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Abstract: The accuracy of the atmospheric mass density is one of the most important factors affect-
ing the orbital precision of spacecraft at low Earth orbits (LEO). Although there are a number of 
empirical density models available to use in the orbit determination and prediction of LEO space-
craft, all of them suffer from errors of various degrees. A practical way to reduce the error of a 
particular model is to calibrate the model using precise density data or tracking data. In this paper, 
a long short-term memory (LSTM) neural network is proposed to calibrate the NRLMSISE-00 den-
sity model, in which the densities derived from spaceborne accelerometer data are the main input. 
The resulted LSTM-NRL model, calibrated using the accelerometer data from Challenging 
Minisatellite Payload (CHAMP) satellite, is extensively experimented to evaluate the calibration 
performance. With data in one month to train the LSTM-NRL model, the model is shown to effec-
tively reduce the root mean square error of the model densities outside the training window by 
more than 40% in various time spans and space weather environment. The LSTM-NRL model is 
also shown to have remarkable transferring performance when it is applied along the GRACE sat-
ellite orbits. 
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1. Introduction 
Low Earth orbiting (LEO) satellite orbit is affected by many perturbing forces, among 

which the atmospheric drag has the largest uncertainty [1]. The drag is the result of the 
exchange of energy and momentum between satellite and the atmosphere [2], and its 
model needs the atmospheric mass density as one of several inputs. As such, the error of 
the atmospheric mass density leads to uncertainty in the orbit determination and propa-
gation of LEO satellites, which is essential to space conjunction analysis and collision 
avoidance. 

Since the launch of the first spacecraft, many atmospheric models have been devel-
oped to calculate the major parameters of the thermosphere, including the mass density. 
These models can be divided into an empirical model and a physical model. The physical 
model uses numerical methods to solve the fluid equations describing the thermospheric-
ionospheric coupling system, such as the global scale ionosphere-thermosphere coupled 
numerical model (TIE-GCM) developed by the National Center for the Atmosphere 
(NCAR) [3,4], and the global ionospheric thermosphere Model (GITM) developed by the 
University of Michigan [5]. The physical model does not rely on historical measurements, 
and can simulate the internal physical mechanisms of the atmosphere [6]. However, due 
to the low computational efficiency [7] and the uncertainty of the physical input [8], the 
physical model are mainly used in the theoretical research in the identification, analysis, 
and interpretation of physical processes. 
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At present, the astrodynamics community mostly uses empirical models to compute 
atmospheric mass density in the orbital propagation of LEO satellites. The empirical mod-
els include the mass spectrometer and incoherent scatter radar model (MSIS) class model 
[9], Jacchia class model [10], and the drag temperature model (DTM) class model [11]. The 
latest versions of these models take into account the densities derived from high-resolu-
tion accelerometer data of the CHAMP and GRACE satellites. However, the empirical 
models are still believed to have errors of about 15%~30%, and the errors could be much 
larger during the times of strong solar flares and geomagnetic storms. 

Therefore, many researchers have been working on reducing the errors of empirical 
models; one approach calibrated empirical models using the measured orbit and density 
data. The modified atmospheric density model (MADM), proposed by Marcos et al., uses 
a global calibration factor generated by the observations from one calibration satellite to 
improve the Jacchia 1970 model, and the calibration improves short-term orbit prediction 
capability by 15~30% [12]. Nazarenko et al. use a polynomial fitting the density model 
error to improve the accuracy of the density model by obtaining the polynomial coeffi-
cients [13]. Shi et al. uses two-line element (TLE) data to calibrate the NRLMSISE-00 model 
during the high solar activity period, and the root mean square error of the model is re-
duced by 9% [14]. The U.S. Air Force Space Battlelab’s high accuracy satellite drag model 
(HASDM) uses radar tracking data of 75 satellites from the space surveillance network 
(SSN) to calibrate the Jacchia-70 model, reducing the error of density to 6%~8% at altitude 
ranges from 200 km to 800 km. Moreover, the accuracy of orbital prediction within 3 days 
is improved by about 40% using the HASDM model [15,16]. Emmert et al. [17] and Picone 
et al. [18] proposed to derive the thermospheric mass density from TLE data, and the den-
sity is then used to calibrate the empirical density [19]. The results show that the error of 
density computed from the NRLMSISE-00 model is reduced to 12% [20], but this approach 
is limited by the temporal resolution and the accuracy of TLE data. Sang et al. proposed a 
method for calibrating the empirical atmospheric density along the orbit using the Precise 
Orbit Determination Data (POD) [21]. These methods are all based on the physical rela-
tionship between atmospheric drag and orbit variation. The effectiveness of the methods 
is not only affected by the quality and distribution of data, but also depends on the ration-
ality of the basic assumptions of the methods. 

