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Abstract: Operational cloud seeding programs have been increasingly deployed in several countries
to augment natural rainfall amounts, particularly over water-scarce and arid regions. However,
evaluating operational programs by quantifying seeding impacts remains a challenging task subject to
complex uncertainties. In this study, we investigate seeding impacts using both long-term rain gauge
records and event-based weather radar retrievals within the framework of the United Arab Emirates
(UAE) National Center of Meteorology’s operational cloud seeding program. First, seasonal rain
gauge records are inter-compared between unseeded (1981–2002) and seeded (2003–2019) periods,
after which a posteriori target/control regression is developed to decouple natural and seeded rainfall
time series. Next, trend analyses and change point detection are carried out over the July-October
seeding periods using the modified Mann-Kendall (mMK) test and the Cumulative Sum (CUSUM)
method, respectively. Results indicate an average increase of 23% in annual surface rainfall over
the seeded target area, along with statistically significant change points detected during 2011 with
decreasing/increasing rainfall trends for pre-/post-change point periods, respectively. Alternatively,
rain gauge records over the control (non-seeded) area show non-significant change points. In line
with the gauge-based statistical findings, a physical analysis using an archive of seeded (65) and
unseeded (87) storms shows enhancements in radar-based storm properties within 15–25 min of
seeding. The largest increases are recorded in storm volume (159%), area cover (72%), and lifetime
(65%). The work provides new insights for assessing long-term seeding impacts and has significant
implications for policy- and decision-making related to cloud seeding research and operational
programs in arid regions.

Keywords: cloud seeding; evaluation; time series; regression; change point; rain gauge; radar

1. Introduction

In response to shortages in water resources, exacerbated by growing populations and a
changing climate, an increasing number of countries have invested in weather modification
research and applications [1]. Precipitation enhancement is a subset of weather modification
that aims to augment natural rainfall (or snowfall) amounts through airborne or ground-
based interventions in the microphysical processes of specific cloud types [2,3]. Targeting
warm clouds, hygroscopic cloud seeding entails introducing large artificial (hygroscopic)
aerosol particles into clouds to increase the uptake of available cloud liquid water beyond
that expected from the natural background aerosol population with relatively smaller
diameter sizes [4–6]. The larger seeding particles are expected to trigger a “competition
effect” which favors the production of large drops that can activate the collision-coalescence
process and enhance rainfall generation [7–9]. The basic assumption is that increased cloud
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buoyancy, achieved through conversion of cloud water content into liquid droplets through
condensation, will enhance the release of latent heat, increase cloud depth and result in
larger cloud extent and lifetime and rainfall intensity.

Evaluating the effectiveness of operational cloud seeding programs is critical to ad-
vance weather modification research as well as to provide policymakers with realistic
cost-benefit metrics. According to the most recent review on global precipitation enhance-
ment activities conducted by the World Meteorological Organization (WMO) Expert Team
on Weather Modification, cloud seeding from aircraft platforms is generally considered
more effective compared to other techniques such as ground-based generators, customized
rockets, and artillery shells [1]. Results from operational cloud seeding programs span-
ning several countries, including Australia [10], China [11], India [12], Israel [13], South
Africa [14–16], Thailand [17], and the United States [18,19], record between 10–30% in-
creases in precipitation amounts and cloud lifetime. Alternatively, several studies report on
the limited efficacy of seeding experiments for drought relief [20], along with inconclusive
results stemming from unreliable measurements and/or co-occurring microphysical and
dynamical processes that are difficult to account for [21,22].

The complex spatiotemporal variability of cloud properties and resulting precipitation
represents the main source of uncertainty in seeding impact evaluations. As such, field ex-
periments offer a single realization of seeding effects within a specific cloud lifetime which
may significantly differ from an unseeded (control) cloud [23,24]. In fact, the methodology
of experimentation, randomization, and statistical analysis needed for cloud seeding pro-
grams draws several parallels with the design of randomized clinical trials in the medical
field [25]. Albeit, clouds are a transient and less accessible sample unit compared to human
patients, which challenges the reproducibility of randomized seeding experiments.

