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Abstract: Advances in proteome research have opened the gateway to understanding numerous
metabolic pathways and fundamental mechanisms involved in abiotic stress tolerance. In the present
study, the antioxidant capacity of four tomato genotypes i.e., Kashi Amrit, Kashi Anupam, EC-317-
6-1, and WIR-4360 was determined under drought stress to ascertain the scavenging potential for
reactive oxygen species (ROS). A significant increase in the superoxide dismutase (SOD), Ascorbate
peroxidase (APX), and catalase (CAT) activities in all the four genotypes under drought stress was
observed, which seemed to be associated with a protective role against ROS (p < 0.001). Based on
the antioxidant enzyme activities, a proteomic approach was applied to study differential protein
expression in two selected genotypes from different species i.e., EC-317-6-1 (Solanum pimpinellifolium)
and Kashi Amrit (Solanum lycopersicum) grown under irrigated, drought, and re-watering conditions.
To reveal the protein network regulated under these conditions, two-dimensional gel electrophoresis
was employed to identify and quantify the number of proteins in drought-sensitive (Kashi Amrit)
and tolerant (EC-317-6-1) genotypes. Matrix-assisted laser desorption/ionization-time of flight
analysis (MALDI-TOF) revealed a total of 453 spots after fine-tuning factors i.e., smoothness, saliency,
and minimum area that responded to drought. Out of 453 total spots, 93 spots were identified
in Kashi Amrit and 154 in EC-317-6-1 under irrigated conditions, whereas 4 spots were identified
in Kashi Amrit and 77 spots in EC-317-6-1 under drought conditions. Furthermore, differentially
expressed proteins were distinguished according to the fold change of their expression. Information
provided in this report will be useful for the selection of proteins or genes in analyzing or improving
drought tolerance in tomato cultivars. These findings may assist in the construction of a complete
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proteome database encompassing various divergent species which could be a valuable source for the
improvement of crops under drought-stress conditions in the future.

Keywords: antioxidants; drought stress; tomato; proteome; 2D gel electrophoresis; MALDI-TOF

1. Introduction

Tomato is a well-studied species belonging to the family Solanaceae, primarily because
of its short generation time, rudimentary diploid hereditary qualities, outstanding genetic
transformation methodology, and an immensely well-characterized genetic resource [1]. In
2015, Tomato was ranked 7th globally in terms of production which was approximately
1.64 billion tons on an area of nearly 4.8 million hectares [2]. In India, tomato is cultivated
on an 813 thousand hectares area with 21.2 million metric tons production [3]. Its con-
sumption, as well as production, is increasing because of its antioxidant and anti-cancerous
properties [4]. Tomato has been a model plant for molecular studies aiming at improving
fruit quality and stress tolerance to different abiotic stress factors [5,6].

Abiotic stresses caused by different environmental factors could negatively influence
crop growth and development. Crop plants respond to different abiotic stresses via vari-
ous modifications at morphological, cellular, physiological, biochemical, and molecular
levels. Among abiotic stress factors, drought is one of the major limiting factors for tomato
production that adversely affects its performance and threatens its productivity. Tomato
has been found to show limited tolerance against high temperature and drought stress [7]
and therefore is extremely sensitive to drought stress [8]. During drought stress, many
physiological and biochemical processes are disturbed [9]. An understanding of the multi-
tude of processes through which plants respond to drought stress has been taken up as a
challenge to improve drought tolerance in crops [10]. Adverse abiotic factors like extreme
temperatures, salinity, or drought cause significant biochemical and physiological changes.
Drought stress causes the excessive generation of reactive oxygen species (ROS), which
results in oxidative damage to biomolecules and ultimately leads to cell death [11,12]. Accu-
mulation of reactive oxygen species may be increased through different ways. For example,
reduction of CO2 fixation owing to closure of stomata results in reduced NADP+ regen-
eration via the Calvin cycle, which in integration with changes in photosystem activities
and photosynthetic transport capacity, causes higher electron leakage to O2 and conse-
quent increase in ROS production by chloroplast Mehler reaction, in contrast to unstressed
plants. Increased ROS levels result in lipid peroxidation, protein oxidation, enzymatic
activity inhibition, oxidative damage to RNA and DNA and finally cell death [13]. The
ROS scavenging machinery consisting of enzymatic and non-enzymatic antioxidants plays
a pivotal role in stress tolerance [14]. Various studies have reported that environmental
stresses induce an increase in the number of antioxidant phytochemicals and osmolytes
against oxidative stress [15–17]. Maintenance of elevated levels of antioxidants to detox-
ify the ROS is causally related to enhanced tolerance to abiotic stresses [14,18]. To cope
with environmental stresses, plants have developed strategies constituting of a complex
array of enzymatic (catalase, CAT; superoxide dismutase, SOD; glutathione reductase, GR;
ascorbate peroxidase, APX; monodehydroascorbate reductase, MDHAR: dehydroascorbate
reductase, DHAR; glutathione peroxidase, GPX; and glutathione-S- transferase, GST) and
non-enzymatic (ascorbic acid, ASH; glutathione, GSH; alkaloids, phenolic compounds,
non-protein amino acids, and α-tocopherols) antioxidative defense mechanisms that can
avoid cell damage by timely scavenging of harmful ROS, thereby, regulating intra-cellular
environment [14].