In the past few years, many researchers have applied the machine learning in cali-
bration of the empirical density. Perez et al. use the feed-forward time delay neural net-
work (FTDNN) and the recurrent time delay neural network (RTDNN) to calibrate the 
empirical model density along the orbits. The data used in the training process includes 
the density computed from three empirical models (the DEM-2013, JB2008 and 
NRLMSISE-00) and the density derived from accelerometer data [22,23]. Gao et al. use the 
Gaussian process method to calibrate the NRLMSISE-00 and JB-2008, and a framework is 
developed to estimate the atmospheric density based on empirical models, space environ-
mental conditions, and satellite measurements [24]. Chen et al. use artificial neural net-
work to calibrate the density model during magnetic storms; the accuracy of the short-
term orbit prediction is superior to those using JB-2008 and NRLMSISE-00 [25]. 

For the orbital propagation, a time series of the atmospheric density is needed. The 
recurrent neural network (RNN) can remember the information before the current time, 
and adopts this information into the current output. The RNN is proved to be effective on 
calibrating the atmospheric density along the orbit (two neural networks used in Perez et 
al. are RNN). However, the training process of traditional RNN could lead to “gradient 
disappearance” or “gradient explosion”, which may cause the failure of the training 
model. As a type of RNN, the long short-term memory (LSTM) neural network is specifi-
cally designed to solve such problem by gate control system, which motivates us to train 
a density calibration model based on the LSTM. 

In this paper, the LSTM is applied to calibrate the empirical NRLMSISE-00 density 
model along the orbit of spacecraft. The data used to train model includes the empirical 
densities along the orbit of the CHAMP satellite and the space weather data. The labels 
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are the densities derived from the accelerometer data of the CHAMP, which is the target 
of the calibration. In the test process, the empirical density and space weather data are the 
inputs into the LSTM, resulting in a calibrated density model named LSTM-NRL. The 
performance of the LSTM-NRL model outside the training window is evaluated with the 
accelerometer-derived density as the reference. The LSTM-NRL model is also applied in 
the orbit propagation of CHAMP to demonstrate its ability to reduce the orbit prediction 
error. 

Section 2 starts with the introduction of the data and methods used in this paper. The 
NRLMSISE-00 and the accelerometer-derived density are introduced in Section 2. A brief 
introduction of the LSTM neural network and the training process are also included in 
Section 2, as well as eight test sets in this paper. The results of the eight experiments are 
presented and analyzed in Section 3. Section 4 concludes this paper. 

2. Data and Methods 
2.1. NRLMSISE-00 Model 

The NRLMSISE-00 is the latest of the MSIS class empirical models which describes 
the density, temperature, and composition of the thermosphere. This model utilizes the 
density derived from the accelerometer data and orbits, the molecular oxygen density, 
and the temperature obtained from incoherent scatter radar [9]. The inputs of NRLMSISE-
00 include the time, the position (geodetic latitude and longitude, altitude), and the space 
weather data in forms of the daily value of solar extreme ultraviolet radiation index 
(F10.7), its average (F10.7a) in 81 days, and the geomagnetic index (ap). 