To overcome the limitations of field experiments, several long-term statistical analyses
have been pursued to evaluate seeding impacts using control-target (i.e., unseeded-seeded)
regression derived from historical rainfall records [26–31]. Fluek [32] outlines this proce-
dure and discusses its advantages and limitations. Rainfall records over target and control
areas during unseeded periods are used to establish a regression equation that emulates
natural rainfall (unassociated with seeding) over the target area during the seeding period.
Potential seeding impacts are determined by comparing the regression-based (predicted)
natural rainfall in the target area to the actual observed rainfall during seeding periods. The
basic requirements are that rainfall records over the target and control areas are reasonably
correlated and that rainfall over the control gauges are not contaminated by seeding over
the target area. Solak, et al. [33] adapted a posteriori historical target/control regression to
estimate the downwind effects on precipitation during an operational snow enhancement
project in Utah, USA. They established a linear regression equation between each down-
wind gauge and the control group that provided the highest correlation of precipitation
with the downwind gauge. The extra-area seeding effect was demonstrated by comparing
the observed downwind precipitation during the seeding period with the natural down-
wind precipitation predicted by the regression equation. Their results suggested an average
increase in extra-area precipitation of about 8% over both the target and downwind areas.
Similarly, a historical target/control regression model was derived for evaluating cloud
seeding effects over Israel during the period 1976–1990 which showed an increase of 6% in
mean annual rainfall [34]. Nevertheless, the aforementioned statistical analyses exclusively
rely on local scale (rain gauge) measurements that fail to capture potential changes in
climate circulations which may influence local rainfall regimes beyond seeding effects.
Hence, diagnosing the physical mechanisms associated with potential changes in seeded
cloud properties is necessary to interpret the statistical findings.

Weather radars generate high-resolution and real-time estimates of cloud and pre-
cipitation properties above the surface by emitting electromagnetic signals and analyzing
backscatters from intercepted hydrometeors [35]. They return continuous volumetric scans
of cloud systems which provide critical information on their microphysical and thermody-
namic evolution throughout their lifetime [36]. As such, weather radars have been a key
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instrument in several cloud seeding experiments and evaluation programs. Reinking and
Martner [37] conducted one of the earlier attempts of using circular-polarization radar to
track the dispersion of seeding aerosols (using radar chaff as a proxy) released at convective
cloud bases. They derived quantitative measurements of seeding aerosol dispersion and
dilution rates at multiple levels to demonstrate the effectiveness of cloud base seeding for
both rainfall enhancement and hail suppression purposes. Consolidating the outcomes
of the South African Rainfall Enhancement Program, Terblanche, et al. [38] compiled a
radar-based storm climatology over a 10,000 km2 seeding target area using thresholds of
15 min and 30 dBZ for storm lifetime and radar reflectivity, respectively. They found that
seeded storms produce approximately twice as much radar-estimated rainfall as the control
(unseeded) storms. More recently, volume-scans from Doppler radars have been increas-
ingly used to identify physical differences between seeded and unseeded cloud properties
including storm volume, area cover, lifetime, rain flux/mass, top height, and precipitable
water content [17,18,39,40]. Ground-based radar measurements are often complemented
by in-situ airborne measurements from specialized cloud physics aircraft, when available.

Conventional randomized aircraft seeding experiments fail to account for differences
in the dynamical and microphysical properties between targeted clouds, which are particu-
larly pronounced in desert environments with diverse dust and aerosol populations [41–43].
With less than 120 mm of mean annual rainfall across the nation [44], the United Arab
Emirates (UAE) has implemented an operational aircraft-based hygroscopic seeding pro-
gram over the past two decades [45]. The UAE is situated along the eastern coast of
the Arabian Peninsula within a regional dust hotspot impacted by transcontinental air
masses converging over its coastal and mountainous landscapes [46,47]. The UAE Unified
Aerosol Experiment (UAE2) represents the first comprehensive airborne assessment of
the ambient aerosol population over the UAE [48]. The measurements indicated an abun-
dance of sulfate-dominant fine-mode aerosols which may significantly impact cloud and
rainfall formation. The UAE is therefore considered a “natural laboratory” to study both
mesoscale features and microscale aerosol-cloud-precipitation processes within a limited
geographical area.

