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S1. Considerations on the time span for calculation of the reference average

In order to calculate, for each of the lockdown phases examined, an average of the
concentrations measured in the years prior to 2020, to be used as a reference (counter-
factual) scenario representative of business-as-usual conditions (Sect. 3.1), an averaging
time span must be carefully chosen. This interval must be:

1. short enough, to ignore any long-term trend, both in the pollutant emissions and
in the meteorological conditions, present in the data set (or assume that natural
variability has a larger effect) and not to introduce a bias in the calculation of the
2020 anomaly [1];

2. sufficiently long, in order for the average value to be representative of mean
conditions and not much impacted by the anomalous meteorology in a specific
year.

A brief study is therefore carried out to assess the optimal time span, based on the
two points above.

First of all, we consider the effect of possible trends (point 1). To this end, we use, as
an example, the series of NO2 surface concentrations in Donnas, i.e. one of our longest
data sets according to Table 1 (main text) and characterised by a clear long-term trend
due to improvements in air quality. A Theil-Sen test [2] is applied on the deseasonalised
data set. The results are presented in Fig. S1. The trend amounts to -1.05 µg m−3 year−1

and is highly significant (p < 0.001). This means that if we do not want to introduce
an error larger than a few µg m−3 (which is approximately the expected concentration
decrease during P2) on the calculation of the reference average, a time span longer than,
e.g., 5 years is not recommended.

Figure S1. Deseasonalised NO2 series in Donnas (cyan) and results of the Theil-Sen test (red).
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Besides (second point), the averaging time should be long enough to avoid strong
influence by anomalous meteorological conditions on surface concentrations. In order to
quantify the “roughness” of the data set resulting from averaging over different time
spans, we develop the following metrics. We first average together n years of daily
data (to obtain the n-year average Ai,n, with i ranging from 2006 to 2019− n + 1, in
the specific case) over all combinations of contiguous periods (e.g., if n = 2, 2006–2007,
2007–2008, etc.; if n = 3, 2006–2008, 2007–2009, etc.). Then, we define a “variability
index” (VIn) of the resulting averaged series. We can employ, as a metrics, the average
absolute deviation (AAD) of the successive differences, i.e.

VIn =
1

(2019− 2006− n + 1)

2019−n

∑
i=2006

|Ai+1,n − Ai,n| (1)

The variability of the n-year averages is represented in Fig. S2 for each lockdown
phase (cf. Table 2 in the main text). As can be easily seen, the “roughness” of the series
rapidly decreases if a few years are averaged together, then reaches a stable plateau
(due to the presence of a trend in the data set). The optimal averaging span depends
on the considered lockdown phase, for example the variability is larger and needs a
longer average time in winter (phases 1 and 6). A span of 4–5 years is a reasonable
choice to avoid large disturbances from short-term weather anomalies while keeping the
averaging interval short.

Figure S2. Variability of n-year averages as a function of the time span. The dashed vertical line
represents the selected 5-year span. Each line corresponds to a different lockdown phase (cf. Table
2 in the main text, the month initials are reported in parentheses next to the period for better
understanding).

For the sake of consistency, i.e. to allow accurate comparison with the average
method, a similar 5-year span is used to train the predictive statistical model (Sect. 3.2).
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S2. Validation of the predictive statistical model (random forest)

The accuracy of the predictive statistical model is assessed in the following way [3].
Several models are trained for validation purposes over five periods (of 5 years each), i.e.
2010–2014, 2011–2015, 2012–2016, 2013–2017, 2014–2018, and they are compared with real
measurements from years 2015, 2016, 2017, 2018, and 2019, respectively. Here we report
the mean bias (MB) and the Pearson’s correlation coefficient (R), as metrics of the model
reliability. The metrics of the comparison show that the model performs well. Indeed, the
Pearson’s correlation indices between simulations and observations are almost always
0.9 for gases in Aosta–downtown and in Donnas (here with the exception of NO, likely
more dependent on the instantaneous traffic fluxes or short-term weather effects), and
the mean bias generally amounts to few µg m−3. The complex meteorological and
emission conditions in Courmayeur are more difficult to parameterise, however the
Pearson’s coefficients are still within 0.6 and 0.8. The random forests for PM10 perform
slightly worse than for gases, likely due to longer particle lifetime and a wider range of
sources, but the correlation coefficient is anyway rather large (> 0.7 in most cases).

