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Abstract: PM2.5 has attracted widespread attention since the public has become aware of it, while
attention to PM10 has started to wane. Considering the significance of PM10, this study takes PM10

as the research object and raises a significant question: when will the influence of PM10 on public
health end? To answer the abovementioned question, two promising research areas, i.e., air pollution
forecasting and health effects analysis, are employed, and a novel hybrid framework is developed
in this study, which consists of one effective model and one evaluation model. More specifically,
this study first introduces one advanced optimization algorithm and cycle prediction theory into the
grey forecasting model to develop an effective model for multistep forecasting of PM10, which can
achieve reasonable forecasting of PM10. Then, an evaluation model is designed to evaluate the health
effects and economic losses caused by PM10. Considering the significance of providing the future
impact of PM10 on public health, we extend our forecasting results to evaluate future changes in
health effects and economic losses based on our proposed health economic losses evaluation model.
Accordingly, policymakers can adjust current air pollution prevention plans and formulate new plans
according to the results of forecasting, evaluation and early-warning. Empirical research shows that
the developed framework is applicable in China and may become a promising technique to enrich
the current research and meet the requirements of air quality management and haze governance.

Keywords: hybrid framework; forecasting; evaluation and early-warning; grey model; artificial
intelligence optimization; health economic losses

1. Introduction

The development of China’s economy has brought about serious environmental
problems, especially smog pollution, which is common in many cities in China, has a
pernicious influence on public health and causes great economic losses and confusion in
society. With the joint efforts of government, enterprises and the community, air quality
can become much better and the influence of air pollution on public health can become
increasingly smaller. However, one particular question remains to be answered: When
will the influence of air pollution on public health end? PM2.5 has attracted wide attention
since it became known, while the attention paid to PM10 has started to wane.

PM10, which is considered as one of the most dangerous air pollutants, is defined
as particulate matter with an effective aerodynamic diameter of less than 10 µm [1]. As
we all know, particulate matter can infiltrate the respiratory system and cause respiratory
diseases [2]. In addition, there is a correlation between PM10 concentration levels and
the number of hospitalizations for lung disease and heart disease [3]. However, due to
natural resources, human activities, and chemical composition, some urban and rural areas
report PM10 concentrations above the standard level. Specially, what is more serious is that
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existing research shows that even if the concentration of PM10 in the air is small, it will
harm human health [4]. Therefore, in this context, to fill this research gap, this study takes
PM10 as the research object and attempts to answer the question—“When will the influence
of PM10 on public health end?”—using air pollution forecasting and health effects analysis,
which present an extremely challenging task and can be considered a valuable area for
further research.

To address air pollution forecasting issues, several models have been proposed to
forecast the main pollutant concentrations and air quality index. For example, Xu et al. [5]
proposed a hybrid system for forecasting daily concentrations of six air pollutants in three
cities in China. Li and Jin [6] developed a novel forecasting model, which was applied
in hourly pollutant concentration forecasting in Beijing, Tianjin, and Shijiazhuang, China.
Similarly, Zhu et al. [7] presented a two-step hybrid model for forecasting daily average
data of SO2 and NO2 in four cities in the region of central China. Liu et al. [8] devised
an improved forecasting algorithm for air pollution forecasting based on the ensemble
method. Hao and Tian [9] developed a multistep air quality forecasting model, which was
applied to seven air quality signals and validated for cities in China. Xu [10] developed a
model based on multiple kernel learning and weather data for forecasting air pollution
PM2.5 in Beijing. All the attempts indicate that hybrid models have become mainstream
in forecasting air pollution and can be considered a promising tool to solve air pollution
forecasting issues.

Furthermore, the review of the abovementioned studies shows that most of the pre-
vious studies are focused on air pollutant concentrations and air quality indices centered
on hourly and daily data, which can provide the public with early warning information
to protect them from the hazards of air pollution. However, the air quality management
department cannot adjust their policies according to the forecasting results of a few hours
or days in the future. Based on this, further studies focused on yearly data are a promising
research direction to provide more valuable information and references for the related
management department.

Although artificial intelligence models that exhibit better performance are widely used
in many fields, such as mid-short-term load forecasting [11] and agricultural commodity
futures prices prediction [12], they are not applicable to this study due to the limited data.
In general, many other forecasting models are also not applicable. To develop an effective
forecasting model, this study introduces the grey prediction theory into the forecasting
model. Specifically, the first-order one-variable grey model, called GM (1, 1), is an effective
forecasting model that can address forecasting issues with limited data and has been
widely employed in many forecasting fields [13]. It has three benefits, namely it is very
practical, has convenient operation, and high forecasting accuracy [14]. As a result, the
GM (1, 1) model was selected as the basic forecasting engine to solve the forecasting issues
with limited data in this paper. However, in addition, the individual grey model not only
ignores the significance of optimization but also only performs better in the first step and
performs worse as the forecasting horizon increases. Considering the promising potential
of hybrid forecasting models and to remedy these limitations, this study introduces one
advanced optimization algorithm and cycle prediction theory into the traditional GM (1, 1)
model to develop an effective model for multistep forecasting of PM10 that can successfully
obtain future changes in PM10, provide guidance for the public to avoid health damage
and economic loss, and help policymakers establish efficient policies and determine the
proper method to control air pollution.

Another significant issue is the influence of PM10 on public health. How much losses
have it caused in the past and future? To answer this question, the health economic losses
assessment model was designed to evaluate the health effects and economic losses of
pollution from PM10. Specifically, air pollution’s health effects and economic losses can
be evaluated from the following three aspects: losses from premature death due to illness,
medical expenses due to illness, and losses due to lost work. The developed evaluation
model not only helps the public understand the basic conditions of health effects and
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economic losses, but also provides the conditions for the public to avoid damaging health
and causing economic losses in the future. Most importantly, politicians can adjust their
policies for the future according to the results of the evaluation.

In summary, in this paper, by combining the newly proposed forecasting model and
evaluation model, a novel hybrid framework is developed for forecasting, evaluation, and
early-warning for the influence of PM10 on public health. To verify the effectiveness of the
developed hybrid framework of addressing air pollution issues and answering the research
question, the PM10 concentration data in Xi’an, China is employed in this case study.
Empirical research shows that the developed framework is applicable in China and may
become a promising technique to enrich the current research and meet the requirements of
air quality management and haze governance.