Investigating seeding effects by combing both physical and statistical analyses is
considered the most systematic approach to evaluate cloud seeding experiments [24,49].
Here, we present the first results of the UAE cloud seeding program by comparing seasonal
rain gauge records for unseeded (1981–2002) and seeded (2003–2019) periods. Posteriori
historical target/control regression, change point detection and time-series analyses are
carried out to statistically decouple natural and seeded rainfall. The statistical evaluations
are complemented by a radar-based physical investigation by comparing an archive of
seeded and unseeded storm properties.

2. Materials and Methods

The UAE cloud seeding program, implemented by the National Center of Meteorology
(NCM), follows the conventional approach of igniting hygroscopic flares composed of nat-
ural salts (primarily potassium chloride) at the base of convective clouds near the updraft
core. Launched in 2002, the program targeted frequent summertime convection [50] along
the northeastern Hajar mountains (see Figure 1). The program infrastructure subsequently
expanded over the years until suitable cloud candidates were targeted year-round over the
entire UAE from 2010 onwards.
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Figure 1. Location and terrain elevation of the study area in the northeastern UAE and the distribution of target/control
rain gauges and polarimetric weather radars.

2.1. Rain Gauge Data

The long-term rain gauge dataset was compiled from two separate sources during the
1980–2002 and 2003–2019 periods. The first period was retrieved from the UAE Agricultural
Authority records, currently merged under the portfolio of the Ministry of Climate Change
and Environment, while the second period was retrieved from Automatic Weather Station
(AWS) records maintained by the NCM. Figure 1 shows the terrain elevation across the
study area in the northeastern UAE, weather radar locations, and the distribution of rain
gauges across the control and two target areas (see Table 1).

Table 1. Location and elevation of control and target area rain gauges.

Area Gauge Name Lat (◦N) × Lon (◦E) Elevation (m)

Control Area

Dubai Airport 25.25 × 55.37 19
Sharjah Airport 25.35 × 55.4 34
Ras Al Khaimah 23.58 × 54.75 1
Umm Al Quwain 25.6 × 55.58 20

Target Area 1
Masafi 25.3 × 56.17 516

Al Malaiha 25.13 × 55.88 150
Falaj Al Moalla 25.51 × 56.32 105

Target Area 2
Al Shiweb 24.78 × 55.80 306

Al Faqa 24.72 × 55.62 215
Swiehan 24.47 × 55.33 179
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2.2. Target/Control Regression

A target/control regression requires a base period (pre-seeding) of rainfall records
spanning at least 20 years to be considered statistically representative [51]. Here we use a
23-year base period from 1980–2002 from the control area and the more neighboring Target
Area 1 [51]. The target/control linear regression relationship is computed as:

yi = γ + δxi (1)

where yi and xi are the annual rainfall in the target and control areas respectively, γ is the
intercept and δ is the slope. The equations with the highest goodness-of-fit (i.e., coefficient
of determination R2) are used to predict the natural (unseeded) rainfall for the individual
target gauges and overall target area using the observed control rain gauge records. The
predicted natural rainfall is then compared with actual (observed) amounts during the
seeding period to evaluate seeding effects.

2.3. Change Point Detection

Change-point detection is the process of identifying abrupt changes in a time series
and is used to further investigate the potential impacts of cloud seeding on rainfall trends
over the target area. The cumulative sum (CUSUM) method [52] is a non-parametric
statistical technique that has been extensively applied for change point detection of hydro-
meteorological time series [46,53–56]. The method relies on accumulating the deviations
from the mean and recording the absolute maxima and minima at each time step. For a
given rainfall time series, x1, x2, . . . , xn, the cumulative sum (C) of deviations at any time k
is expressed as:

Ck =
k

∑
i=1

(xi − x) (2)

The peaks/troughs of the resulting CUSUM series coincide with years where the
most abrupt deviations from the mean occur. Once change points (if any) are located, the
comparison of trend directions between pre- and post-change periods would indicate an
overall increase/decrease in surface rainfall amounts.