2.2. The “True” Density 
The density derived from the spaceborne accelerometer data is widely used to eval-

uate the accuracy of the atmospheric density model [22], since the high-precision accel-
erometer accurately measures non-gravitational acceleration exerting on satellite. By elim-
inating the acceleration caused by the solar radiation pressure from the measured accel-
eration, the rest is the drag acceleration, 𝒂 . The mass density, ρ, can be computed 
from the following Equation (1): 𝒂 = − 12 𝐶 𝐴𝑚 𝜌𝒗𝑣 (1)

where, 𝐶  is the drag coefficient of the satellite,  is the area-to-mass ratio of the satel-
lite, and 𝒗 is the velocity vector of the satellite with respect to the atmosphere. 

In this paper, The CHAMP satellite is selected as test satellite. CHAMP was launched 
on 15 July 2000 into 460 km altitude orbit and reentered on 19 September 2010. The satellite 
was equipped with high precision accelerometer and GPS receiver, among other sensors. 
The atmospheric density retrieved from the accelerometer data is regarded as the “true” 
value. The “true” density is used not only as calibration target in the training process, but 
also as a reference to evaluate the performance of the LSTM-NRL outside the training 
window. It is noted that, when retrieving the density from CHAMP accelerometer data, 𝐶  calculated through response surface model by Mehta [26–28] is used. For more infor-
mation about retrieving the density from accelerometer data, it is referred to in [20,29]. 

Precise ephemeris of the satellite is determined by processing GPS tracking data and 
is made public on the website of the German Research Center for Geosciences (GFZ) [30]. 
It is used to compute the NRLMSISE-00 model density value along the orbit of satellite at 
time of interest. 
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2.3. LSTM Neural Network 
2.3.1. LSTM Cells 

The LSTM network is a type of RNN network, which is designed specifically to deal 
with time series data. RNN is characterized by the ability to consider the previous infor-
mation to the current output. The RNN mainly adopts back-propagation through time 
(BPTT) [31], or real-time recurrent learning (RTRL) [32] to descent the gradient in pro-
cessing the time series data. Although the ways of getting gradients and updating model 
parameters are different for two algorithms, the RNN is prone to the phenomenon of “gra-
dient disappearance” or “gradient explosion”, which will lead to too long learning time 
or even failure to achieve the gradient descent or allocate weight [33,34]. 

Unlike traditional RNN, the LSTM solves the problem of gradient disappearance and 
explosion by gate control system, which includes the input gate, output gate, forget gate, 
and memory gate. The structure of a LSTM cells is shown in Figure 1. 

 
Figure 1. The structure of a LSTM cell. 

The whole orange box in Figure 1 presents an LSTM cell at the current moment, and 
the yellow rectangle means sigmoid or tanh layer, which are the activation functions in 
the LSTM. The state of the cell (𝑐 ) and the information in the hidden layer (ℎ ) at the 
last moment are transformed into the current moment cell. First, ℎ  and the input in-
formation at the current time, 𝑥 , are inputs into the forget gate (red box). The output of 
the sigmoid [0, 1] determines how much information in 𝑐  needs retained or discarded. 
The 1 means all information retained and the 0 means completely discarded. The forget 
gate can be represented by Equation (2): 𝑓 = 𝜎 𝑊 𝑥 + 𝑊 ℎ + 𝑏  (2)

where 𝑏 is the bias vector, 𝑊 are the weight matrix, and the subscript refers to the cor-
responding element. 

Then, there are two parts in the input gate (green box). The output of sigmoid and 
tanh determines how much and what new information needs to be added in the current 
cell, respectively. The output value of the input gate is added to the state of the current 
cell 𝑐 , which is updated by the forget gate at the last step. The input gate can be repre-
sented by Equations (3) and (4): 𝑖 = 𝜎(𝑊 𝑥 + 𝑊 ℎ + 𝑏 ) (3)𝑐 = 𝑓 𝑐 + 𝑖 tanh(𝑊 𝑥 + 𝑊 ℎ + 𝑏 ) (4)
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where 𝑐  is the updated cell state, and 𝑖 ∈ [0, 1] determines how much information will 
be added to 𝑐 , which will be regarded as input data to the next cell. 