The remainder of this study is organized as follows. Section 2 develops the proposed
hybrid framework for forecasting, evaluation, and early-warning. Section 3 conducts an
empirical study. Discussion of the influence of the threshold value of PM10 is presented in
Section 4. Finally, Section 5 concludes this paper.

2. The Developed Hybrid Framework for Forecasting, Evaluation, and Early-Warning

In this section, the hybrid framework for forecasting, evaluation and early-warning
for the influence of PM10 on public health is developed, which consists of two parts: a
novel forecasting model for PM10 and a novel assessment model for health economic loss.

2.1. Part I: A Novel Forecasting Model for PM10
2.1.1. Grey Prediction Theory

Given a nonnegative time series X(0) =
{

x(0)(1), x(0)(2), . . . , x(0)(n)
}

, where n ≥ 4,
the detailed procedure of GM (1, 1) is summarized as follows:

Step 1: The first-order accumulated generating operator is employed to obtain the
1-order accumulation sequence X(1):

X(1) =
{

x(1)(1), x(1)(2), . . . , x(1)(n)
}

(1)

where

x(1)(k) =
k

∑
i=1

x(0)(i), k = 1, 2, . . . , n (2)

Step 2: The background value array Z(1) is

Z(1) =
{

z(1)(1), z(1)(2), . . . , z(1)(n)
}

(3)

where
z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k− 1), k = 2, 3, . . . , n (4)

Step 3: The GM (1, 1) model is

x(0)(k) + az(1)(k) = b, k = 1, 2, . . . , n (5)

where a is the developing coefficient and b is the grey action.
Step 4: The parameters â and b̂ can be obtained by the least-square algorithm and

written as: [
â
b̂

]
= (BT B)

−1
BTYn (6)

B =

 −z(1)(2) 1
...

...
−z(1)(n) 1

, Yn =

 x(0)(2)
...

x(0)(n)

 (7)



Atmosphere 2021, 12, 1020 4 of 20

Step 5: The winterization equation of Equation (5) can be written as Equation (8), and
its solution, i.e., the time response function, can be written as Equation (9).

dx(1)

dt
+ ax(1) = b (8)

x̂(1)(k) =

[
x(0)(1)− b̂

â

]
e−a(k−1) +

b̂
â

(9)

Step 6: The forecasting results can be obtained based on the inverse accumulated
generating operator, which can be written as

x̂(0)(k) =

{
x(0)(1), k = 1
x̂(1)(k)− x̂(1)(k− 1) = (1− eâ)(x(0)(1)− b̂

â )e
−a(k−1), k = 2, 3, . . . , n

(10)

2.1.2. Artificial Intelligence Optimization Arithmetic

The artificial intelligence optimization arithmetic called manta ray foraging optimiza-
tion (MRFO), proposed by Zhao et al. [15] in 2020, was developed based on chain foraging,
cyclone foraging, and somersault foraging strategies.

Definition 1. Chain Foraging. Manta rays can identify plankton’s position and swim to it. In the
foraging process, manta rays form a foraging chain by lining up head-to-tail. All individual manta
rays, except the first one, are updated according to the position of food and the ray in front of it,
while the first ray is only updated according to the position of the food. The chain foraging can be
described as follows:

Xd
i (t + 1) =

{
Xd

i (t) + r·(Xd
best(t)− Xd

i (t)) + α·(Xd
best(t)− Xd

i (t)) i = 1
Xd

i (t) + r·(Xd
i−1(t)− Xd

i (t)) + α·(Xd
best(t)− Xd

i (t)) i = 2, . . . , N
(11)

α = 2·r·
√
|log(r)| (12)

where Xd
i (t + 1) is the ith individual manta ray’s position in the dth dimension at time t, Xd

best(t)
is the position of the best solution thus far in the dth dimension at time t, r is a random vector in
[0, 1], and α is a weight coefficient.

Definition 2. Cyclone Foraging. In the cyclone foraging strategy, the individual manta ray not
only swims towards the food along a spiral path, but also follows the one in front of it. The cyclone
foraging can be described as follows:

Xd
i (t + 1) =

{
Xd

best(t) + r·(Xd
best(t)− Xd

i (t)) + β·(Xd
best(t)− Xd

i (t)) i = 1
Xd

best(t) + r·(Xd
i−1(t)− Xd

i (t)) + β·(Xd
best(t)− Xd

i (t)) i = 2, . . . , N
(13)

β = 2er1
T−t+1

T · sin(2πr1) (14)

where β is a weight coefficient, r1 is a random vector in [0, 1], and T is the maximum iteration
number.

In addition, by randomly defining a new position as the reference position, the indi-
vidual manta ray is forced to find a new position far from the current best position, which
is designed to improve the exploration and enable MRFO to perform an extensive global
search. The corresponding mathematical model can be described as follows:

Xd
i (t + 1) =

{
Xd

rand(t) + r·(Xd
rand(t)− Xd

i (t)) + β·(Xd
rand(t)− Xd

i (t)) i = 1

Xd
rand(t) + r·(Xd

i−1(t)− Xd
i (t)) + β·(Xd

rand(t)− Xd
i (t)) i = 2, . . . , N

(15)

Xd
rand = Lbd + r·(Ubd − Lbd) (16)
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where Xd
rand is the reference position randomly defined in the entire search space and Ubd and Lbd

are the upper and lower bounds in the dth dimension, respectively.

Definition 3. Somersault Foraging. In the somersault foraging strategy, the food’s position is
considered a pivot. The individual manta ray tends to swim to and from, and around the pivot
and somersault to a new position. As a result, they usually update their positions around the best
position thus far. The somersault foraging can be described as follows:

Xd
i (t + 1) = Xd

i (t) + S·(r2·Xd
best − r3·Xd

i (t)), i = 1, . . . , N (17)

where r2 and r3 are random numbers in [0, 1], and S is the somersault factor that is equal to 2,
which is defined to decide the manta rays’ somersault range.

Pseudocode of the MRFO Algorithm 1.

Algorithm 1 MRFO

Output:
X*— X with the best fitness

Parameters:
T—the maximum number of iterations
N—the number of population
Fi—the fitness of i-th manta ray
[Li, Ui] —the boundaries of the i-th variable
Xi—the position of i-th manta ray
t—the current iterations
d—the dimension of the optimized problem.