Proteome plays an important part in plant stress response both in the form of structural
proteins and proteins that regulate plant epigenome, transcriptome, and metabolome. This
observation comes to light because proteins are directly involved in the enhancement of
stress tolerance, being closer to phenotype than transcripts. The role of proteomics in study-
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ing the complex and dynamic plant proteomes depends on protein identification and its
modifications under environmental stresses to develop improved crop varieties [19]. In the
recent past, the evolution of high-throughput proteomics has enabled the research commu-
nity to study plant proteome responses to various stress factors in an exceedingly advanced
approach. Abiotic stresses induce profound changes on plant proteomes including relative
abundance of protein, post-transcriptional and post-translational modifications, protein–
protein interactions, and ultimately biological functions of proteins aimed at metabolic
adjustments to changing environment and an improvement to plant-stress tolerance [20].

Drought tolerance involves a myriad of physio-biochemical processes, the understand-
ing of which is critical for developing cultivars having improved resistance to drought
stress, thus making crops withstand dry spells in regions where the availability of water is
a critical factor. Furthermore, this will help in the identification of the new and emerging
sources for improved drought-stress resistance. In the recent study, we have evaluated the
four genotypes viz., Kashi Amrit, Kashi Anupam, EC-317-6-1, and WIR-4360 for biochemi-
cal as well as physiological studies under drought stress [21]. The performance of tomato
genotypes used in the study showed significant differences in all studied traits, suggesting
that they could be considered when selecting for drought tolerance. EC-317-6-171 and
WIR-4360 had good yield performance under deficit irrigation treatment. Moreover, results
indicate that biochemical and physiological parameters are more useful for the screening
of drought-tolerant tomato genotypes. The present investigation is designed to understand
the proteomic behavior of two different tomato genotypes differing in antioxidant potential
and drought-stress tolerance through 2D gel electrophoresis and mass spectrometry. The
proteomic insight may help in understanding the behavior of contrasting tomato genotypes
under drought stress by spotting the proteins, which may play an important role in drought
tolerance in the agroclimatic zone of Jammu and Kashmir.

2. Results
2.1. Antioxidant Enzyme Activities of Tomato Genotypes

To examine the detoxification of the oxidative damage, three important enzyme
activities and their native PAGE profiles were evaluated. The four tomato genotypes
showed differential antioxidant potential measured in terms of SOD, CAT, and APX activity
under drought stress. In comparison to irrigated conditions (control), all the four tomato
genotypes showed a significant increase in the activities of SOD, CAT, and APX during
drought conditions, which reflects their ROS homeostasis potential. EC-317-6-1 genotype
showed a substantial increase in all the three antioxidant enzymes viz. SOD (641.40%), CAT
(159.60%), and APX (83.48%), followed by WIR-4360 under water stress compared to plants
under irrigated conditions (p < 0.001). A minimum increase in SOD activity was found in
Kashi Anupam followed by Kashi Amritas compared to irrigated conditions. Furthermore,
a minimum increase in CAT and APX activities was found in Kashi Amrit followed by
Kashi Anupam in drought as compared to irrigated conditions (Figure 1). Native PAGE
was further used to check antioxidant enzyme activities, showing a similar trend to SOD,
CAT, and APX activities under irrigated, drought, and re-watering conditions (Figure 2).
Our findings indicate a substantial increase in comparative enzyme activity and native
PAGE expression of three antioxidant enzymes during drought stress in all the four tomato
genotypes taken under investigation.