The statistical significance (5% significance level) of all resulting trends is carried out
using the Modified Mann-Kendall test (mMK) [57], which accounts for autocorrelations
present in rainfall data. For a given sample x1, x2, . . . , xn, of size n, the standardized test
statistic Zs is expressed as:

Zs =


S − 1

σs
i f S > 0

0 i f S = 0
S + 1

σs
i f S < 0

(3)

and

S =
N−1

∑
i=1

N

∑
j=i+1

sgn(xj − xi)

and

σs =

√
n(n − 1)(2n + 5) − ∑m

i=1 ti(i)(i − 1)(2i + 5)
18

(4)

where m is the number of tied values in ti.
The null hypothesis (absence of trend) is rejected if the p-value is less than the 5%

significance level.
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2.4. Radar-Based Evaluation

The above statistical approaches rely exclusively on surface rainfall records logged by
rain gauges that are subject to several sources of uncertainty. Also, ground-based records
may not be representative of the actual generated precipitation through cloud base that is
subject to high evaporation rates (virga) before reaching the surface of dry environments
such as the UAE [58].

Other precursory storm properties (e.g., cloud liquid water content, volume, and
top height) dictate observed differences in rainfall associated with cloud seeding. Hence,
a comparative analysis between seeded and unseeded cloud properties using the NCM
C-band radar network is carried out to provide a physical context for the statistical results.
Starting from 2010, the radar network has been subsequently upgraded from single-pol to
dual-pol retrieval with the following operational characteristics:

• Instrumented range: 200 km
• Range gate: 100 m
• Min-max elevation angles: 0.5◦–32.4◦

• 3-dB-Beamwidth: 1◦

• Volume scans interval: 6 min

The Lidar Radar Open Software Environment (LROSE) system, which includes the
upgraded Thunderstorm Identification Tracking Analysis and Nowcasting (TITAN) al-
gorithm [59,60], is used to provide real-time tracking of convective clouds and guide
the seeding aircraft. The storm and track data used in this analysis are maintained in a
database at the NCM. To ensure representative results and minimize data contamination
from co-occurring processes such as entrainment, downdrafts, and evaporation, the fol-
lowing selection criteria and thresholds were applied: (1) Seeding is conducted within
the first 20 min of the cloud lifetime; (2) Maximum reflectivity is greater than 38 dBZ;
(3) Initial values of storm volume, area cover, maximum reflectivity, and precipitation flux
are comparable between seeded and unseeded clouds.

3. Results
3.1. Time Series Analysis and Target/Control Regression

Figure 2 shows the time series and linear trends of observed rainfall at individual
gauges, namely, Ras Al Khaimah and Sharjah gauges from the (unseeded) control area, and
the Masafi and Malaiha gauges from the neighboring (seeded) Target Area 1 during the (a)
1980–2002 pre-seeding and (b) 2003–2019 seeding periods. Statistically significant negative
trends are recorded during the 1980–2002 pre-seeding period at all gauges. However, both
target gauges exhibit a positive trend during the 2003–2019 seeding periods, while negative
trends are recorded again at the control gauges.

Figure 3 depicts the scatterplots of observed annual rainfall (mm/year) for control
vs. target gauges during 1980–2002, with fitted regression lines and coefficients of deter-
mination (R2) denoted in each panel. Figure 3a–f indicates that rainfall records are highly
correlated between the selected pairs of control and target gauges, with R2 values ranging
from 0.81 to 0.91 between the Al Malaiha and Sharjah gauges. Figure 3g shows the best fit
(R2 = 0.95) scatterplot between the mean of the four control gauges (Dubai, Ras Al Khaimah,
Sharjah, and Umm Al Quwain) and that of the three target gauges (Masafi, Al Malaiha,
and Falaj Al Moalla).



Atmosphere 2021, 12, 1013 7 of 17

Figure 2. Time series and linear trends for selected rain gauges within the control (Ras Al Khaimah
and Shrajah) and target (Masafi and Al Malaiha) areas (a) before (1987–2002) and (b) after (2003–2019)
the initiation of cloud seeding operations.