1 /*Set the basic parameters of MRFO algorithm. */
2 /*Initialize the manta ray Xi (i = 1, 2 . . . N) randomly. */
3 FOR EACH i: 1 ≤ i ≤ N DO
4 Calculate the fitness Fi for each manta ray
5 END FOR
6 /*Determine the best solution found so far X*. */
7 WHILE (t < IterMax) DO
8 FOR EACH i: 1 ≤ i ≤ N DO
9 IF rand < 0.5 DO
10 /* Cyclone foraging strategy. */
11 IF t/T > rand DO

12 Xd
i (t + 1) =

{
Xd

best(t) + r·(Xd
best(t)− Xd

i (t)) + β·(Xd
best(t)− Xd

i (t)) i = 1
Xd

best(t) + r·(Xd
i−1(t)− Xd

i (t)) + β·(Xd
best(t)− Xd

i (t)) i = 2, . . . , N

13 β = 2er1
T−t+1

T · sin(2πr1)
14 ELSE IF t/T ≤ rand DO
15 Xd

rand = Lbd + r·(Ubd − Lbd)

16 Xd
i (t + 1) =

{
Xd

rand(t) + r·(Xd
rand(t)− Xd

i (t)) + β·(Xd
rand(t)− Xd

i (t)) i = 1
Xd

rand(t) + r·(Xd
i−1(t)− Xd

i (t)) + β·(Xd
rand(t)− Xd

i (t)) i = 2, . . . , N
17 END IF
18 ELSE IF rand > 0.5 DO
19 /* Chain foraging strategy. */

20 Xd
i (t + 1) =

{
Xd

i (t) + r·(Xd
best(t)− Xd

i (t)) + α·(Xd
best(t)− Xd

i (t)) i = 1
Xd

i (t) + r·(Xd
i−1(t)− Xd

i (t)) + α·(Xd
best(t)− Xd

i (t)) i = 2, . . . , N
21 END IF
22 END FOR
23 /* Check and modify the new positions based on [Li, Ui]. */
24 /* Compute the fitness of each manta ray. */
25 IF F (Xi(t + 1)) < F (Xbest) DO
26 /* Update the position of Xbest, i.e., Xbest= Xi(t + 1). */
27 END IF
28 FOR EACH i: 1 ≤ i ≤ N DO
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Algorithm 1 Cont.

29 Xd
i (t + 1) = Xd

i (t) + S·(r2·Xd
best − r3·Xd

i (t)), i = 1, . . . , N
30 /* Check and modify the new positions based on [Li, Ui]. */
31 /* Compute the fitness of each manta ray. */
32 IF F (Xi(t+1)) < F (Xbest) DO
33 /* Update the position of Xbest, i.e., Xbest = Xi(t+1). */
34 END IF
35 ELSE FOR
36 T = t + 1
37 END WHILE
38 RETURN the best solution found so far X*

2.1.3. The GM (1, 1) Model Based on the Cycle Prediction Theory: C-GM (1, 1) Model

Although the traditional GM (1, 1) can directly provide multistep forecasting results,
it may only perform better in the first step and performs worse as the forecasting horizon
increases, which could ultimately lead to a poor forecasting performance. It is worth noting
that the most recent data can describe the latest development trend and study the object’s
characteristics [16]. As a result, this study introduces the cycle prediction theory into
the traditional GM (1, 1) model to develop an effective model for multistep forecasting,
which can capture the latest development trends and features of the studied object and
consequently improve the forecasting performance to a considerable extent. The detailed
procedure of the GM (1, 1) model based on cycle prediction theory, denoted as C-GM (1, 1)
model, is described as follows:

Step 1: The first-order accumulated generating operator is employed to obtain the
1-order accumulation sequence X(1) as shown in Equation (1);

Step 2: The background value array Z(1) as shown in Equation (3);
Step 3: The parameters â and b̂ can be obtained by the least-square algorithm, and

then the winterization equation and its solution, i.e., the time response function, can be
obtained as shown in Equations (8) and (9), respectively;

Step 4: The forecasting model can be obtained based on the inverse accumulated
generating operator, which can be written as shown in Equation (10);

Step 5: Cycle prediction theory is introduced to develop an effective model for multi-
step forecasting. Specifically, the developed forecasting model is applied to forecast the n +
1th data point, denoted as yn+1. Then, to utilize the most recent data to predict future data
points, the first data point in X(0) is removed, and the forecasting results of the n + 1th data
point, i.e., yn+1, are appended into X(0) to reconstruct a new sequence, denoted as Xn+1:

Xn+1 =
{

x(0)(2), x(0)(3), . . . , x(0)(n), yn+1

}
(18)

Accordingly, the reconstructed sequence can be considered as a new nonnegative
original time series, and Steps 1 to 5 are repeated to obtain the forecasting results:

yn+2, yn+3, . . . , yn+N , N = 1, 2, 3, · · · (19)

Step 6: Determine if the termination conditions are met. If n + N ≥ m, the cycle
prediction is terminated, and then forecasting results are output yi, i = n + 1, n + 2, m, where
m is the length of the forecasted point. Otherwise, Steps 1–5 should be repeated until the
termination conditions are reached.

2.1.4. The Newly Developed Forecasting Model: C-MRFO-GM (1, 1) Model

The proposed C-GM (1, 1) model is applicable and effective for multistep forecasting.
However, there are two main parameters in the GM (1, 1) model, i.e., a and b, that are
usually determined by the least square estimation method that may directly affect the
forecasting performance. Most importantly, the solution of the least square estimation
method might not be the optimal solution and may result in a poor forecasting performance
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or inability to obtain the optimal forecasting performance. An artificial intelligence opti-
mization algorithm, inspired by Du et al. [17], Hao et al. [18], Tian and Hao [19] and Yang
et al. [20], may be a promising approach for determining the optimal parameters that play
a vital role in the development of an optimal model. Accordingly, the MRFO algorithm
was employed to determine the optimal parameters in the GM (1, 1) model in the cycle
prediction process, i.e., a and b, which can enhance the forecasting model’s effectiveness.
To obtain improvements in the forecasting performance, the commonly used evaluation
metric, mean absolute percentage error (MAPE), was considered the optimization target to
improve the forecasting accuracy.