Based on antioxidant enzyme activities, the proteome of two selected genotypes i.e.,
drought-tolerant (EC-317-6-1) and sensitive (Kashi Amrit) were analyzed for systematic
proteomic analysis under drought conditions (Figure 3). To investigate proteins in tomato
leaves under drought and re-watering conditions (Figure 4), 2D gel electrophoresis followed
by mass spectrometry was used. All the gels were then examined for differential spot
identification. As a result of fine-tuning the parameters such as smoothness, saliency, and
minimum area, 453 spots were identified, and out of them, 93 were identified in Kashi
Amrit and 154 in EC-317-6-1 in the control sample while 4 were identified in Kashi Amrit in
drought condition. In re-watering conditions, 125 spots were identified in Kashi Amrit and
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77 spots in EC-317-6-1 (Figure 5). Also, differential expression of proteins was observed
based on fold change of their expression.
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2.2. Identification and Functional Classification of Drought-Responsive Tomato Leaf Proteins

Further differentially expressed proteins in tomato genotypes were excised from 2-D
gels and evaluated with matrix-assisted laser desorption/ionization-time of flight analysis
(MALDI-TOF MS). Proteins identified by MS had functional annotations in the universal
protein data bank. These findings specify that most of the proteins identified in drought had
a substantial correlation to the defense response, oxidative stress, detoxification, protein
synthesis, energy, and carbon metabolism, and mitochondrial small heat shock proteins
(HSPs). These outcomes provide a summary of the proteins in tomato genotypes and
unique insight for acclimatization under drought stress. Using gene ontology (www.
geneontology.com) [22], 15 identified proteins from tomato leaves were grouped into
10 different functional clusters (Figure 6).

www.geneontology.com
www.geneontology.com
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2.2.1. Defense-Related Proteins

Stress receptive proteins function in the mitigation of various abiotic stresses. Six per-
cent of the proteins fall under this group and are linked to both abiotic and biotic stresses.
GRP-like proteins 2 are abiotic stress-related proteins and were identified in tomato leaves,
and the cell wall. GRPs like protein 2 are proposed to act as an agglutinating agent for the
deposition of constituents of the cell wall [23]. Besides acting as molecular chaperones in
protein processing, HSPs and luminal-binding proteins express a defensive role in plants.
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2.2.2. Oxidative Stress-Related Proteins

The presence of ~20% proteins viz. GPX, APX, and glycine-rich proteins correlate
that these proteins provide defense against oxidative stress. The ROS scavenging proteins
include GPX, peroxidase, and APX. Various investigations of ascorbate metabolism also
support our results [24].
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2.2.3. Protein Synthesis and Processing

Seven percent of proteins were found to be associated with protein synthesis and
processing out of the total known proteins such as chloroplast elongation factor and
polypeptide-associated complex subunit.

2.2.4. Photosynthesis-Related Proteins and Photosynthetic Metabolism

Seven percent of identified proteins viz. rubisco activase and rubisco small subunit
were noted to be associated with photosynthesis-related proteins. Earlier research also
described photosynthesis-associated proteins in spinach and 33 kDa precursor protein as
oxygen-evolving complex proteins [25].

2.2.5. Electron Transport

Four percent of the total proteins that were associated with electron transport include
putative ferredoxin NADP reductase. Ferredoxin (flavodoxin)-NADP(H) reductases are
universal flavoenzymes associated with providing NADPH or ferredoxin, flavodoxin,
adrenodoxin to redox-based metabolic pathways in plastids and mitochondria.

2.2.6. Energy and Carbon Metabolism

Only 7% of proteins were identified as energy and carbon metabolism associated
proteins under drought stress that included pyruvate dehydrogenase complex (PDC).

