on a computer cluster at Sogang University using 24 computational cores with
Xeon(R) 2.20 GHz CPUs. The typical simulation time for 60 s was about 15 h.

A mesh sensitivity analysis was performed to ensure the mesh independence of the
CFD results and for obtaining the optimal computational grid to be used for modeling
various cases. For this part, the flow velocity in the far-field zone (i.e., the distance where
y/d0 > 20 from the mouth) was investigated, and the normalized results were validated
against the experimental results [36]. The inlet velocity had spanwise (along with discharge
hole radii) as well as streamwise (centerline) velocity profiles with the maximum value
of 20 m·s−1. It should be noted that the validation case of the Eulerian model was in the
isothermal condition. Different mesh resolutions with hexahedral cells were investigated,
ranging from 189 k cells to 4.5 M cells, as shown in Figure 2a. The optimal mesh, 189k-
HYBcase, has minimum and maximum cell sizes of 0.06 and 0.2 m, respectively, while its
surface growth rate is 2.0. This results in a dense mesh of between 0.78 mm (minimum)
near the mouth and 0.8 m (maximum) at the central part of the domain. To ensure the
accuracy of the results near the walls, the “All Yplus” option was activated, enabling
an automatic blending function between low and high Reynolds number wall treatment
methods for the calculation of turbulence qualities, such as dissipation, production, and
stress tensor [37]. The summary of the applied boundary conditions to validate the Eulerian
model is presented in Table 1.

The CFD solver used a double-precision finite volume approach with a second-order
discretization scheme. It also contained an energy coupling method (required for evapora-
tion) with implicit integration.
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To assess the accuracy of the centerline velocity, four validation metrics, including the
factor of two observations (FAC2), hit rate (q), fractional bias (FB), and normalized mean
square error (NMSE), were calculated. These metrics are defined as follows:

FAC2 =
1
n

n

∑
i=1

Ni (12)

where Ni is calculated as follows:

Ni =


1 f or 0.5 ≤ Pi

Qi
≤ 2

1 f or|Qi| ≤Wand|Pi| ≤W
0 otherwise

q =
1
n

n

∑
i=1

Ni (13)

with

Ni =


1 f or

∣∣∣ Pi−Qi
Qi

∣∣∣ ≤ D
1 f or|Qi − Pi| ≤W
0 otherwise

FB =
〈Q〉 − 〈P〉

0.5(〈Q〉+ 〈P〉) (14)

NMSE =
〈(P−Q) 2〉
〈Q〉〈P〉 (15)

where Qi and Pi are the measured and computed values of a given variable, respectively;
n is the number of available data points, and W and D are the relative uncertainty and
repeatability of the calculated data and their values for velocity assessments are 0.05 and
0.25, respectively. The angular brackets of the FB and NMSE equations represent the
average of all measured points [33,34]. Table 2 shows the results of the validation metrics
calculated at the centerline velocity diagrams of Figure 3.

Table 2. Validation metrics for different mesh sizes.

Mesh Configuration FAC2 q FB NMSE

Ideal Values 1 1 0 0

4.5 M mesh 1 0.875 −0.032 0.012

627 k mesh 1 1 0.074 0.017

189 k mesh 1 0.875 0.092 0.042

189 k-HYB mesh 1 0.875 −0.030 0.027

3.7 M mesh 1 0.875 −0.040 0.020

According to Table 2, while FAC2 and q give nearly the same values for different mesh
sizes, the FB and NMSE values exhibit more sensitivity to the selected computational grids.
For instance, applying a hybrid strategy to a mesh size of 189 k considerably improves the
FB and NMSE values from 0.092 and 0.042 to −0.03 and 0.027, respectively, which are close
to those of the case with 3.7 M cells. This implies that 189k-HYB is an optimal choice for
conducting the simulations, providing the best accuracy while minimizing the CPU cost.
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3. Risk Assessment Method (RAM)

The risk of airborne disease transmission at each point of a domain is related to
the summation of the virus-laden droplets passing through the point within a specific
period. Thus, the time-dependent spatial risk of infection can be estimated by the temporal
accumulative number of droplets passing through each point in the space. Therefore, in
this section, an algorithm is developed to count the accumulated number of droplets at
each location downstream of the released respiratory jet.