Finally, there are two parts in the output gate (blue box). The output of sigmoid de-
termines how much information will be used, and the tanh provides the information, as 
described in Equations (5) and (6). Similarly, 𝑐 , the ℎ  will be regarded as input data to 
the next cell too. 𝑜 = 𝜎(𝑊 𝑥 + 𝑊 ℎ + 𝑏 ) (5)ℎ = 𝑜 tanh(𝑐 ) (6)

2.3.2. LSTM-NRL Model 
The training data of the LSTM-NRL includes the NRLMSISE-00 densities and space 

weather data as the sample data, and the “true” density as corresponding labels from 1 
January to 28 January 2007. The empirical density and the “true” density are introduced 
in Sections 2.1 and 2.2. As the density value has a small magnitude (10 ~10 𝑘𝑔/𝑚 ), 
its logarithmic value is used to avoid the influence of data magnitude on the processing 
results. The space weather data include F10.7, F10.7a, and ap index. The 10.7 cm solar 
radio flux (F10.7) is one of the most widely used indices of solar actively [35]. F10.7 is 
determined by the average of the intensity of solar radio emission in the 100 MHz band-
width centered at 2800 MHz (the wavelength is 10.7 cm) over an hour. The unit of F10.7 
is sfu, and 1𝑠𝑓𝑢 = 10 𝑊/(𝑚 ∙ 𝐻𝑧). Since the solar activity has a huge influence on the 
thermosphere density, both the daily value of F10.7 and its average (F10.7a) in 81 days are 
used to represent the solar activity level. Besides, during geomagnetic storms, the geo-
magnetic activity may affect the thermospheric atmosphere more than the solar activity 
[36], thus the geomagnetic index (ap) given every 3 h is used to represent the geomagnetic 
activity. The ap has a unit in nT [37]. In this paper, the F10.7, F10.7a, and ap index are 
downloaded from CelesTrak website [38]. 

In the training process, each type of the original training data is standardized using 
the Equation (7). 𝑥( ) = 𝑥 ( ) − 𝜇( )𝜎( )  (7)

where the 𝑥 ( )  is a specific type of original data (empirical density, “true” density, 
F10.7, F10.7a or ap) at 𝑡, 𝜇( ) and 𝜎( ) are expectation and standard deviation of corre-
sponding original training data, respectively. The structure of the LSTM-NRL density cal-
ibration model is shown in Figure 2, including an input layer, a hidden layer, an output 
layer, and the training process. 
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Figure 2. The structure of the LSTM-NRL calibration model. 

In Figure 2, the standardized data includes the sample data X and corresponding 
labels 𝑌, which can be expressed as Equations (8) and (9), respectively. 

𝑋 = 𝑋𝑋⋮𝑋 = 𝑠 𝑠 ⋯ 𝑠𝑠 𝑠 ⋯ 𝑠⋮𝑠 ⋮𝑠 ⋮⋯ ⋮𝑠  (8)

𝑌 = 𝑌𝑌⋮𝑌 = 𝜌𝜌 ⋮𝜌  (9)