2.2.7. Detoxifying Enzyme

Thirteen percent of proteins among the total identified proteins viz. ferritin- and
osmotin-like proteins play a vital role in detoxification. Ferritin stores iron in a soluble,
non-toxic, easily available form while the iron is taken up in the ferrous form and stored
as ferric hydroxides when oxidized. It has been reported that osmotin or osmotin-like
proteins are accumulated in response to diverse stresses in plants.

2.2.8. Mitochondrial Small Heat Shock Protein

Seven percent of the total identified proteins constitute mitochondrial small heat
shock proteins. The heat shock response involves the temporal modification of metabolic
behavior in the cell characterized by the disruption of normal protein synthesis and a
sturdy expression of HSPs. MT-sHSPs plays a most important part in the heat tolerance of
plant mitochondria.

3. Discussion

In the present investigation, an attempt was made to identify the response of suscepti-
ble and drought-tolerant tomato genotypes under water deficit conditions by determining
antioxidant activity and using proteomics approaches for the identification of drought-
responsive proteins. A significant phenomenon of drought stress in crop plants is the
excess biosynthesis of various ROS such as superoxide anion, hydrogen peroxide, and hy-
droxyl radicals particularly in mitochondriaand chloroplast in cells [26,27] causing cellular
damage by triggering off a chain reaction. Results revealed that the antioxidant activities
(SOD, CAT, and APX) were up-regulated under severe drought stress in all four genotypes
(p < 0.001). Oxidative damage is a main cytotoxic effect of ROS damage. SOD plays a
significant role by facilitating the dismutation of superoxide radicals into H2O2 [28,29].
Similarly, CAT and APX play a major role in the conversion of toxic H2O2 in H2O [30,31].
APX is known to engage with glucose via the pentose phosphate shunt and reducing power
(NADPH) to yield the reduced form of GSH from its oxidized form (GSSG). We found
that the activities of APX and CAT were up-regulated markedly under drought stress. As
summarized in results, drought-sensitive species also activate their antioxidative system.
Though, results point out that not only the magnitude of activation could be decisive, but
also the activated enzymes. For example, the activation of the APX and CAT is stronger
in species tolerant to drought in contrast to their sensitive counterparts. Thus, our results
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propose that antioxidant machinery may provide a stratagem to engineer plant tolerance
to drought stress, which has been also reported by various previous investigations [32–34].

The proteomic analysis of tomato plants has identified various proteins (drought-
responsive) that are involved primarily in oxidative stress response, regulation of redox
status, protein synthesis, and processing, photosynthesis, and energy production. In
our study, mitochondrial heat shock proteins, GRP-like protein 2, and a luminal binding
protein (33 kDa precursor protein) were identified. Their upregulation suggests that they
play a key role in preventing denatured protein aggregation and in facilitating protein
refolding under stress conditions [35,36]. Proteomic studies highlighted specific changes in
components involved in transcription/translation machinery and/or in structural elements
regulating cytoplasm hydration [37]. A proteomic study of drought-stressed leaves of
S. lycopersicum identified several differentially accumulated proteins, with a majority in the
down-regulated fraction in both drought-tolerant genotypes. These belonged to categories
related to cellular metabolic activities and protein translation [38].