Table S1. Comparison metrics between measurements and predictions by the statistical model for NO.

Year Training period Courmayeur Aosta–downtown Donnas
MB (µg m−3) R MB (µg m−3) R MB (µg m−3) R

2015 2010–2014 5.8 0.8 4.1 0.9 1.9 0.7
2016 2011–2015 0.2 0.7 10.4 0.9 2.6 0.7
2017 2012-2016 8.8 0.8 1.8 0.9 2.4 0.6
2018 2013–2017 8.5 0.7 13.1 0.8 1.4 0.7
2019 2014–2018 6.4 0.6 3.1 0.9 3.6 0.7

Table S2. Comparison metrics between measurements and predictions by the statistical model for NO2.

Year Training period Courmayeur Aosta–downtown Donnas
MB (µg m−3) R MB (µg m−3) R MB (µg m−3) R

2015 2010–2014 3.6 0.7 1.6 0.9 0.0 0.9
2016 2011–2015 1.2 0.8 2.3 0.9 2.4 0.9
2017 2012-2016 0.4 0.8 -2.0 0.9 0.0 0.9
2018 2013–2017 8.6 0.6 5.8 0.9 3.7 0.8
2019 2014–2018 8.0 0.7 2.1 0.9 4.5 0.8

Table S3. Comparison metrics between measurements and predictions by the statistical model for O3.

Year Training period Aosta–downtown Donnas
MB (µg m−3) R MB (µg m−3) R

2015 2010–2014 -4.1 0.9 -5.4 0.9
2016 2011–2015 0.5 0.9 -7.1 0.9
2017 2012-2016 -3.4 0.9 -5.6 0.9
2018 2013–2017 0.6 0.9 5.5 0.9
2019 2014–2018 1.5 0.9 -1.5 0.9

Table S4. Comparison metrics between measurements and predictions by the statistical model for PM2.5.

Year Training period Aosta–downtown
MB (µg m−3) R

2015 2010–2014 2.1 0.8
2016 2011–2015 2.1 0.8
2017 2012-2016 -0.7 0.8
2018 2013–2017 3.5 0.7
2019 2014–2018 0.4 0.7
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Table S5. Comparison metrics between measurements and predictions by the statistical model for PM10.

Year Training period Courmayeur Aosta–downtown Donnas
MB (µg m−3) R MB (µg m−3) R MB (µg m−3) R

2015 2010–2014 4.0 0.6 3.1 0.8 -0.2 0.7
2016 2011–2015 1.6 0.6 4.4 0.8 1.4 0.7
2017 2012-2016 1.6 0.7 -1.7 0.8 1.2 0.7
2018 2013–2017 5.1 0.4 4.1 0.7 7.5 0.7
2019 2014–2018 4.1 0.4 2.2 0.7 2.2 0.7
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S3. Details on the emission inventory and its variations in 2020

The 11 SNAP97 categories related to the types of local emission sources are listed in
the following table, according to the European CORINAIR method (e.g., https://www.
eea.europa.eu/publications/EMEPCORINAIR5, last access: 22 June 2021).

Table S6. The 11 SNAP97 categories defined by the European CORINAIR method.

Category Code

Combustion in energy and transformation industries 01
Non-industrial combustion plants 02
Combustion in manufacturing industry 03
Production processes 04
Extraction and distribution of fossil fuels and geothermal energy 05
Solvent and other product use 06
Road transport 07
Other mobile source and machinery 08
Waste treatment and disposal 09
Agriculture 10
Other sources and sinks 11

https://www.eea.europa.eu/publications/EMEPCORINAIR5
https://www.eea.europa.eu/publications/EMEPCORINAIR5
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S4. Details on the meteorological context in 2020 compared to the previous years

The same weather classification introduced in one of our previous studies [4] was
used here to easily compare the meteorological patterns in 2020 to the previous years.
Figures S3–S5 show the results from the classification, together with detailed information
on air temperature and precipitation. It can be noticed that winter periods are generally
characterised by wind calm, likely owing to strong temperature inversions in the lowest
atmospheric layers and cloudy conditions. In the other periods of the year, the weather
is dominated by easterly flows, driven by either the thermal circulation or synoptic
forcing, and usually carrying air pollution from the Po basin. Days characterised by
westerly winds and precipitation can occur, but they are less systematic – their frequency
changing from year to year – and the geographical distribution of precipitation might be
very heterogeneous.