Since exhaled flows contain different droplet sizes, from sub-micron to hundreds of
microns, the CFD solver may produce a table of information for each droplet size class at
every time step, including position and velocity components as well as the computational
grid coordinates. The length of this table depends on the number of defined droplet parcels.
The algorithm defines multiple vertical planes at certain distances from the mouth (Zt),
as is shown in Figure 4. The planes are then divided into multiple facial cells. In the next
step, the algorithm counts the number of droplets passing through each cell at each time
step. According to Figure 4, calculation of the accumulated number of droplets in the field
needs a separate 3D meshing with a coarser resolution than that of the CFD model, which
is called a “secondary mesh”. Accordingly, the ∆L and ∆Z shown in Figure 4 present the
resolution of the secondary mesh.

After constructing the secondary mesh, by using the transient CFD data for the
simulation period of 0 to t1, the proposed algorithm calculates the accumulated number
of droplets passing through each of the facial cells within the secondary mesh. As shown
in Figure 4, the droplets that pass the plane Zt at ti (while not having reached it at ti−1)
should be identified and counted for each vertical plane of the secondary mesh. Here, ti
and ti−1 represent two consecutive times at which the CFD transient data are collected. For
this purpose, the droplets’ positions at the previous time step are approximated using the
following equation:

Zti−1 = Zti −Vz,ti × dt (16)

where Zti and Zti−1 are the positions of each droplet at ti and ti−1 in the Z-direction shown
in Figure 4, respectively, which are obtained from CFD results; Vz,ti is the z component of
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each droplet’s velocity vector at ti, and dt is the CFD solution time step. In other words, Zti

and Zti−1 are the instantaneous positions of droplets according to the CFD solver time step
(dt). Zti is known and Zti−1 is predicted by Equation (16).
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Assuming that dt is small enough, Vz,ti can be assumed to be constant from ti−1 to ti.
By approximation of the Z location of each droplet in the previous time step (Zti−1 ) and its
current location (Zti ), the droplets passing through the plane Zt between ti−1 and ti can
be identified.

dt∗ =
(Zti − Zt)

VZ,ti

(17)

In Equation (17), dt∗ is the time required for each droplet to pass the plane that is
positioned at Zt, which is different from the CFD solver dt. Therefore, Zt possesses only
discrete values depending on the resolution of the secondary mesh. Xt and Yt are in-plane
estimated positions of droplets, while Xti and Yti are their instantaneous positions inside
the domain.

In the next step, the algorithm finds the Xt and Yt coordinates of the point in the plane
Zt where the droplet crossed the plane Zt. The X and Y positions of each droplet passing
through the plane Zt can be determined as follows:

Xt = Xti −VX,ti × dt∗ (18)

Yt = Yti −VY,ti × dt∗ (19)

where Xti and Yti , represent the position and VX,ti and VY,ti are the velocity components of
the droplets obtained from the transient CFD output data file at ti in X and Y directions.
The graphical representation of the abovementioned procedure for the RAM is presented
as a flowchart in Figure 5. A computer program code was written in MATLAB software for
post-processing of the CFD simulations based on this flowchart.
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In fact, according to Figure 5, Zti−1 is compared with Zt at each time step to see if it
passes the plane Zt within dt. If yes, Equation (17) is used to estimate the time required
for that (i.e., dt*). Then, the calculated dt* is applied to calculate the in-plane positions of
droplets (Xt and Yt) using Equations (18) and (19).