In a recent study, drought-induced changes were studied in Capsicum annum L. The
proteome analysis of apoplast showed that there was an increase in peroxidase and pheny-
lalanine ammonia-lyase activities with a concomitant reduction in CAT activity on the
other side, and LC-MS analysis showed that there was differential expression of proteins
under drought-induced stress conditions. Fourty-three stress-related protein species viz.
defensins, polygalacturonase inhibitor proteins, SOD, and peroxidases were found to be
up-regulated and 20 unique protein species were recognized in drought-treated plant
proteome [39]. Verma and co-workers performed a genome-wide analysis of abiotic-stress
responsive SOD gene family in B. juncea and B. rapa and found 29 and 18 SOD genes, re-
spectively. Using the available FPKM analysis SRA data, 14 and 10 abiotic stress-responsive
SOD genes were identified in B. rapa and B. juncea that could help in engineering the plant
abiotic stress resistance. This experiment was the first investigation to explain the SOD
gene family through genome-wide analysis in B. rapa and B. juncea and will further assist
in conducting future research in cloning and functional validation of SOD genes for crop
improvement in Brassica crop [40]. Various proteins involved in photosynthesis, redox
regulation, oxidative defense system, and chaperone have been characterized in sugar beet
leaves under water deficit conditions [41]. In Glycine max seedlings, the root proteome was
studied under drought stress. In their study of underwater deficit, a total of 45 proteins
were observed, two of them were new proteins, five proteins were found to be up-regulated
and 21 were down-regulated. However, after re-watering conditions, the concentration of
proteins was like the control levels [42]. An analogous trend was detected in the present
investigation. In T. aestivum plants, a total of 36 protein spots were detected, in which
12 proteins were up-regulated and 24 down-regulated under drought-stress conditions [43].
Using 2-DE, mass spectrometry, and MALDI-TOF, rice proteomics was investigated in a
study under water deficit and 18 proteins were detected, out of which 12 were up-regulated
and 12 down-regulated [44]. In barley plants, drought-induced effects in leaf proteome
were investigated by a group of researchers and a substantial decrement in yield and
biomass of plants was observed, but the photosynthetic potential was found to remain
unchanged [45]. The experimental analysis also strongly advocated that drought-stress
response induces changes at the proteomics level, thus enabling plants to modulate specific
adaptive mechanisms, which could differ in genotypes of drought-tolerant and drought-
sensitive plants, and similar results were also obtained by Yu and coworkers [46]. The
results here clearly revealed that drought-induced impairment in photosynthesis coupled
with an inhibited synthesis of proteins in tomato plants, which are in line with previous
studies [1,47]. These differential expression patterns of proteins in the tolerant and sensitive
tomato genotypes and the changes observed in drought-responsive proteins that were
positively regulated only in the tolerant genotype, could have the ability to be used as
molecular markers to screen and select drought-tolerant lines. Hence, this study reveals
that a comprehensive proteome database should be constructed which will cover all the
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proteomic information of the different species of tomato, which could provide a valuable
source for future research.

4. Materials and Methodology
4.1. Tomato Genotypes and Drought Stress Treatment

Four tomato genotypes i.e., Kashi Amrit, Kashi Anupam, EC-317-6-1 and WIR-4360
were selected in the present study based on the combined investigation of their morpholog-
ical, physiological and biochemical parameters, for investigating the antioxidant enzyme
activities under drought stress and to determine their antioxidant potential. The authentic
seeds of tomatoes were procured from IIVR, Varanasi, Uttar Pradesh, India. Healthy seeds
were sown in pots under controlled environmental conditions (temperature: 25 ◦C ± 2 and
relative humidity: 55% ± 5) at the School of Biotechnology, Sher-e-Kashmir University of
Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, India. The experi-
ment was built up of 26 pots with 6 pots per genotype in two complete sets (3 control and
3 stressed pots for each genotype) that were arranged according to a completely random-
ized design. The plants were then subjected to drought stress at the growth stage (45 days)
till the temporary wilting point (Figure 7), and irrigated plants were grown under normal
conditions for the same time. All plants were irrigated to field capacity (FC) until the
pre-flowering stage, four weeks after transplanting, after which water restriction treatment
was imposed. Half of the seedlings of each genotype (3 plants) were regularly watered as
control plants and the remaining half were submitted to drying and re-watering cycles.
Control plants were irrigated daily in the evening, with an amount of water to replenish
FC. In contrast, drought-stressed plants (ds) received no water for 10 days as soon as the
stomatal conductance reached values near zero and plants started wilting. Recovery of
plants was carried out by re-watering of pots to FC for 7 days. The second cycle of drought
stress was imposed by withholding irrigation for 6 days followed by a final re-watering.
Irrigation was given manually using a measuring cylinder. Careful attention was taken for
the homogenous application of irrigation water in the pots throughout the whole growing
period of the plants.
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normal, drought and rewatering conditions.

4.2. Estimation of Drought Tolerance Linked Biomarkers
4.2.1. Protein Extraction and Estimation

For antioxidant enzyme assays, frozen leaves were ground to a fine powder with
liquid nitrogen and extracted with ice-cold 0.1 M Tris-HCl buffer (pH 7.5) and 0.1% β-
mercaptoethanol (3:1 buffer volume/FW). The homogenate was centrifuged at 10,000× g
for 20 min, at 4 ◦C, and the supernatant was used for enzyme activity and protein determi-
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nations. Preparations for enzyme extraction and enzyme assay were carried out at 4 ◦C.
Estimation of proteins was done by Bradford’s method. The standard curve was prepared
with the bovine serum albumin standard solution and the absorbance was read at 480 nm.