Figure S3. Occurrence of different weather types in the analysed periods for different years. Notice the different range of
the vertical scales in the subfigures.
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We also show the statistical distributions of the daily average air temperature and
the total precipitation in each period.

Figure S4. Comparison of daily average air temperature in the analysed periods for different years.

Figure S5. Comparison of total precipitation in the analysed periods for different years.
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S5. Details on gaseous pollutant concentrations

The statistical distributions of the daily average concentrations of surface gaseous
pollutants measured in the last six years at different air quality stations are shown here
below (the respective plot for NO2 can be found in the main text).

Figure S6. Median (horizontal line in the box), interquartile range (box height), overall variability excluding outliers (vertical
line) of daily average NO concentrations measured in each period (cf. definitions in the main text) of the last 6 years at each
air quality station. Notice that the ranges of the vertical scale at the three stations are different for better visualisation.

Figure S7. Same as the previous figure, for surface O3 concentrations. Notice the different ranges of the vertical axes in the
panels.
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A comparison between actual observations and random forest forecasts (counter-
factual scenario accounting for weather effects) is shown here below for each gaseous
pollutant and each station. The respective plot for NO2 can be found in the main text.

Figure S8. Observation (red) and prediction with the random forest algorithm (blue) of NO surface concentrations for year
2020. The vertical scales are different for ease of visualisation.

Figure S9. Observation (red) and prediction with the random forest algorithm (blue) of O3 surface concentrations for year
2020. The vertical scales are different for ease of visualisation.
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As an example of the gaseous pollutant evolution over the whole domain, a map of
the differences between the NO2 surface concentrations simulated with the CMT for the
curtailed and reference scenarios in each period is presented here below.

Figure S10. Differences between the NO2 surface concentrations simulated with the CTM for the curtailed and reference
scenarios in each period of the year.
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S6. Details on PM concentrations

The following plots represent the statistical distribution of daily average PM con-
centrations measured in the last six years at different air quality stations.

Figure S11. Median (horizontal line in the box), interquartile range (box height), overall variability (excluding outliers) of
daily average PM2.5 concentrations measured in each period (cf. definitions in the main text) of the last 6 years at each air
quality station.

Figure S12. Same as the previous figure for surface PM10 concentrations. Notice the difference in the range of the vertical
axes.
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Here below we represent the actual observations and the random forest forecasts
for PM.

Figure S13. Observation (red) and prediction with the random forest algorithm (blue) of PM2.5 surface concentrations in
Aosta–downtown for year 2020.

Figure S14. Observation (red) and prediction with the random forest algorithm (blue) of PM10 surface concentrations at the
different air quality stations for year 2020.
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Total reductions in emissions of particulate matter from the inventory, resulting
from curtailed emissions sources, are shown in the plot below.

Figure S15. Total PM10 emissions in the reference and curtailed scenarios and their percentage
reduction over the domain of study. P1 is left unchanged, since it is prior to the lockdown measures.
A similar figure for NOx is provided in the main text.
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A map of the differences between the simulated PM10 surface concentrations for
the curtailed and reference scenarios in each period is presented here below.

Figure S16. Differences between the simulated PM10 surface concentrations for the curtailed and reference scenarios in each
period of the year.
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S7. Details on aerosol source apportionment

The following plots represent the source profiles from size-PMF at each site where
a Fidas200E particle spectrometer is installed. These are remarkably similar at all
sampling sites. As already discussed in a previous study [4], the accumulation mode
with the smallest size (centred at about 0.2 µm) is linked to particles formed through
condensation/coagulation processes and aging (“condensation mode”), such as sulfates
transported from the Po basin and aerosol originated locally from traffic exhaust and
heating. The slightly larger accumulation mode, centred at about 0.5 µm (“droplet
mode”), is representative of the nitrate particles forming in aqueous-phase processes,
e.g. in fog during the cold season. The third mode correlates remarkably well with
mineral dust deposition, and possibly its resuspension. This is confirmed by comparing
its evolution with the results of desert dust forecasts (NMMB/BSC-Dust, http://ess.bsc.
es/bsc-dust-daily-forecast, last access: 22 June 2021) and the analysis of back-trajectories,
ALC profiles and volume size distributions from the sun/sky radiometer. The mode is
centred at about 2 µm, a size consistent with dust dry deposition [5,6]. Finally, the fourth
mode is coarse, with sizes up to 10 µm, and is representative of the largest particles such
as the ones resuspended from soil and de-icing road salt.