By following this procedure, one can understand how many droplets passed through
different facial cells in a certain plane Zt from ti−1 to ti. By repeating this process for all the
time steps between the beginning of a respiratory event CFD simulation and an arbitrary
time, the temporal accumulated number of droplets passing through different facial cells
can be resolved. This generates droplet number contours similar to those schematically
shown in Figure 4. Eventually, following a selected clinical threshold for the minimum
number of droplets in an epidemic model (here, it is 100 droplets [27]), it is possible to
perform a risk assessment of safe distances. Therefore, only regions with an accumulated
number of passing droplets higher than 100 are considered risky areas.

4. Case Studies

Different exhalation activities are modeled using boundary conditions describ-
ing pathogen bio-sources, which are referred to in several related clinical research
works [35,38,39]. This information includes the temporal velocity profile, flow rate,
and distribution of droplet size in different modes of respiratory events, namely cough,
and sneeze. Since respiratory events are modeled as exhaled droplets that immediately
evaporate when they are discharged to the environment, the temperature and relative
humidity of the space can deeply influence the evaporation and thus the dispersion pattern
of the droplets. Therefore, droplets’ velocity, the temperature and relative humidity of
the space for some sample case studies are introduced in Table 3. These parameters were
selected to represent different spreading patterns. It should be noted that in these cases,
the background velocity of the target environment is not considered. The CFD results of
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the case studies were then processed using the novel proposed risk assessment algorithm.
It should be noted that the exhalation jet temperature of all the following cases was set as
37 ◦C. According to the reported velocity ranges in the literature [36,40], different scenarios
were defined as shown in Table 3 to represent a range of respiratory events to evaluate the
performance of the proposed RAM. Moreover, the droplet number and size distribution of
the scenarios were adapted from experimental studies [36,37].

Table 3. Characteristics of the defined exhalation scenarios.

Case
Number

Exhalation
Mode

Exhalation Jet Maximum
Velocity (m·s−1) Temperature (◦C) Relative

Humidity (%)

1 Breathing 3 43 28

2 Cough 11 2 64
3 14 18 80

4
Sneeze

22 11 19
5 38 16 55
6 50 29 50

As mentioned earlier, the temperature and relative humidity of the environment
has an important influence on the spread pattern and consequently the propagation of
infective pathogens. Thus, investigating the impact of these environmental parameters
on the accumulative distribution of droplets and, consequently, the high-risk zone will
demonstrate one notable application of the proposed prediction method. For this purpose,
three sample cough and sneeze cases were defined to demonstrate the respective impacts
of the temperature and relative humidity of the environment, while keeping the other
parameters unchanged. Table 4 illustrates the characteristics of these exhalation activities.
Table 5 includes experimental data regarding the number and distribution of exhaled
droplets during different exhalation activities.

Table 4. Characteristics of the cough and sneeze cases for sensitivity investigations.

Case
Number

Exhalation
Mode

Exhalation Jet Maximum
Velocity (m·s−1) Temperature (◦C) Relative

Humidity (%)

7
Cough

14 15 50
8 14 22 50
9 14 29 50

10
Sneeze

18 29 20
11 18 29 50
12 18 29 80

Table 5. Characteristics of the cough and sneeze cases for sensitivity investigations [41,42].

Size Range Size Class/Mean DNC of Speaking DNC of Coughing DNC of Sneezing
2–4 3 4.59 86 0
4–8 6 66.21 1187 7706.95

8–16 12 22.23 444 23,491.91
16–24 20 11.33 144 26,203.62
24–32 28 7.87 54 25,689.82
32–40 36 4.32 50 24,933.4
40–50 45 4.47 41 24,176.97
50–75 62.5 4.57 43 58,344.43

75–100 87.5 3.44 30 33,054.23
100–125 112.5 4.52 36 41,703.14
125–150 137.5 4.31 34 32,540.44
150–200 175 4.52 93 41,588.96
200–250 225 3.85 53 44,129.41
250–500 375 3.45 44 179,257.9
500–1000 750 1.11 30 193,444.3

Sum 150.8 2368 756,265.5
DNC = Droplet Number Concentration.
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5. Results

In this section, the performance of the presented RAM is shown in the estimation
of the droplets’ accumulation and spread patterns. Initially, a post-processing procedure
was conducted over the CFD data to generate small-size output files imported from the
Lagrangian CFD model. It is especially helpful in studies that require an excessive CFD
run time. These studies can be focused on either finding a trend for the spread of droplets
or performing sensitivity analysis.