where 𝑠 = (𝑙𝑔 (𝜌 ) , 𝐹 . , 𝐹 . , 𝑎𝑝 ). 𝑡 is the time delay of the LSTM network, one 
of the important parameters, which will affect the performance of the model. For the cal-
ibration of density time series, the time delay determines how many previous data points 
are considered to calibrate the empirical density at the current time. The 𝑛 in Equation 
(8) is determined by 𝑡 and another parameter: sample rate. The sample rate determines 
how dense the density data is on the time scale. Whether small or too large, the sample 
rate may lead to over-fitting or under-learning of the atmospheric density features, which 
will affect the performance of trained model within and/or outside the training window. 
The accelerometer data rate is 0.1 Hz, resulting in a total of 241,920 “true” densities and 
sample data 𝑠  during the training period. The appropriate time delay and sample rate 
are found by trying different combinations. For the given problem, the time delay and the 
sample rate are found to be 200 data points and 60 s, respectively. More details are pre-
sented in Section 3. Therefore, the 𝑛 in Equation (8) is 40,120 (n = total training data 
size/data sample rate-time delay = 241,920/60–200) sets of data are eventually used in the 
model training. The labels 𝑌  is the “true” density at the next data point of the sample 
data. For example, 𝑋  includes 200 sample data from 𝑠  to 𝑠 , the corresponding label 
is 𝑙𝑔(𝜌) . 

The hidden layer of the LSTM-NRL consists of n LSTM cells, as shown in Figure 2. 
When 𝑋  is the input to the cell, the output 𝑦  of each cell can be represented by Equation 
(10). 𝑦 = LSTM (𝑋 , 𝐶 , 𝐻 ) (10)

where LSTM  is the LSTM forward calculation method Equations (2)–(6). 
After that, the MSE is used as the loss function to calculate the difference between 𝑦 

and the “true” density 𝑌. The loss function is shown in Equation (11). 
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MSE(y, Y) = 1𝑛 (𝑦 − 𝑌 )  (11)

The adaptive moment estimation (ADAM) is used to update the weights of LSTM 
network in the direction of the decreasing value of the loss function, as shown in Figure 
2. More details about ADAM can be obtained from [39]. Lastly, 𝑋 is the input to the cells 
in the hidden layer, whose weights are updated at last epoch, to update the weights of 
network for many times, then the final hidden layer and LSTM-NRL can be obtained. 

When the LSTM-NRL is used to calibrate the empirical density, the output of hidden 
layer 𝑦  is standardized and needs to be de-standardized to obtain the calibrated density, 
as shown in Equation (12). 𝑙𝑔(𝜌 ) = 𝑦 × 𝜎 + 𝜇 (12)

where 𝜎 and 𝜇 are expectation and standard deviation of the empirical density, respec-
tively. 

In summary, the input to the LSTM-NRL include the NRLMSISE-00 empirical den-
sity, the daily F10.7, its average F10.7a in 81 days, and the 3-hourly geomagnetic index ap, 
and the output is the calibrated density. The input and output relationship of the LSTM-
NRL model is shown in Equation (13). 

𝑙𝑔 𝜌(𝑡) = 𝑓 ⎝⎜
⎛𝑙𝑔 𝜌 (𝑡) , … 𝑙𝑔 𝜌 (𝑡 − (𝑇 −1)𝑡 )𝐹 . (𝑡), … 𝐹 . (𝑡 − (𝑇 −1)𝑡 )𝐹 . (𝑡), … 𝐹 . (𝑡 − (𝑇 −1)𝑡 )𝑎𝑝(𝑡), … 𝑎𝑝(𝑡 − (𝑇 −1)𝑡 ) ⎠⎟

⎞
 (13)

where 𝑓 represents the nonlinear function of the density calibration using the LSTM-
NRL, lg (𝜌(𝑡))  is the calibrated density output from the LSTM-NRL at 𝑡 . 𝜌 (𝑡) , 𝐹 . (𝑡), 𝐹 . (𝑡), and a𝑝(𝑡) are the empirical density, F10.7, it’s average in 81 days, and 
geomagnetic index at 𝑡, respectively. 𝑇  and 𝑡  are the time delay and sample rate, 
respectively. 

2.4. Test Experiment Design 
Given the training time window, from 1 January to 28 January 2007, the LSTM-NRL 

model is trained and its performance within and outside the training window has to be 
evaluated. In particular, the performance in different time spans and space weather envi-
ronments after the training window is of most interest, since the LSTM-NRL model is to 
be used in practical applications. Eight tests are designed as follows. 
• Test 1: the purpose is to determine the time delay and sample rate. The time delay 

and the sample rate of the LSTM-NRL model are tuned. In the tuning, the data on 31 
January 2007 is used as the test data. The parameter tuning results are presented in 
Section 3.1. 