Figure 3. (a–g) Scatterplots of observed annual rainfall (mm/year) for control vs. target gauges during 1980–2002, with
fitted regression lines and R2 values denoted in each panel.
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Table 2 lists the correlation coefficients (CC) and R2 values and corresponding re-
gression equations for each pair of control-target gauges. The regression equations are
used to predict the natural (unseeded) rainfall over the target area using the observed
control records during the 2010–2019 seeding period. The predicted values are then used
to compute a relative change (%) in rainfall compared to the observed rainfall at the target
gauges during the 2010–2019 seeding period. The mean relative change (MRC) reflects an
annual average estimate of the impact of seeding over the 10-year period and is shown to
be positive in all cases—varying from 5.6% at Al Malaiha gauge to 30.8% at Masafi gauge.
An average increase of 22.8% is recorded over the target area using Equation (11), which is
derived from the mean of target/control observations with the best fit (R2 = 0.95).

Table 2. Correlation and R2 coefficient values between pairs of control-target gauges, the correspond-
ing regression equations (1980–2002) and the mean relative change (MRC) over the seeding period
(2010–2019).

Control Target CC R2 Regression
(1980–2002)

MRC *
(2010–2019)

Sharjah Masafi 0.94 0.88 (5) y = 1.22x + 17.07 30.8%
Umm Al Quwain Al Malaiha 0.90 0.84 (6) y = 0.98x + 17.17 5.6%
Umm Al Quwain Falaj Al Moalla 0.90 0.82 (7) y = 1.01x + 18.64 15.4%

Sharjah Falaj Al Moalla 0.95 0.84 (8) y = 1.05x + 16.87 13.6%
Ras Al Khaimah Masafi 0.90 0.81 (9) y = 1.00x + 28.45 30.0%

Sharjah Al Malaiha 0.95 0.91 (10) y = 1.05x + 09.95 7.9%
Mean Control Mean Target 1 0.97 0.95 (11) y = 1.13x + 10.5 22.8%

* MRC ratio computed as: [Σ(Gauge rainfall−Predicted rainfall)/Σ(Predicted rainfall)]/10.

Figure 4a shows the inter-annual variability of the relative change ratio throughout the
2010–2019 seeding period at gauges within Target Area 1. The Masafi/Sharjah regression
shows the greatest improvements in 2011 and 2014 with ratios of 2.3 and 2, respectively.
These substantial improvements are not likely associated with seeding alone since the
number of rainfall events was evidently higher at this gauge relative to other years. Alterna-
tively, negative change ratios are consistently recorded across all gauges for 2012 and 2015.
This is attributed to the particularly low number of observed rainfall events during these
two years, and consequently a limited number of conducted seeding operations. Thus, the
natural variability of rainfall introduces major uncertainties and must be accounted for in
the analysis. These high (2011 and 2014) and low (2012 and 2015) extremes in the natural
variability of the rainfall regime are also noticeable in Figure 4b, which shows the annual
variability in relative change over the target area from 2003–2019. Beyond these periods of
natural variability, the degrees of improvement which are more likely attributed to seeding
over the target area vary between 10% in 2010 to 40% in 2019.
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Figure 4. Time series of inter-annual variation in the rainfall relative change ratio for (a) individ-
ual target gauges during 2010–2019 and for (b) the overall target area from Equation (11) during
2003–2019.

3.2. Change Point Detection

The majority of seeding operations take place during the July–October period which
corresponds to the highest frequency of convective clouds over the target region [61]. Hence,
change point detection is carried over the July–October periods throughout the full seeding
period (2003–2019) to statistically investigate a potential shift in the local rainfall regime
since the initiation of seeding operations. Unlike the former target/control regression, both
target areas are included in the change point detection analysis since collinearity between
neighboring target and control gauges is not required. Figure 5a–c shows the time series of
CUSUM values derived over the control, Target 1 and Target 2 areas, respectively. All areas
record varying change points—October 2017 over the control area and July/September
2011 over Target Areas 1/2. The coincident change point during 2011 over both target areas
corroborates previous trend results and provides preliminary evidence on the consistent
impact of seeding over the long-term operational period. However, the physical mechanism
responsible for the detected change in the rainfall time series, as well as the 2017 change
over the control area, warrant further investigation. Hence, each time series was divided
into pre- and post-change point time series to assess the statistical significance of the
detected change points and resulting trends.
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Figure 5. Time series of CUSUM values derived over the (a) control area, (b) Target Area 1 and (c) Target Area 2 which
represent the cumulative sum of differences from the mean at each time step. The corresponding gauge-averaged time
series (d–f) of observed rainfall divided at the detected change points with pre- and post-change point trend lines and slope
values are labeled in green and red, respectively.