5.1. Grid Independence of Risk Assessment Model

Reliable prediction of the accumulated number of droplets in the airflow field must
be independent of the size of the secondary mesh (i.e., ∆L and ∆Z). To assure this inde-
pendence, the impact of changing ∆L and ∆Z was studied separately in a cough and a
sneeze scenario. For both events, ∆Z was assigned to be 0.1 m, and the results of the risk
assessment were calculated for ∆L values of 0.01, 0.02, and 0.05 m. The calculated spread
lengths were then compared to assess the mesh independence of ∆L. This comparison is
depicted in Figure A1a,b, which shows the normalized accumulated number of droplets
at t = 80 s. These figures confirm the mesh independence of ∆L, as the changes seen in
different meshes are negligible.

The other important parameter of the secondary mesh is the distance between Z-
constant planes (∆Z). To investigate this parameter, for a constant value of ∆L = 0.02 m, the
results of three different ∆Z values of 0.1, 0.2, and 0.5 m were examined for two respiratory
events of cough and sneeze. As seen in Figure A2, the changes in predictions between ∆Z
values of 0.1 and 0.2 m are quite small, whereas there is a considerable discrepancy when
∆Z is 0.5 m. Hence, ∆Z was set as 0.1 m for producing the rest of the results in this paper.

5.2. Spreading Pattern of Respiratory Jets

The proposed RAM can be used to estimate the horizontal and vertical spreading
distances of the temporal accumulated risk factor for respiratory jets of various events
in different thermal conditions. Figure 6 illustrates a 2D representation of risky regions
with an accumulated number of droplets higher than 100 for the case studies defined in
Table 3 after 80 s. Output data of the CFD simulations were imported to the risk calculation
code to find accumulated droplet distributions as well as high-risk zones. For all the
introduced cases, it was assumed that both the infected person and susceptible subjects will
remain in the same environment during the intended exposure time. As seen in Figure 6,
different respiratory events can produce different spreading patterns in risky regions. The
obtained behavior of risky regions shows how the safety distance from an infected person
strongly depends on the respiratory event as well as the environmental conditions. For
instance, while the horizontal spread of pathogens in Cases 2 and 3, representing cough
events according to Table 3, will not be considered a threat to susceptible individuals,
the spreading behavior observed in Case 4, a sneeze event, is nearly horizontal and can
pose a serious risk to others within the 1.8-meter distance from the infected person. In
other words, a safe inter-person distance in Cases 2 and 3 can be as low as 0.5 m because
of the high tendency of these exhalation jets to rise upward. However, a quite different
trend is seen in Case 4. The vertical spread of the mentioned cases is also an important
parameter to consider when evaluating the risk factor. Higher values of vertical spread in
these cases can impose a health risk on ventilation systems, possibly through the ducts, and
therefore have a higher infection probability. The opposite behavior is observed in Case 1
with a downward vertical spread, which indicates a weak airborne dispersion of droplets.
Case 6 represents a sneeze event with a very high concentration of droplets ranging from
sub-micron to some hundreds of microns, which results in a thick cloud forming highly
contaminated space in front of the infected person. This behavior is quite different from
the low-width propagations of the other cases observed in Figure 6.
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5.3. Safe Distance Calculations