2.2. Part II: The Designed Health Economic Losses Assessment Model
2.2.1. Selection of Pollution Factors, Exposure Populations and Health Effects

Economic losses can be calculated after defining the pollution factors, exposure pop-
ulations, and health effects. In this paper, the research object, i.e., PM10, is considered as
pollution factor. The year-end permanent population were used as the exposed populations
to haze pollution. Based on the data availability, the death mortality, respiratory disease
outpatient rate, increase of emergency cases, restricted activity days, increase of cases of
lower respiratory tract infection/asthma in children, increase of asthma cases and increased
cases of chronic bronchitis are considered the health effects in this study.

2.2.2. The Newly Proposed Health Economic Losses Assessment Model

The economic losses caused by air pollution to human health include the following
three aspects: losses from premature death due to illness, medical expenses due to illness,
and losses due to lost work. The detailed calculation model can be defined as follows:

Definition 4. Losses from Premature Death Due to Illness

L1 = N × P× n× a× S× G (20)

where N is the number of exposure populations, P is the change in premature death caused by
increasing one unit of air pollutant concentration, n is the difference between the actual value and
reference value of the pollutant concentration, a is the labor force ratio, S is the mean residual life,
which is defined as 5 according to Zeng et al. [21], and G is the per capita annual salary.

Definition 5. Medical Expenses Due to Illness

L2 = ∑ Xi × Ci (21)

Xi = N × ri × n (22)

where Xi is the change value of ith disease due to the variation of pollutant concentration, Ci is the
average medical charge of ith disease, and ri is the morbidity of ith disease caused by increasing one
unit of air pollutant concentration.

Definition 6. Losses Due to Lost Work. The losses due to lost work refers to economic losses
caused by certain restrictions on work activities due to air pollution. Based on the research results
in Cai [22], one restricted activity day is equivalent to 1/4 days of absence due to illness. The losses
due to lost work can be calculated as follows:

L3 = A× Gd (23)

A =
1
4
× N × a× D× n (24)

where A is the days of lost work due to pollution, Gd is per capita daily wage, and D is the changes
in restricted activity days caused by increasing one unit of air pollutant concentration.
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Definition 7. Total Health Economic Losses. According to the change value of the public health
effect due to the variety of pollutant concentrations, the health economic losses caused by air
pollutants can be assessed and the detailed model can be defined as follows:

L =
n

∑
i=1

Li (25)

where L is the total health economic losses due to the current condition of air pollutants, Li is the
health economic losses value of the ith public health effect, and n is the number of public health
effects.

3. Empirical Study
3.1. Study Area and Data Description

Xi’an, the capital of Shaanxi and the eastern gateway to China’s ancient Silk Road, is a
national historic and cultural city and is northwest China’s largest central city. Its location
is shown in Figure 1. Monthly PM10 concentration data of Xi’an collected from March
2014 to February 2019 were used in this study, and were retrieved from the website of the
China Air Quality Online Monitoring and Analysis platform (https://www.aqistudy.cn
accessed on 1 October 2019). In general, the season has a large impact on the concentration
of atmospheric pollutants. Therefore, in this paper, one year (i.e., four seasons) was
divided according to the general division of the Northern Hemisphere and the actual
climate change in China as follows: spring (March–May), summer (June–August), autumn
(September–November), and winter (December–February).
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Figure 1. Specific location of the study area.

Based on this, the annual average value of the air pollutant concentration from 2014
to 2018 was calculated and is shown in Table 1. Meanwhile, the limit value of the air
pollutant concentration in the national ambient air quality standards (GB 3095-2012) and
the exceeding standard rate (ESR) are also presented in Table 1. Level 2 of the pollutant
concentration limit was selected for PM10 in this study. The annual average concentration
of PM10 exhibits a roughly decreasing trend year by year with an increase in 2016. The
concentration of PM10 is the largest in the past five years (2014–2018), which indicates
that PM10 was not effectively controlled in 2016. Fortunately, the concentration of PM10
was effectively controlled after 2016, dropping to 110.67 ug/m3 and 99.17 ug/m3 in 2018,
respectively. However, the concentration of PM10 is still higher than the national standard
annual average concentration. Specifically, the ESR value exhibits a roughly decreasing

https://www.aqistudy.cn
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trend year by year but still exceeds the standard limit. As a result, Xi’an needs to continue
to strengthen the control of PM10 emissions, while the public also needs to strengthen
pollution prevention and health protection.

Table 1. Annual average concentration of PM10 and exceeding standard rate.

Year PM10

2014 136.08
ESR 94.40%
2015 129.08
ESR 84.40%
2016 146.17
ESR 108.81%
2017 110.67
ESR 58.10%
2018 99.17
ESR 41.67%

Limit 70
Note: ESR is exceeding the standard rate.

3.2. Results of the Developed C-MRFO-GM (1, 1) Model
3.2.1. Analysis of the Applicability of the GM (1, 1) Model

To develop an effective air pollution forecasting model, the grey prediction theory was
used because of its desirable performance with forecasting issues with limited data. To date,
the grey model has developed with many variants proposed based on similar modeling
procedures of GM (1, 1), such as NDGM (1, 1) [23], NGBM (1, 1) [24], Grey Verhulst [25]
and FANGBM [26]. The classical GM (1,1) model and its variants are widely employed
in many fields, such as energy consumption [27,28], wind turbine capacity [29], and CO2
emissions [30]. Since there are so many grey models, the selection of a basic forecasting
engine is important for the effectiveness of the developed forecasting model. As a result,
in this study, the GM (1, 1), NDGM [23], NGBM (1, 1) [24], Grey Verhulst [25], OP-NGBM
(NGBM optimized by MRFO), and OP-FANGBM (FANGBM optimized by MRFO) were
considered candidates for basic forecasting engines.

To evaluate the performance of the candidate models, the absolute percentage error
(APE) and MAPE were selected, and are defined as follows:

APE(k) =

∣∣∣∣∣ x(0)(k)− x̂(0)(k)
x(0)(k)

∣∣∣∣∣× 100% (26)

MAPE =
1
n

n

∑
k=1

∣∣∣∣∣ x(0)(k)− x̂(0)(k)
x(0)(k)

∣∣∣∣∣× 100% (27)

where x(0)(k) is the kth data in the original time series, x̂(0)(k) is the corresponding fitted or
predicted value and n is the length of the time series. The benchmark of modeling accuracy
evaluation by Lewis [31], which has been widely used in different forecasting fields, was
employed in this study, and is presented in Table 2.