4.2.2. Native Polyacrylamide Gel Electrophoresis (Native PAGE) and Activity Staining

Plant extracts containing equal amounts of protein were subjected to discontinuous
PAGE under non-denaturing and non-reducing conditions, as described by Laemmli [48].
Native PAGE of SOD, CAT and APX was performed on a 10% resolving gel and 5% stacking
gel at 140 V and 4 ◦C.

4.3. Antioxidant Isoenzyme Profiling
4.3.1. Superoxide Dismutase

After electrophoretic separation, the activity staining for SOD Isozyme was performed
as reported by Beauchamp and Fridovich [47]. Gels were incubated in 2.5 M NBT for 20 min
followed by incubation in 50 mM K-phosphate buffer (pH 7.8), containing 28 mM riboflavin
and 28 mM tetramethylethylenediamine (TEMED) in darkness for another 20 min, and
then exposed to a light box until the SOD activity bands became visible. The enzymes
appeared as colorless bands. The isoenzyme was identified and characterized by selective
inhibition with KCN or H2O2. The gel was incubated for 20 min in 50 mM K-phosphate
buffer, pH 7.8, containing either 3 mM KCN or 5 mM H2O2 before staining for activity.
Cu/Zn SODs were inhibited by KCN and H2O2; Fe SODs were resistant to KCN but were
inactivated by H2O2; Mn SODs were resistant to both inhibitors.

4.3.2. Ascorbate Peroxidase

After electrophoretic separation, the activity staining for APX isozyme was performed
by equilibration with 50 mM phosphate buffer (pH−7.5) containing 2.0 mM ascorbate for
30 min. The gel was incubated in 2.0 mM H2O2 for 30 min. in the dark. Gel was washed
with Buffer (pH−7.5). The reaction was continued for 10 min and stopped by a wash
with water.

4.3.3. Catalase

For the presence of CAT, the gel was washed with ddH2O and 50 mL solution con-
taining potassium ferric cyanide (250 mg) and FeCl2 (250 mg) was added to visualize
yellowish bands.

4.4. Protein Expression and Identification
4.4.1. Protein Sample Preparation for 2DE

One gram sample of fresh leaf from each genotype was ground in liquid N2 with
the help of pre-chilled mortar and pestle and 1 mL phosphate buffer (pH 6.8) was added
in Eppendorf tubes and mixed vigorously. The tubes were centrifuged at 14,000 rpm for
15 min at 4 ◦C, and the supernatant was collected in a fresh tube. An equal volume of
TCAAEB (Trichloroacetic acid/acetone extraction buffer) was added and stored at −20 ◦C
for 2 h. The suspension was again centrifuged at 10,000 rpm for 20 min at 4 ◦C. The pellet
obtained was washed with a wash buffer 4 times and once with pure acetone. Finally, the
pellet was dissolved in lysis buffer.

4.4.2. D Gel Electrophoresis

Loading of protein samples (250 µg of protein in 250 µL of rehydration buffer) con-
taining IPG buffer (0.5%, pH 3–10) was done in a re-swelling tray. Immobilized linear pH
gradient strips (pH 3–10, 13 cm, GE Healthcare, UK) were rehydrated overnight. IEF was
performed using an Ettan IPGPhor3 Isoelectric Focusing System (GE Healthcare, Chalfont
Saint Giles, UK). After carrying IEF, the strips were incubated for 15 min each in SDS equi-
libration buffer (6 M urea, 75 mM Tris HCl, pH 8.8, glycerol 29.3%, SDS 2%, BPB 0.002%)
first supplemented with DTT (10 mg mL−1) and then replaced with equilibration buffer
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containing IAA (25 mg mL−1). The equilibrated strips were then placed on a 12.5 percent
Tris-glycine SDS- PAGE (18 × 16 cm)19 and were sealed with a sealing solution (Laemmli
buffer, agarose (0.5%), and bromophenol blue (0.002%). 2D gel electrophoresis was carried
out using the Hoefer SE600 Ruby electrophoresis unit (GE Healthcare, Chalfont Saint Giles,
UK) at 30 mA gel−1 at 25 ◦C [49]. The gels were stained overnight with CBB solution [50]
and then destained with a solution containing 40% NaCl solution overnight.