The numerical results of the CFD simulations can be post-processed to provide 3D
and 2D projections of the accumulated spread patterns for different exhalation activities.
Figure 7 illustrates the 2D and 3D representations of cough spread droplets. Although it is
possible to exploit 3D iso-surfaces of droplet counts (Figure 7a), 2D projections(Figure 7b),
are more informative and useful to build up a predictive model or perform different
sensitivity analyses. Three-dimensional representations of respiratory events also illustrate
the lateral propagation of droplets. This is especially important when the lateral safe
distance of a susceptible person from an infected person is intended. These 3D data can
be applied to build more sophisticated prediction tools, calculating a safe region instead
of a simple safe social distance as is the case in 2D investigations. For instance, these 3D
safe regions can be applied to spaces in which a relatively high concentration of people
is inevitable.

High-risk regions where the number of accumulated droplets is higher than a certain
limit can be easily identified with the present RAM. In this regard, when accumulated
droplet numbers are calculated throughout the target domain, only regions with a high
enough concentration of droplets will be considered as high-risk areas. This necessitates
setting a minimum infection dosage. A few medical research works have mentioned the
infection minimum dosage. Among them, the value of a minimum of 100 droplets was
reported by Karimzadeh et al. [27]. An illustrative example of applying this criterion is
presented in Figure 8. The contour image of Figure 8a shows the accumulated distribution
of droplets for a 60-s time span inside the target domain. This figure only shows the
position of all droplets exhaled during that 60 s. Distinct zones of airborne and falling
droplets can be evidently distinguished in this contour. However, risky zones cannot be
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identified. To find high-risk areas, one should find the regions with enough accumulated
droplets within the exposure time of 60 s. Hence, to turn this image into one that presents
high-risk areas, regions having accumulated droplet numbers less than the minimum
infection dosage should be filtered. Figure 8b, as a result, highlights the regions having the
minimum dosage (at least 100 droplets) within the simulation time. It can be observed that
the high-risk zone is not necessarily identical to the spatial position of the droplets in the
field. For instance, falling droplets seen in Figure 8a, due to their low concentrations in this
sample case, are not recognized in the risk zone picture. It should be noted again that what
refines Figure 8a to acquire Figure 8b is based on the minimum dosage threshold, which
can be changed with respect to the assumed number.
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5.4. Instantaneous and Accumulative Concentrations

Unsteady CFD simulation results provide useful information about the position and
velocity of each droplet at different time steps. However, they cannot directly confer an
insight of risk assessment for the understanding of safe social distances. This is because
the risk and infection analyses require the measurement of the overall dosage received by a
new host, which needs calculation of the accumulated number of droplets during a definite
time span. In other words, instantaneous images of flow field droplet concentrations do
not contain any vision of risky zones or safe social distances.
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Figures 9 and 10 were generated through post-processing of CFD simulations to
provide a comparison between instantaneous and accumulative distributions of the number
of droplets inside the computational domain for a cough and a sneeze event, respectively.
According to Figure 9, at t = 20 s, a region with falling droplets within half a meter from the
source can be observed in instantaneous mode, while this is not the case in its accumulated
contour. The reason is that the accumulative calculations detect the droplets passing
through vertical Z-constant planes. These droplets, however, can barely pass through these
planes, so they are not captured. Since they have no contribution to the risk factor, this will
not influence the accuracy of the outlined RAM predictions. A similar trend can be seen in
Figure 10, which exhibits a sneeze case.

According to Figure 10 (bottom), falling droplets observed at time-resolved contours
are not seen in accumulated contours at the top. The reason is that free-falling droplets,
even with high concentrations, cannot be captured using the RAM. This, however, does
not cause any considerable error in safe social distance calculations since they have no
contribution in the spread patterns of airborne pathogens.