Table 2. Lewis’ benchmark of modeling accuracy evaluation.

MAPE ≤10% 10–20% 20–50% ≥50%

Evaluation Highly accurate Good Reasonable Inaccurate

Table 3 provides the fitted results and predicted results of GM, NDGM, NGBM, Grey
Verhulst, OP-NGBM, and OP-FANGBM for forecasting PM10. The MAPE values of GM,
NDGM, NGBM, Grey Verhulst, OP-NGBM, and OP-FANGBM are lower than 10%, which
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indicates that the modeling accuracy evaluation results of all the models are highly accurate.
Table 3 shows that the OP-FANGBM model obtains the best fitting performance for PM10.
However, it does not follow that the OP-FANGBM model is more applicable than other
grey models for forecasting PM10. In general, the forecasting performance of one model is
evaluated based on the forecasting results of the out-sample. However, on the one hand,
there are no out-sample data for model forecasting performance evaluation; on the other
hand, this study focuses on developing an effective forecasting model for forecasting the
future changes in PM10 in the next few years. Therefore, in this study, the selection of a
basic forecasting engine depends on the rationality of forecasting trends in the next few
years, and the MAPE values of the fitted results were introduced as auxiliary means for
the models with rational forecasting trends. For example, from the forecasting results of
the different models in Table 3, the NGBM, Grey Verhulst, OP-NGBM and OP-FANGBM
models present a clear downward trend with a high rate of decline. Combined with
the actual situation of air quality, this is inconsistent with the actual trend of change. In
addition, the NDGM forecast that the concentration of PM10 will remain at 90 ug/m3 is
unrealistic. As a result, the NDGM, NGBM, Grey Verhulst, OP-NGBM and OP-FANGBM
models are not applicable for forecasting future changes in PM10. Meanwhile, it can be seen
in Table 3 that although it does not achieve the best fitting performance, the GM model not
only obtains rational forecasting trends but was also evaluated as highly accurate according
to Lewis’ benchmark of modeling accuracy evaluation. In addition, comparison of the
NGBM model and OP-NGBM model shows that the forecasting result of the OP-NGBM
model is more rational than the individual NGBM model. That is, the basic forecasting
model can be further improved to develop an effective model that will obtain more rational
forecasting results. Finally, we can reasonably conclude that the GM (1, 1) model was more
applicable than the other models. As a result, the GM (1, 1) model was selected as the basic
forecasting engine and will be combined with other advanced techniques to develop an
effective forecasting model for solving forecasting issues in this paper.

Table 3. Results of different models for PM10.

Year PM10
GM (1, 1) NDGM (1, 1) NGBM (1, 1) Grey Verhulst OP-NGBM OP-FANGBM

Value APE Value APE Value APE Value APE Value APE Value APE

2014 136.08 136.08 0 135.16 0.6761 136.08 0 136.08 0 136.08 0 136.08 0
2015 129.08 139.66 8.1965 140.96 9.2036 129.07 0.0077 112.59 12.775 129.08 0 129.08 0
2016 146.17 126.6 13.3885 125.13 14.3942 137.4 5.9999 141.69 3.0649 134.16 8.2165 133.95 8.3601
2017 110.67 114.75 3.6866 114.26 3.2439 120.77 9.1262 130.09 17.5477 120.46 8.8461 118.81 7.3552
2018 99.17 104.02 4.8906 106.78 7.6737 94.07 5.1427 89.11 10.1442 99.17 0 99.17 0
2019 - 94.29 - 101.65 - 67.88 - 49.5 - 77.3 - 78.92 -
2020 - 85.47 - 98.12 - 46.67 - 24.35 - 58.15 - 59.86 -
2021 - 77.48 - 95.7 - 31.13 - 11.26 - 42.73 - 42.77 -
2022 - 70.23 - 94.04 - 20.36 - 5.06 - 30.9 - 27.96 -
2023 - 63.66 - 92.89 - 13.16 - 2.24 - 22.1 - 15.44 -
2024 - 57.7 - 92.11 - 8.44 - 0.99 - 15.69 - 5.07 -
2025 - 52.31 - 91.57 - 5.38 - 0.43 - 11.08 - -3.35 -

MAPE 6.0324 7.0383 4.0553 8.7064 3.4125 3.1431

3.2.2. Forecasting Results and Analysis of the Developed Forecasting Model

To provide effective forecasting results of PM10 in the future, this study developed a
forecasting model based on the GM (1, 1), MRFO algorithm, and cycle prediction strategy.
The fitting and forecasting results of GM (1, 1) and the developed model for forecasting
PM10 are listed in Table 4. Table 4 shows that the developed model obtains the best fitting
performance for PM10. Specifically, the MAPE values of GM (1, 1) and the developed model
for modeling PM10 are 6.0324% and 4.2546%, respectively. As a result, we can reasonably
conclude that the developed model performs better than the individual GM (1, 1) model in
the fitting performance and forecasting future changes of PM10.
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Table 4. Results of GM (1, 1) and the developed model for PM10.

Year PM10
GM Developed Model

Value APE Value APE

2014 136.08 136.08 0 136.08 0
2015 129.08 139.66 8.1965 129.09 0.0077
2016 146.17 126.6 13.3885 118.23 19.1147
2017 110.67 114.75 3.6866 108.29 2.1505
2018 99.17 104.02 4.8906 99.17 0
2019 94.29 - 90.83 -
2020 85.47 - 82.27 -
2021 77.48 - 74.53 -
2022 70.23 - 67.95 -
2023 63.66 - 61.68 -
2024 57.7 - 56.04 -
2025 52.31 - 50.95 -

MAPE 6.0324 4.2546

From Table 4, it is observed that the average annual concentrations of PM10 from
2019 to 2025 are 90.83, 82.27, 74.53, 67.95, 61.68, 56.04, and 50.95, respectively. In addition,
the changing trend of PM10 from 2014 to 2025 is shown in Figure 2. It shows a slightly
decreasing trend from 2019 to 2025. According to the abovementioned analysis, the
concentration of PM10 is beyond the limit values from 2019 to 2021, which indicates that
the influence of PM10 on public health may end in 2022. As a result, Xi’an city should adopt
more effective and persistent air quality control measures to control the emissions of PM10
and try their best to end the influence before 2022.
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3.2.3. Remark for the Performance of Different Models