• Test 2 and Test 3: the purpose is to evaluate the performance of LSTM-NRL over 
different time spans after the training window. Test 2 uses the data sets in a month 
1–28 February 2007 as test data, and Test 3 uses the data in a year from 1 March 2007 
to 29 February 2008. 

• Test 4 and Test 5: the purpose is to evaluate the performance of the LSTM-NRL model 
at different solar and geomagnetic activity level. Test 4 chooses 2 days, a day of high 
solar and geomagnetic activity on 30 January 2007 (day 30 of 2007) and a day of low 
solar and geomagnetic activity on 19 August 2007 (d231), as test sets to observe the 
performance of the LSTM-NRL model. It is noted that the 2 days in Test 4 are chosen 
to compare with the calibration performance of other researchers under typical high 
or low solar and geomagnetic activity [22,24]. To further verify the LSTM-NRL model 
performance during period of high or low solar and geomagnetic activity, Test 5 
chooses other 3 days with high solar and geomagnetic activity (Test 5-high, day 118, 
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195, and 345 of 2007), and 3 days with low (Test 5-low, day 103, 204, and 322 of 2007) 
as test sets. 

• Test 6: the purpose is to assess the LSTM-NRL’s performance over most of CHAMP 
satellite’s operation life. The data in 6 full years from 2003 to 2008 is chosen as test 
sets, during which the orbital altitude of the satellite has changed significantly. 

• Test 7: the purpose is to demonstrate the transferring performance of the LSTM-NRL 
model trained using the CHAMP data. Test 7 takes the density along the orbits of 
two GRACE satellites as test sets. 

• Test 8: the purpose is to present the effect of the LSTM-NRL model on the orbital 
propagation accuracy. 
The mean values of F10.7 and ap in the training process and Test 1 to Test 5 are pre-

sented in Table 1, and the trend of space weather index in the tests is shown in Figure 3. 
Besides, the mean values of F10.7 and ap in Test 6 are given in Section 3.4. 

Table 1. The mean of solar radio flux (F10.7) and geomagnetic index (ap) in different time span. 

Texst Time Span Mean of F10.7 (sfu) Mean of ap (nT) 
Train 1 January 2007–28 January 2007 80.34 8.43 

Test 1 31 January 2007 86.94 19.46 

Test 2 1 February 2007–28 February 2007 75.8 7.08 
Test 3 1 March 2007–29 February 2008 71.64 7.61 

Test 4-d30 30 January 2007 84.9 24 
Test 4-d231 19 August 2007 69.4 4 

Test 5-high 
28 April 2007 & 14 July 2007 & 11 Decem-

ber 2007 
86.0 & 78.2 & 90.5 28.0 & 19.0 & 16.0 

Test 5-low 
13 April 2007 & 23 July 2007 & 18 Novem-

ber 2007 
68.0 & 69.3 & 67.2 1.0 & 3.0 & 2.0 

 
Figure 3. The trend of F10.7 and ap in 5 Tests. 

The blue box in Figure 2 shows the F10.7 and ap in the training process, and the yel-
low box and the green box present the two index values in Test 2 and Test 3, respectively. 
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2.5. Model Performance Evaluation 
To assess the performance of the LSTM-NRL, two metrics are used: the root mean 

squared error (RMSE) and the Pearson correlation coefficient (R). RMSE is used to repre-
sent the deviation of the model density from the “true” density shown in Equation (14), 
and R measures the linear dependence between two series shown in Equation (15). 

𝑅𝑀𝑆𝐸 = 1𝑛 (𝜌 − 𝜌 )  (14)

𝑅 = ∑   (𝜌 − �̅� ) 𝜌 − 𝜌∑   (𝜌 − �̅� ) ∑   𝜌 − 𝜌  (15)

where 𝜌 is the “true” density, and 𝜌 is the density from the NRLMSISE-00 or LSTM-
NRL model. 