4.4.3. Analysis of 2D Gels for Differential Spots Identification

All gels stained with 2D Coomassie Brilliant Blue (CBB stain) were scanned with
high-resolution GE Image Scanner III. Gel images (Mel format) were analyzed using Image
Master 2-D Platinum V.7.0 software (GE Healthcare, Chalfont Saint Giles, UK). Protein spots
were detected by fine-tuning smoothness, saliency, and minimum area to enhance optimal
clarity. To avoid erroneous interpretation, spots that were detected near the edges of the gel
were deleted manually. 2D gel match sets were grouped into classes by the task of analysis.
Protein extraction data of different treatments was obtained from technical replicates.

4.4.4. In-Gel Digestion and Protein Identification

Based on antioxidant potential, the proteome of two tomato genotypes i.e., drought-
tolerant (EC-317-6-1) and sensitive (Kashi Amrit) were studied for systematic proteomic
analysis under drought. The 30 noticeable differentially expressed spots were selected
manually and digested by trypsin for MS analysis. The excised protein spots were washed,
dehydrated with acetonitrile and ammonium bicarbonate, and then reduced by 15 mM
DTT at 60 ◦C for 1 h. Further, 100 mM isoamyl alcohol was used to alkylate gel slices in
dark for 15 min followed by rehydration with ammonium bicarbonate, and then drying-up
in a speed vacuum for 15 min. The dried gel slices were rehydrated using 15 µL of trypsin
(Sequencing grade, Promega, Madison, WI, USA) overnight at 37 ◦C. The supernatant was
taken for further extraction, and 20% of acetonitrile and 1% formic acid was added to the
remaining gel slice. The volume was reduced to 25–50 µL by drying the final supernatant in
speed vacuum and this final volume was analyzed on AB Sciex (Applied Biosciences, New
York, NY, USA) MALDI-TOF MS. During protein database searches performed on a local
Mascot (Matrix Science, London, UK) server, peptide tolerance of 150 ppm, fragment mass
tolerance of ±0.4 Da, and peptide charge of 1+ were selected. Significant hits were accepted
based on MASCOT probability analysis (p < 0.05) and finally, peptides were searched in
the NCBI database, the taxonomy of green plants.

4.5. Statistical Analysis

The statistical analysis was done by using GraphPad Prism 8.0.2 (263) software. All
the data were analyzed by two-way analysis of variance (ANOVA). The means comparison
and p-value Tukey test-HSD were used and considered the significance level at p < 0.001.

5. Conclusions

Our research report provided a systematic proteome analysis of tomato plants grown
under irrigated, drought, and re-watering conditions using drought-tolerant (EC-317-6-1
and WIR-4360) and susceptible (Kashi Amrit and Kashi Anupam) genotypes. Fifteen pro-
teins from tomato leaves were identified that responded to the drought-induced condition,
which were classified into 10 different groups based on their functional properties, and
are involved in an extensive array of cellular processes including defense/stress response,
photosynthesis, electron transport, protein synthesis, and various metabolic pathways.
Such proteins are present in different cellular components like mitochondria, cytoplasm,
and chloroplast. Our results provide evidence for differential response of the tolerant
genotypes compared to susceptible ones under drought stress. The tolerant genotypes
showed a relatively higher photosynthetic rate and a more robust anti-oxidative defense
system in comparison to the susceptible genotypes. Thus, it can be concluded that drought-
responsive proteins can be taken as potent agents to improve drought tolerance and will
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help in a better understanding of the molecular biology in tomatoes under drought stress.
Although our data suggest the activation of specific proteins in tomatoes under drought
stress, involvement and fine regulation of such proteins need to be further investigated
through the development and characterization of ad hoc designed plant mutants. Further,
these drought-tolerant genotypes can be used for future tomato improvement programs
for the agroecological climate in Jammu and Kashmir. Moreover, with the advancement in
science and introduction of high-throughput genomics and gene editing techniques such
CRISPR-Cas system, the candidate protein can be well characterized for crop enhance-
ment programs.
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