Figure 5d–f shows the time series of observed rainfall divided at detected change
points with pre- and post-change point trend lines and the corresponding slope coefficient
values. The mMK test is applied to test the statistical significance of all resulting trends at
the 5% significance level. Interestingly, the control area trends test non-significant (even at
10% significance level), while the trends over both target areas test significant. The slopes
indicate increasing trends over both target areas, with magnitudes amplified by a factor of
7 (0.21/0.03) and 1.8 (0.09/0.05) over Target Areas 1 and 2, respectively. Furthermore, a
standardized t-test to assess the difference in means between pre- and post-change point
series was carried out. Again, statistically significant differences in average monthly rainfall
between the target pre- and post-change point periods are found, while a non-significant
mean difference exists between the control series.

3.3. Inter-Comparison of Radar-Based Storm Properties

Further to the above statistical results which suggest the overall efficacy of seeding
operations over the target area, this section presents the investigation of radar echoes of
small mesoscale convective clusters to assess the physical impacts of seeding on cloud
properties. First, a systematic comparison between unseeded and seeded cloud properties
from two representative events in October 2018 and August 2019 is conducted. The analysis
is then expanded to cover all records of seeded/unseeded events during the 2018–2019
period. The inter-compared cloud properties of interest include the echo volume (km3), top
height (km), area cover (km2), maximum reflectivity (>38 dBZ), vertically integrated liquid
water content (VIL; kg/m2), and precipitation flux (m3/sec). Storms with similar initial
values of volume, area cover, maximum reflectivity, and precipitation flux were selected to
ensure comparable convection initiation conditions between seeded and unseeded storms.

3.3.1. Case Study 1: 24 October 2018

Figure 6 shows the variations in the six radar-derived storm parameters across four
different echoes observed on 24 October 2018 over the northeastern region (Target Area 1).
The four storms (2 seeded and 2 remained unseeded) were selected based on comparable
initial echo volumes (~250 km3). The seeded storms are labeled with their initiation and
seeding times, where the 0848_S0900 (black) curve denotes the first detection at 08:48 UTC
and seeding at 09:00 UTC, and the 0900_S915 (orange) curve denotes the first detection
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at 09:00 UTC and seeding at 09:15 UTC. The 1148_N (blue) 1024_N (green) curves denote
the first detections at 11:48 UTC and 10:24 UTC, respectively, without seeding. During the
initial 10 min of echo detection, all four storms record comparable values of the six cloud
properties. However, within 10–20 min of seeding (indicated by arrows), both seeded
storms show a systematic increase in parameter magnitude and lifetime relative to the
unseeded storms. This is observed consistently across all six parameters with extended
durations ranging from 10–40 min beyond the unseeded storm lifetimes.

Figure 6. Temporal evolutions of (a) echo volume (b) echo top height, (c) maximum reflectivity (d)
echo area cover (e) precipitation flux and (f) vertically integrated liquid water derived from the
radar network for 24 October 2018 storms as a function of time (mins). The 0848_S0900 (black) curve
denotes a storm first detected at 08:48 UTC and seeded at 09:00 UTC, and the 0900_S915 (orange)
curve denotes a storm first detected at 09:00 UTC and seeded at 09:15 UTC. The 1148_N (blue) 1024_N
(green) curves denote storms first detected at 11:48 UTC and 10:24 UTC, respectively, and not seeded.
The arrows in panel (a) depict the onset of seeding for each seeded storm with the matching color.