As seen in Figures 9 and 10, falling droplets are not detected by the RAM. However,
this is not an indication of any error in the calculation of safe social distance. The reason
is that if falling continues, the falling droplets leave the domain with no horizontal prop-
agation and, consequently, no contribution to the airborne spread of pathogens. On the
other hand, if falling droplets become airborne because of evaporation, their impact on
the horizontal spreading of pathogens will be captured by RAM as soon as they gain a
horizontal velocity component.
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5.5. Time History of Spreading Patterns

Most exhalation activities such as coughing, sneezing, and even breathing are normally
associated with temporal discharge fluxes of viral loads. This implies that in these cases,
a safe distance is closely tied with the exposure time. Hence, the determination of a
safe distance in such cases strongly depends on the exposure time for the new host; the
shorter the exposure time, the smaller the social distance will be. On the other hand, most
predictive tools rely on steady flow and fully mixing conditions, which is not the case for
short-duration activities such as sneezing and coughing. These issues are addressed by
the present RAM, which brings more flexibility to the conventional definition of social
distancing measures. Figure 11 shows the variation of high-risk regions with time for Case
4, where the role of exposure time in expanding the risky region can be seen. The figure
shows that the safe distance varies from almost 0.5 to nearly 1.8 m as the exposure time
rises from 10 to 80 s. Hence, depending on the contact time between an infected person
and a susceptible one, the safe distance will be flexible to some extent.
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temperature = 11 ◦C, RH = 19%).

5.6. Spreading Pattern Cross-Sections

Although the results presented so far are 2D representations of accumulated droplets
spreading in the X-Z plane, further 3D representation of the results expressing a more
sophisticated description of safe social distance is needed. Figure 12 shows the distribution
of accumulated droplets in Z-constant planes (X-Y planes) at different distances from the
mouth, varying from Z = 0.1 to 1 m. In this figure, the accumulated distribution of the
falling heavy droplets, as well as the small airborne ones, can be distinguished at each
plane. Figure 12 also provides useful information on the lateral spread shape and size of
droplets at different distances from the infected person. It shows that if an infected person
coughs or sneezes, due to the droplet dispersion and scattering, a lateral area of up to
1 m will be highly contaminated and should be considered as a risky zone as well. This is
especially crucial when the population of occupants in the target space is relatively large,
and different arrangements of people need to be assessed to find the lowest infection risks.
The occupied area of Z-constant planes can be used to further develop the concept of social
risky distance in a risky region.
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5.7. Sensitivity of Spreading to Environmental Conditions

The sensitivity of the spreading pattern to ambient temperature was investigated
through cough cases as per Table 4. Figure 13 represents the variation of high-risk zones
caused by cough cases 7 to 9 after 60 s.
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According to this figure, ambient temperature has an important impact on the propa-
gation of risky regions. As the temperature difference between the exhaled droplets and
the environment rises, the upward propagation of droplets declines, and their tendency to
horizontally spread increases. Therefore, in this case, the social safe distance varies from
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0.5 to nearly 1.2 m after 60 s, when the ambient temperature changes from 15 to 29 ◦C. A
similar investigation was performed on the impact of the relative humidity on high-risk
zone patterns caused by a sneeze. For this, the CFD results of sneeze cases 10 to 12 as
per Table 4 were used to compute the accumulative distribution of exhaled droplets. The
results of the high-risk calculations are presented in Figure 14. These contours show how
the relative humidity of the environment can alter the propagation mechanism of droplets.
As the relative humidity increases from 20 to 80%, the airborne propagation of droplets
and, as a result, the airborne transmission of pathogens weaken, while falling drop regions
are intensified as a result of the droplet sizes used according to Table 5. Therefore, the
social safe distance risk of infection decreases. These investigations also imply that the
proposed RAM is sensitive to parameters defining exhalation activities and can be applied
to different parametric studies as well as for developing infection prediction tools.
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It is worth mentioning that when the ambient relative humidity is high, the evapora-
tion becomes slower, and hence, more droplets fall because of the gravitational force, thus
reducing the risky distance.