For a series of calibrated density and corresponding “true” density series, the smaller 
RMSE is, the closer the two density series are, and the better the calibration performance 
of the model is. The R between the calibrated density series and the “true” density series 
present the linear dependence between two series, and the R ∈ [0, 1]. R > 0.6 indicates a 
strong correlation between the two density series, and R < 0.4 indicates a weak correla-
tion. 

3. Results 
3.1. Determination of the Time Delay and Sample Rate 𝑇  and 𝑡  determine how many data sets before the current time are considered 
to calibrate the density, which will affect the performance of the trained model. According 
to Equations (8) and (10), the output of LSTM cell from the hidden layer 𝑦(𝑖) is deter-
mined by 𝑋(𝑖) at time 𝑖, which can be expressed by Equation (16). 𝑋(𝑖) = [𝑆(𝑖) 𝑆(𝑖 − 1 × 𝑡 ) ⋯ 𝑆(𝑖 − ((𝑇 − 1) × 𝑡 )] (16)

where 𝑆(𝑖) = (𝑙𝑔 𝜌 (𝑖), 𝐹 . (𝑖), 𝐹 . (𝑖), 𝑎𝑝(𝑖)). As shown in Equation (16), 𝑡  deter-
mines how dense the density data on the time scale is used to compute 𝑦(𝑖). 𝑇  de-
termines how many data points before time 𝑖 are considered to compute 𝑦(𝑖). In the 
training process, overly small or large 𝑡  and 𝑇  may lead to over-fitting or under-
learning of the atmospheric density features, respectively, which will affect the perfor-
mance of trained model. 

In this section, the appropriated time delay and the sample rate of the LSTM-NRL 
model are found by parameter tuning method Using the data on January 31 2007 as the 
test set, Test 1 evaluates the performance of the LSTM-NRL with different 𝑇  and 𝑡 , 
and then the two parameters resulting in the best model performance are chosen. 

Firstly, the sample rate 𝑡  is set to fixed 60 s and various 𝑇  are tried. The RMSE 
and R values between the calibrated density series and the “true” density series are shown 
in Table 2. For comparison, the two metrics between the empirical density series and the 
“true” density series are also presented in Table 2 too. It is noted that the best results, in 
terms of RMSE and R, are bold in the following tables. 

Table 2. The performance of the LSTM-NRL when changing 𝑇 . It is noted that the best re-
sults, in terms of RMSE and R, are bold in the table. 

Model 𝑻𝑴𝑺𝑰𝑺𝑬 𝒕𝒔(𝐬) RMSE (𝒌𝒈𝒎𝟑 × 𝟏𝟎 𝟏𝟐) R 
NRLMSISE-00 - - 1.0487 0.8761 

LSTM-NRL 
10 60 0.2899 0.9000 
20 60 0.2742 0.9093 
50 60 0.2822 0.9093 
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100 60 0.2715 0.9105 
200 60 0.2616 0.9152 
300 60 0.2646 0.9157 
500 60 0.3053 0.9273 

As shown in Table 2, for the tried 𝑇  and 𝑡 , the LSTM-NRL performs better 
than the NRLMSISE-00, where the density output from the LSTM-NRL is closer to the 
“true” density than the empirical model. The minimum RMSE is obtained when 𝑇  
is set as 200. Increasing the time delay to 300 or 500 will result in higher R, but RMSE is 
decreased. From this table, it is seen that the best 𝑇  is 200, corresponding to the sam-
ple rate 𝑡 = 60 𝑠. In fact, given 𝑇 = 200, the best sample rate 𝑡 = 60 𝑠 is obtained 
from the results in Table 3. Therefore, the time delay and sample rate are set to 200 and 60 
s, respectively, in the following experiments. 