The applicability of the GM (1, 1) model is discussed and approved by comparing the
forecasting results of GM (1, 1) model with NDGM, NGBM, Grey Verhulst, OP-NGBM, and
OP-FANGBM model. It should be noted that, under the optimistic situation of air pollution
control, the annual average concentration of PM10 will decrease year by year, and the rate of
decrease will become slower and slower. In other words, the annual average concentration
level of PM10 is unlikely to drop rapidly, and it is also unlikely that it will remain almost
unchanged for many years. Therefore, at the stage of selecting the basic forecasting model,
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the first consideration should be given to whether the model captures the possible and
reasonable future change trend of PM10. Based on analysis in Section 3.2.1, only the GM
(1, 1) model provides the reasonable trend in the future, which is selected as the basic model
of the developed model. On the premise that the GM (1, 1) model can provide a reasonable
trend, the research goal of this paper has changed from the rationality of forecasting trend
to the superiority of forecasting performance. As a result, the C-MRFO-GM (1, 1) model is
developed to forecast the annual average concentration of PM10 from 2019 to 2025. Then
the fitting and forecasting results of GM (1, 1) and the developed model are compared
in Section 3.2.2. By comparing the GM (1, 1) model and the developed model, it can be
observed that the developed model achieves the best results in terms of MAPE. Based on
abovementioned analysis, we can safely draw the conclusion that the developed model
can achieve effective forecasting of PM10 from 2019 to 2025, which not only performs better
than GM (1, 1) model in terms of forecasting results’ accuracy but also exhibits significant
superiority compared with NDGM, NGBM, Grey Verhulst, OP-NGBM, and OP-FANGBM
model in terms of the forecasting trend’s rationality.

3.3. Results of the Designed Health Economic Losses Evaluation Model

In this section, the evaluation of the health effects of PM10 and the corresponding
economic losses are divided into two parts as follows: evaluation for the past and evaluation
for the future. This can help the public understand the basic conditions of the health effects
and economic losses, and provide the conditions for the public to avoid damages to health
and economic losses in the future. Most importantly, politicians can adjust their policies
according to the results of the evaluation for the future.

3.3.1. Data Sources for Health Economic Losses Assessment

For the empirical study for Xi’an, China, the data source for the proposed health
economic losses assessment model are as follows: (1) concentration: actual value for 2014 to
2018, and forecasting results of the developed model in Section 3.2.2; (2) the threshold value
of PM10: see Section 3.3.2; (3) exposure population: represented by the year-end permanent
population, collected from Statistical Bulletin National Economic and Social Development
of Xi’an 2014–2018; (4) labor force ratio: equals social workers divided by the year-end
permanent population, in which the number of social workers can be collected from Xi’an
Statistical Yearbook 2018 and women and children planning monitoring report of Xi’an
2018; (5) per capita annual salary: represented by average wages of urban non-private
employees by industry, collected from Xi’an Statistical Yearbook 2018 and the related
statistical data released by Xi’an Bureau of Statistics; (6) per capita daily wage: equals
per capita annual salary divided by the days of one year; (7) per capita medical expenses:
the values in 2013 can be found in Zeng et al. [21], and then the values in other years
can be adjusted and obtained according to consumer price index, in which the consumer
price index can be collected from the Statistical Bulletin National Economic and Social
Development of Xi’an 2014–2018.

3.3.2. Selection of Threshold Value of PM10’s Health Effects

To evaluate the health effect of air pollution and the corresponding economic losses,
the concentration threshold value of PM10 should be determined. However, there is no
standard for the threshold of air pollutant concentration in the research. In some studies,
such as Li et al. [32], the standard is selected from the World Health Organization [33].
According to the related studies conducted by Li et al. [34–36], four baseline values of
the annual concentration of PM10 are considered as the background value and shown in
Table 5. Interim target-1 (IT-1) equals the limit value of air pollutant concentration in the
national ambient air quality standards (GB 3095-2012). Therefore, in the current situation
in which interim target-1 (IT-1) is still not achieved, 70 ug/m3 is selected as the threshold
value of PM10.
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Table 5. Four annual mean concentration baseline levels of PM10.

Level PM10 (ug/m3)

Interim target-1 (IT-1) 70
Interim target-2 (IT-2) 50
Interim target-3 (IT-3) 30

Air quality guidelines (AQG) 20
Note: The World Health Organization suggested progressive achievement of four pollution thresholds which
cascade down through three interim targets (IT-1: 70 µg/m3; IT-2: 50 µg/m3; IT-3: 30 µg/m3) to reach the ultimate
target, i.e., 20 µg/m3 [37].

3.3.3. Evaluation of the Past: 2014 to 2018

The public health effects caused by air pollution and the corresponding economic
losses from 2014 to 2018 were estimated based on the dose-response functions between the
changes in PM10 concentration and the health effects shown in Table 6 [21], and the final
evaluation results are presented in Table 7. According to the evaluated results shown in
Table 7, the detailed analysis is as follows:

Table 6. Dose-response functions between the changes in PM10 concentration and the health effects.

Heath Effect Ends Changed Values (One in 1,000,000 People)

Death mortality 6
Respiratory disease outpatient rate 12

Increase of emergency cases 235
Restricted activity days 57,500

Increase of cases of lower respiratory tract
infection/asthma in children 23

Increase of asthma cases 2068
Increased cases of chronic bronchitis 61

(1) The change values of the public health effects in 2014 (2018) show that the number
of premature deaths was the smallest with the value of 3421 (1751), while the number
of days of lost work was the largest with the value of 5,062,207 (2,604,808); from the
corresponding economic losses in 2014 (2018), the health economic losses caused by medical
expenses was the smallest with the value of 3.6096 hundred million Yuan (1.9512 hundred
million Yuan) and the health economic losses caused by delayed wages was the largest
with the value of 7.5688 hundred million Yuan (5.9819 hundred million Yuan). The total
health economic losses in 2014 (2018) were 16.9444 hundred million Yuan (12.4900 hundred
million Yuan).