http://ess.bsc.es/bsc-dust-daily-forecast
http://ess.bsc.es/bsc-dust-daily-forecast
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Figure S17. Modes resulting from size-PMF factorisation at Courmayeur in 2018–2020.

Figure S18. Modes resulting from the size-PMF factorisation at the Aosta–downtown station in
2019–2020.
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Figure S19. Modes resulting from the size-PMF factorisation at the Aosta–industrial station in
2019–2020.

Figure S20. Modes resulting from the size-PMF factorisation at Aosta–Saint-Christophe in 2017–
2019.
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Figure S21. Contribution to the PM10 concentration measured at the Courmayeur station by the
four modes identified with size-PMF. Only periods with full data coverage are shown in the plot.

Figure S22. Same as the previous figure for the composite series from Aosta–Saint-Christophe
(June 2017–March 2019) and Aosta–downtown (September 2019–2020).
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The next figures show the source profiles from chem-PMF in Aosta–downtown us-
ing two different factorisations, one based on anion/cations and EC/OC/levoglucosan,
and the other based on anion/cation plus metals.

Factors emerging from the first factorisation are (Fig. S23): de-icing road salting
(with high concentrations of Na and Cl), biomass burning (high levoglucosan and
medium EC and OC), non-biomass burning combustion processes such as traffic/heating
(with high EC and NOx), two modes related to transport of secondary particles from
the Po basin (rich in nitrate and sulfate, respectively [4,7]), and a mode rich in crustal
elements, such as Ca and Mg. This latter may be connected with both resuspension by
traffic/wind and emission from industry. Indeed, oxides of Ca, Si, and Fe originate as
slags from the electric arc furnace employed in the steel mill. Moreover, Ca, Si, Al, and
Mg oxides form from refining treatments in the ladle furnace. These elements are present
in the coarse fraction of fugitive emissions from the industrial plant and are believed to
contribute to the “soil” mode at the Aosta–downtown station.

When metals are included in chem-PMF, seven factors arise (Fig. S24): road salt,
combustion processes, secondary sulfate, secondary nitrate, soil, and two factors re-
spectively rich in heavy metals (e.g., Cr, Ni, and Mo) from the steel mill, and a Cd- and
Pb-rich mode, which was attributed to the industrial sector in a previous study [4]. Cu is
found in similar quantities in both traffic and soil modes, which is a possible clue of the
contribution of traffic to soil resuspension.
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Figure S23. Factor profiles emerging from the anion/cation + EC/OC/levoglucosan chem-PMF. Coloured bars (left axis)
represent absolute concentrations, red points (right axis) mark the percentage contribution to each mode of the total for each
species.
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Figure S24. Factor profiles emerging from the anion/cation + metal chem-PMF.
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The next figure shows the relative contribution of the biomass burning factor to the
PM2.5 mass concentration in Aosta–downtown.

Figure S25. Contribution of the “biomass burning” mode to the PM10 concentration in Aosta–
downtown from chem-PMF based on anion/cation, EC/OC, and levoglucosan, further normalised
using the total PM2.5 concentration.

We report here below the estimates of eBC concentrations from the aethalometer
data and their optical source apportionment.

Figure S26. Absolute eBC concentrations measured in Aosta–downtown during 2020 and ratio between the fraction
attributed to fossil fuel and total BC.
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S8. Results from the sun/sky radiometer

The variations, compared to the average over the previous years, of the aerosol
optical depth (AOD) measured at a wavelength of 500 nm by the sun/sky radiometer
are shown here below.

Figure S27. Aerosol optical depth (at 500 nm) absolute anomaly compared to the previous years,
as measured by the POM-02 sun/sky radiometer.
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