3.3.2. Case Study 2: 14 August 2019

Similar to Figure 6, Figure 7 shows the variations in the six radar-derived storm
parameters across three different echoes observed on 14 August 2019. The 1154_S1200
(black) curve denotes the first detection at 11:54 UTC and seeding at 12:00 UTC, while the
1112_N (orange) and 1100_N (green) curves denote the first detections at 11:12 UTC and
11:00 UTC, respectively, without seeding. During initial echo detections, all parameters
record comparable values. Similar to the previous October 2018 case, the lifetime of all
parameters of the seeded storm (black) are extended by ~20 min compared to unseeded
storms (orange and green), along with systematic increases in parameter magnitudes
within 15–20 min of seeding. However, the area cover parameter shows a less pronounced
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increase compared to that observed in the seeded storms of the October 2018 case. The
echo top height shows an increase of 17% (from 14.75 to 17.25 km) in the seeded storm
which indicates strong vertical development, while the horizontal expansion in terms of
area cover remained within 20–30 km.

Figure 7. Temporal evolutions of (a) echo volume (b) echo top height, (c) maximum reflectivity (d)
echo area cover (e) precipitation flux and (f) vertically integrated liquid water derived from the
radar network for 14 August 2019 storms as a function of time (mins). The 1154_S1200 (black) curve
denotes a storm first detected at 11:54 UTC and seeded at 12:00 UTC, while the 1112_N (orange) and
1100_N (green) curves denote storms first detected at 11:12 UTC and 11:00 UTC, respectively, and not
seeded. The arrow in panel (a) depicts the onset of seeding.

3.3.3. Storm Archive

Extending the analysis of the two radar-based case studies, Figure 8 shows a compari-
son of radar-derived storm lifetime, area cover, volume, top height, maximum reflectivity,
and mean reflectivity between seeded and unseeded storms during the 2018–2019 summer
periods. A total of 152 storms were included of which 65 were seeded and 87 remained
unseeded. Storms not seeded within the last 15 min of their lifetime (i.e., before dissipating)
were considered unseeded. The mean relative changes between the full record of unseeded
and seeded storms indicate average increases of 159%, 72%, 65%, 9%, 4%, 3% in echo
volume, area cover, duration, top height, maximum reflectivity, and mean reflectivity,
respectively.
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Figure 8. Mean relative change ratios in echo duration, area cover, volume, top height, maximum
and mean reflectivity between seeded (65) and unseeded (87) storms recorded during the 2018–2019
summer periods.

4. Discussion

The statistical evaluations (regression and change point detection), supported by the
physical (radar-based) analysis, provide important insights into the long-term impacts
of cloud seeding operations over the UAE. The mean annual increase of 23% rainfall
associated with seeding falls within the range of 10–30% reported by other hygroscopic
seeding programs around the world [10,13,14,17,19]. Nevertheless, several limitations and
potential sources of uncertainty are important to note.

The relative change ratios inferred from the target/control regression are impacted
by anomalies associated with climate variability over the study area, primarily in 2012
and 2014 (see Figure 4b). While outliers were excluded when reporting the mean annual
change ratio attributed to seeding, random variability may still exist during other years.
Furthermore, the target areas are predominantly impacted by localized microscale oro-
graphic events that last less than 30 min and rarely reach the coastal control areas (west)
before dissipating [62,63]. Hence, the control area naturally experiences a less significant
rainfall regime compared to the mountainous target areas [44,50]. While the target/control
regression is expected to resolve these differences based on the long-term interdependen-
cies of the historical data, uncertainties attributed to the extreme variability of rainfall in
space and time over the study area remain [64].

The change points analysis supported the target/regression analysis by indicating a
statistically significant change point in 2011 consistent over both target areas and coincident
with the expansion of the seeding operations. Also, the pre- and post-change point trends
over the target area show an increase in slope suggesting an overall increase in seasonal
rainfall associated with seeding. Alternatively, a non-significant change is detected in 2015
over the control area. Similar to target/control regression uncertainties, change points may
be influenced by large-scale variability which is challenging to decouple from local-scale
impacts as highlighted by Yousef et al. [56] specifically for cloud cover change detection.
The pre-seeding period (Figure 2a) between 1995 to 1998 shows a drastic increase in annual
rainfall across all rain gauges (>200 mm), followed by a sharp drop in 1999 and onwards.
This pre-seeding variability in the natural rainfall regime is carefully diagnosed in the work
of Ouarda, et al. [65]. They linked this anomaly in the rainfall regime to the variability in
the equatorial Pacific sea surface temperatures—a teleconnection triggered by shifts of the
upper-level stream towards the Equator during the positive El Niño phase [66], ultimately
impacting moisture in the region [67]. This climatological anomaly does not appear to
recur during the post-seeding period (Figure 2b) with annual rainfall rates generally not
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exceeding 200 mm. In fact, analyzing post-seeding period trends in the absence of the
pre-seeding climatological anomaly triggering the 3-year (1995–1998) increase in rainfall
would further favor the role of seeding. Hence, the presence of the anomaly during the
pre-seeding period provides further generalization and robustness to the results of the
target/control regression.