(2) Under the baseline levels of PM10, the change values of the public health effects in
2018 were lower than those in the other four years. Furthermore, the total health economic
losses caused by PM10 from 2014 to 2018 were 16.9444, 16.3875, 23.4475, 15.2293, and
12.4900 hundred million Yuan, respectively. More specifically, the health economic losses
in the past five years were 84.4987 hundred million Yuan. More details about the influence
of PM10 on public health can be seen in Table 7.
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Table 7. Results of the public health effects caused by PM10 and the corresponding economic losses from 2014 to 2018.

Year.

C
oncentration

(ug/m
3)

Basic Materials and Data Per Capita Medical
Expenses (Yuan) Public Health Effects Caused by Air Pollution Health Economic Losses (Hundred

Million Yuan)

Exposure
Population

(Ten
T

housand)

Labor
Force

R
atio

(%
)

Per
C

apita
A

nnualSalary
(Yuan)

Per
C

apita
D

aily
W

age
(Yuan)

A
sthm

a

R
espiratory

TractInfection

Increased
C

ases
of

C
hronic

B
ronchitis

Change Values of Each Heath Effect Prem
ature

D
eath

M
edicalExpenses

D
elayed

W
ages

TotalLosses

Prem
ature

D
eath

A
sthm

a

R
espiratory

TractInfection

Increased
C

ases
of

C
hronic

B
ronchitis

D
ays

of
LostW

ork

2014 136.08 862.75 61.77 54,573 149.52 202.80 608.40 811.20 3421 1,178,978 153,928 34,776 5,062,207 5.7660 3.6096 7.5688 16.9444
2015 129.08 870.56 60.66 60,557 165.91 204.22 612.66 816.88 3086 1,063,628 138,868 31,374 4,484,682 5.6678 3.2792 7.4405 16.3875
2016 146.17 883.21 61.05 67,205 183.62 206.06 618.17 824.23 4036 1,391,229 181,640 41,037 5,903,718 8.2793 4.3278 10.8404 23.4475
2017 110.67 961.67 62.00 75,262 206.20 210.18 630.54 840.71 2347 808,818 105,600 23,858 3,485,630 5.4756 2.5664 7.1873 15.2293
2018 99.17 1000.37 62.10 83,821 229.65 214.17 642.52 856.69 1751 603,459 78,788 17,800 2,604,808 4.5570 1.9512 5.9819 12.4900
Total 14,641 5,046,112 658,824 148,845 21,541,045 29.7457 15.7341 39.0188 84.4987



Atmosphere 2021, 12, 1020 15 of 20

3.3.4. Evaluation of the Future: 2019 to 2021

The public health effects caused by air pollution and the corresponding economic
losses from 2019 to 2021 were estimated and are presented in Table 8. In Table 8, Total I
is the total public health effects and corresponding health economic losses from 2016 to
2020, which can be used to present the health damage from air pollution and the health
economic losses conditions from 2016 to 2020. In addition, relevant decision makers can
make policy adjustments according to the planning targets and the predicted values for the
next two years to ensure the successful completion of the 13th Five-Year Plan (i.e., the plan,
objectives, and their implementation for national economic and social development over
five years from 2016 to 2020, here is the environmental protection related goals). Total II
is the total public health effects and corresponding health economic losses from 2021 to
2025, which can be used to present the health damage from air pollution and the health
economic losses conditions in China’s 14th Five Year Plan (i.e., the plan, objectives, and
their implementation for national economic and social development over five years from
2021 to 2025). Similarly, relevant decision makers can formulate a reasonable 14th Five
Year Plan according to the forecasting results of public health effects and corresponding
health economic losses from 2021 to 2025 to ensure the continuous improvement of air
quality in the period of the 14th Five Year Plan. Total III is the total public health effects
and corresponding health economic losses from 2019 to 2025, which can be used to present
the health damage from air pollution and the health economic losses condition in the next
few years.

The change values of the public health effects in 2019 show that the number of
premature deaths was the smallest (1331), while the number of days of lost work was the
largest (1,997,420); from the corresponding economic losses in 2019, it can be observed that
the health economic losses caused by medical expenses was the smallest (1.5121 hundred
million Yuan) and the health economic losses caused by delayed wages was the largest
(5.1228 hundred million Yuan). The total health economic losses in 2019 were 10.5373
hundred million Yuan. Similar findings and analyses can be performed and determined for
other years. The detailed evaluation results of each year can be seen in Table 8. Under the
baseline levels of PM10, the change values of the public health effects and corresponding
health economic losses in 2021 were lower than those in other years. Specifically, the results
showed that the total health economic losses caused by PM10 from 2019 to 2021 are 10.5373,
7.3338, and 3.2058 hundred million Yuan, respectively. In addition, it is worth noting that it
is expected that there may be no health damages or health economic losses from PM10 after
2021. In other words, the influence of PM10 on public health may end in 2022.
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Table 8. Results of the public health effects caused by air pollution and the corresponding economic losses from 2019 to 2021.

Year.

C
oncentration

(ug/m
3)

Basic Materials and Data Per Capita Medical
Expenses (Yuan) Public Health Effects Caused by Air Pollution Health Economic Losses (Hundred

Million Yuan)

Exposure
Population

(Ten
T

housand)

Labor
Force

R
atio

(%
)

Per
C

apita
A

nnualSalary
(Yuan)

Per
C

apita
D

aily
W

age
(Yuan)
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sthm

a

R
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TractInfection

Increased
C
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C
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B
ronchitis

Change Values of Each Heath Effect Prem
ature

D
eath

M
edicalExpenses

D
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ages

TotalLosses
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ature

D
eath

A
sthm

a

R
espiratory

TractInfection

Increased
C

ases
of

C
hronic

B
ronchitis

D
ays

of
LostW

ork

2019 90.83 1064.93 62.64 93,611.70 256.47 218.35 655.05 873.39 1331 458,735 59,893 13,531 1,997,420 3.9024 1.5121 5.1228 10.5373
2020 82.27 1133.66 63.19 104,545.99 285.64 222.61 667.82 890.43 835 287,660 37,557 8485 1,263,472 2.7580 0.9667 3.6090 7.3338