6. Concluding Remarks

A new assessment method has been presented to find the time-dependent accumu-
lative concentration of infectious exhaled droplets based on CFD simulations. The CFD
calculation results encompass the instantaneous position of droplets, while the infection
is associated with receiving a sufficient infective dosage during the exposure time, which
necessitates the calculation of the accumulated particles within an arbitrary time inter-
val. For this purpose, transient CFD output data files including the position and velocity
vectors of each released droplet are generated. By implementing a secondary mesh for
post-processing of the transient CFD data, temporospatial droplet trajectories can be traced
via a computational code. The CFD results of different respiratory events in terms of
exhaled jet maximum velocity as well as environmental conditions were applied to the
proposed framework to calculate droplets’ spreading lengths. The following remarks can
be concluded:

• The obtained results indicate that the proposed RAM method can successfully capture
different respiratory events. Hence, the length and height of spread as well as the
overall behavior of different exhalation jets can be studied using the proposed RAM.

• While the instantaneous CFD output data of droplets can barely provide any infor-
mation regarding risky and safe zones inside a domain, the proposed model can
represent the evolution of risky zones in time. Comparison of the instantaneous and
accumulated droplets indicated that most of the heavy falling particles do not pass
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through the Z-constant planes through the field, which is used in the accumulated
representation. Since these particles do not contribute to the dispersion of droplets
in the domain, this adds no error to the calculated spreading length and height of
airborne droplets.

• The proposed RAM can be used to derive safe social distances in terms of exposure
time. This is especially important in short-duration respiratory activities such as
coughing or sneezing in which considerable viral loads are released by an infected
person and the safe distance for susceptible persons depends on their exposure time.

• The calculated results confirm that the sensitivity of the predicted spreading patterns
to environmental temperature and relative humidity can be investigated by the pro-
posed RAM. According to selected sample cases, both parameters can influence the
propagation length and even the mechanism by which droplets are transmitted inside
the environment.

Finally, since this method is a 3D prediction model, it is possible to investigate the
cross-section of the spreading pattern of droplets through Z-constant planes. These data
can be used to define 3D risky regions. This will be the subject of our future work to add a
lateral dimension to risk evaluation and further improve the resolution of social distance
calculations. This will be particularly useful for spaces where a high density of people is
inevitable. Additionally, this code can be adapted to specify risky volumes, as opposed to
safe horizontal distances, including complex flow patterns caused by advection, buoyancy,
and gravitational settling of particles.

Among the restrictions of this research work, one can identify the insufficient clinical
data on exhalation activities as well as the infective dosage of COVID-19, which has a
crucial impact on safe social distance calculations. Another limitation of this work is that
the instantaneous position of droplets was approximated based on the available data of the
previous time step of the CFD calculations. If the time-dependent position of droplets on
each streamline is known, it would result in more precise predictions.

Future work can include an adaptation of this code to risky volumes, as opposed to
safe horizontal distance. With complex flow patterns caused by advection, buoyancy and
gravitational settling of particles, the risky environment can become complex. Perhaps the
entire 3D space around the infection source can be broken down to 20–50 volumes and the
risk in each volume can be calculated. In monitoring volumes, you would simply consider
the time integral of the number of droplets in each volume at any given time.
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Nomenclature

Parameter Unit Description
Cp J·(kg·K)−1 Heat capacity
F N Force
d m Diameter
g m·s−2 Gravity
u m·s−1 Velocity
P Pa Pressure
T K Temperature
t s Time
Re – Reynolds number
Greek
µ Pa·s Dynamic viscosity
ρ Kg·m−3 Density
ε – Fractional mass transfer
subscript
p Particle
D Drag
Abbreviations
NHS National Health Service
COVID-19 Coronavirus disease 2019
BMA British Medical Association
CFD Computational fluid dynamics
HVAC Heating, ventilation, and air conditioning
ADP Airborne pathogen droplet
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