The radar data analysis corroborates the statistical findings by demonstrating the
differences in storm properties between seeded and unseeded storms over the target area.
The degree of enhancement in storm properties generally agrees with similar radar-based
studies on hygroscopic seeding experiments in Thailand [17] and China [40]. Hygroscopic
seeding through the updraft portion of convective clouds is expected to rapidly convert
cloud water vapor to droplets (condensation), thereby increasing the echo volume. Hence,
natural disparities in vertical (updraft) velocities between unseeded and seeded storms
may explain differences in the evolution of their cloud properties over time, which may not
be fully attributed to seeding effects. For instance, the 1024_N (non-seeded) 0848_S0900
(seeded) storms record peak vertical velocities of 0.5 and 2.5 m/s, respectively.

Also, mixed-phase clouds frequently occur over the target areas [62]. The latent heat
released by the deposition of ice particles increases the buoyancy of growing turrets and the
resulting echo top height. Increases in cell top heights have significant non-linear impacts
on rain production rates [68]. The growth of seeded cloud top heights may have been
underestimated in the analysis, particularly those in close proximity to the Al Ain radar
(see Figure 1) and falling within its cone of silence.

Finally, the rapid decreases in precipitation flux and VIL after the peaks in the extended
lifetimes of seeded storms (see Figures 6f and 7f) indicate the onset of rainfall through
cloud base. In terms of indirect impacts, the enhanced rainfall in conjunction with the
increased entrainment of drier environmental air into seeded clouds can trigger strong
downdrafts which interact with sub-cloud ambient winds. This interaction can enhance
convergence and trigger additional neighboring cloud growth, which may explain the
3-fold increase in area cover in storm 0848_S0900 after seeding (see Figure 6d).

5. Conclusions

This study conducts the first attempt to objectively evaluate seeding impacts from
the UAE cloud seeding program. The methodology combines both statistical and physical
approaches by utilizing long-term records from rain gauges over unseeded (1981–2002)
and seeded (2003–2019) periods, complemented by polarimetric radar data. A posteri-
ori historical target/control regression indicates an average increase of 23% in rainfall
associated with seeding along with statistically significant change points detected in 2011
with decreasing/increasing rainfall trends for pre-/post-change point periods, respectively.
The radar-based physical analysis inter-compared an archive of storm properties between
unseeded (87) and seeded (65) storms. Results show consistent and systematic enhance-
ments in storm properties within 15–25 min of seeding. The largest increases are recorded
in storm echo volume (159%), area cover (72%), and lifetime (65%). While limitations
and uncertainties require attention and further investigation (see Section 4), the overall
results are in line with similar evaluations of operational hygroscopic seeding in other
regions [17,40]. The combined statistical-physical evidence presented in this work provides
important insights regarding the long-term impacts of cloud seeding operations over the
UAE and its contribution to the nation’s water resources.

The UAE Research Program for Rain Enhancement Science (UAEREP) was established
in 2015 under the supervision of the NCM to stimulate and promote scientific advancement
and the development of new technology in the field [45]. The UAEREP is an international
merit review research initiative that provides managed grant assistance to projects target-
ing innovative research on cloud seeding and the broader field of rainfall enhancement.
Several projects supported by the UAEREP report on the need to better quantify the size,
concentration, and chemical composition of the natural background aerosol population
encountered during seeding operations in order to evaluate seeding impacts in dusty and
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polluted environments such as the UAE [42,69–71]. Further studies using in-situ cloud
measurements coupled with microphysical modeling can help evaluate and refine ongoing
seeding operations. Internationally driven and targeted research within the framework of
UAEREP can advance the role of rainfall enhancement as a robust tool to support water
security efforts.
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