Total I 10,300 3,549,901 463,478 104,711 15,255,048 24.9723 11.3242 32.7414 69.0379
2021 74.53 1206.83 63.74 116,757.47 319.01 226.95 680.84 907.79 328 113,056 14,761 3335 500,911 1.2205 0.3874 1.5980 3.2058

Total II 328 113,056 14,761 3335 500,911 1.2205 0.3874 1.5980 3.2058
Total III 2494 859,451 112,211 25,351 3,761,803 7.8809 2.8662 10.3298 21.0769
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4. Discussion of the Influence of the Threshold Value of PM10

Under the baseline of the national standard limited concentration values, the influence
of PM10 on public health may end in 2022. However, if we select the baseline levels of
PM10 with lower concentrations, the average annual concentration of PM10 will still impact
human health and cause health economic losses. For example, by selecting four annual
mean concentrations of PM10 shown in Table 5 as the baseline, the total health economic
losses caused by PM10 from 2016 to 2020 is 69.0379 hundred million Yuan under IT-1,
113.3141 hundred million Yuan under IT-2, 157.5929 hundred million Yuan under IT-3
and 179.7343 hundred million Yuan under AQG, the total health economic losses caused
by PM10 from 2021 to 2025 is 3.2058 hundred million Yuan under IT-1, 52.5630 hundred
million Yuan under IT-2, 155.2636 hundred million Yuan under IT-3 and 206.6086 hundred
million Yuan under AQG, and the total health economic losses caused by PM10 from 2019
to 2025 is 21.0769 hundred million Yuan under IT-1, 92.5021 hundred million Yuan under
IT-2, 217.2708 hundred million Yuan under IT-3. The forecasting results of PM10 show that
under the baseline of IT-2, the influence of PM10 on public health may end in 2026, while
under the baseline of IT-3 and AQG, PM10 will still pose a negative impact on public health
and cause economic losses from 2019 to 2025.

5. Conclusions

This study began by posing the following question: When will the influence of
PM10 on public health end? To answer this question, by combining the newly proposed
forecasting model and evaluation model, a novel hybrid framework is developed for
forecasting, evaluation and early-warning for the influence of PM10 on public health. These
are the main contributions of this study. To verify the effectiveness of the developed
hybrid framework to address air pollution issues and answer the research question, the
PM10 concentration data in Xi’an, China was employed in the case study. Furthermore,
the results demonstrated that the developed hybrid framework is applicable in China
and may become a promising technique that enriches the current research and meets the
requirements of air quality management and haze governance. It should be noted that this
study mainly focused on answering the question in China. As a result, the “replicability”
of our work in the international context is not considered in this study. However, the
empirical results prove the validity of the established research framework in forecasting,
evaluation, and early-warning for the influence of PM10 on public health. Therefore, we
can safely draw the conclusion that the developed framework can be considered as an
effective tool in the international context. Furthermore, considering the availability of data
and the significance of internationalization, the international context research can be the
subject of our future studies, which will be a worthwhile studying direction for the whole
society.

Specifically, the new findings from this study that are different from the literature can
be summarized as follows:

(1) Based on the results of the empirical study, the question “When will the influence
of PM10 on public health end?” can be answered as follows: The influence of PM10
on public health may end in 2022 under the baseline of the national standard limited
concentration values, but it will still pose a negative impact on public health and
cause economic losses from 2019 to 2025 under the baseline of IT-2, IT-3 and AQG.
Overall, the current situation is not very good, and Xi’an city should adopt more
effective and persistent air quality control measures to control PM10 emissions.

(2) Different from most previous air pollution health economic losses studies that focused
on PM2.5, the present study focused on PM10, which has been neglected in previous
studies and can bridge the research gap in air pollution health economic losses. The
experimental results show that the changes in health effects and health economic
losses caused by PM10 cannot be ignored, and people should consider emissions
reduction and control of PM10.
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(3) This study contributes forecasting, evaluation and early-warning to the research,
which are new ideas and a new research framework. Specifically, forecasting can
provide future changes in PM10, while evaluation can help the public understand
the basic conditions of health effects and economic losses and also predict the future
conditions for the public. Most importantly, politicians can adjust their policies
according to the results of the evaluation for the future. To the best of our knowledge,
most previous economic losses assessment studies only focused on assessing the
economic costs of past disasters while ignoring the significance of evaluating the
economic losses for the past and future. As a result, the presented research framework
and ideas provide a theoretical reference and academic reference for future research.
In the future, the research framework and ideas based on forecasting, evaluation
and early-warning can be extended and applied in other fields, such as storm surge
disaster losses [38], e-commerce precision poverty alleviation benefit assessment [39],
rainstorm disaster losses [40], earthquakes and flood losses [41] and impacts of haze
pollution on the tourism industry [42].

(4) Most previous studies focused on health economic losses caused by air pollution in
different areas and at different times. On the positive side, assessing past economic
losses provides support for air pollution prevention and control. However, when will
the influence of air pollution on public health end? This is a significant and neglected
issue, which can be considered a new research direction. As a result, this study takes
PM10 as the research object and first poses the question: “When will the influence of
PM10 on public health end?” The answer is provided based on forecasting, evaluation
and early-warning.

(5) Another interesting finding is that the traditional grey model is more applicable than
other grey models for forecasting PM10 in Xi’an, China. In general, in the air quality
forecasting field and other related forecasting fields, variants of the traditional grey
model may perform better than the traditional grey model. For example, in Wu
et al. [43], the GM (1, 1) model with fractional order accumulation performs better
than the GM (1, 1) model alone. Different from previous studies, this study not only
considers the fitting accuracy but also the rationality of the future development trend
of things. It should be noted that the prediction of the future development trend
needs to conform to the development law of things, which is obviously different from
the training and testing process of the prediction model.

(6) Wu and Zhao (2019) [44] employed an individual model named the fractional order
accumulation GM (1, 1) model to forecast the number of lightly polluted days from
2017–2020, which proves the forecasting power of grey forecasting theory. Cycle
prediction theory can capture the latest development trend and features of the studied
object, while optimization can obtain the model’s optimal parameters. As a result,
cycle prediction theory and optimization can improve the forecasting performance
to a large extent. Considering the advantages and disadvantages of grey forecasting
theory, this study further develops the findings of Wu and Zhao (2019) and introduces
cycle prediction theory and optimization into air pollution’s health economic losses
assessment and forecasting.
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