Table 3. The performance of the LSTM-NRL when changing the 𝑡 . It is noted that the best results, 
in terms of RMSE and R, are bold in the table. 

Model 𝑻𝑴𝑺𝑰𝑺𝑬 𝒕𝒔(𝐬) RMSE (𝒌𝒈𝒎𝟑 × 𝟏𝟎 𝟏𝟐) R 
NRLMSISE-00 - - 1.0487 0.8761 

LSTM-NRL 

200 30 0.3014 0.9057 
200 60 0.2616 0.9152 
200 120 0.2667 0.9163 
200 180 0.3181 0.9137 
200 300 0.3632 0.8775 
200 600 0.3602 0.8720 

3.2. Extrapolation Performance of the LSTM-NRL over Long Time Span 
Test 2 and the Test 3 use data in one month and one year, respectively, to evaluate 

the long-term extrapolation performance of the LSTM-NRL outside the training window. 
Table 4 presents the overall performance of the LSTM-NRL during the two evaluation 
time spans. 

Table 4. The overall performance of the LSTM-NRL in Test 2 and Test 3. It is noted that the best 
results, in terms of RMSE and R, are bold in the table. 

Model   Time Span Test2 Test3 

LSTM-NRL 
R 

1 month 
0.8859 0.9283 

RMSE ( × 10 ) 0.2115 0.3129 

NRLMSISE-00 
R 

1 year 
0.8569 0.9055 

RMSE ( × 10 ) 0.5747 0.9799 

As presented in Table 4, the overall RMSE values are reduced by 63.2% and 68.1% 
for Test 2 and Test 3, respectively, which means that the densities calibrated by LSTM-
NRL during a month (Test 2) or a year (Test 3) are closer to the “true” densities than the 
empirical densities. The overall R values between the calibrated densities and the “true” 
densities are increased during the test month and test year. The calibrated densities has 
better linear correlation with the “true” densities than the empirical densities. 

To have a more detailed knowledge about the performance of the LSTM-NRL during 
the test month and the test year, Figures 4 and 5 show the daily RMSE and R over the time 
spans of Test 2 and Test 3. 

As shown in Figure 4, all the RMSE values between the calibrated densities and the 
“true” densities in each day of the test month (Test 2) are smaller than the empirical den-
sities. Most of the R values between the calibrated densities and the “true” densities are 
higher than the empirical densities. From these two metrics, the LSTM-NRL is shown to 
perform better than the NRLMSISE-00 model in the test month. 
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The daily RMSE and R values in Figure 5 show a similar picture in each day of the 
test year (Test 3). It is noted that, although the R values in Figure 5 has a drop after day 
250, most of the R values are still greater than 0.6, which means there are strong linear 
correlations between the calibrated densities and the “true” densities in most days of the 
test year. In combination with Table 4 and Figures 4 and 5, the LSTM-NRL model is still 
quite effectively over one year, and the density accuracy after the calibration is signifi-
cantly improved. 

 
Figure 4. The daily RMSE and R over a month of Test 2. 

 
Figure 5. The daily RMSE and R over a year of Test 3. 

3.3. Performance of the LSTM-NRL on Days of High and Low Solar and Geomagnetic Activity 
The solar and geomagnetic activities are two major driving factors affecting the dy-

namics of the atmosphere. Densities computed from empirical models during the time of 
high solar and geomagnetic activity usually have larger errors. It would be interesting to 
see whether the LSTM-NRL model has better performance than the original NRLMSISE-
00 model during the time of high activities, as well as the time of low activities. Test 4 and 
Test 5 have such days, the performance of which are presented below. 

In Test 4, day 30 and day 231 of 2007 represent the times of high and low activity, 
respectively. The densities computed by the LSTM-NRL, the NRLMSISE-00, and the ac-
celerometer on the two days are shown in Figures 6 and 7. 
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Figure 6. The three density series on day 30 of 2007, Test 4. 

 
Figure 7. The three density series on day 231 of 2007, Test 4. 

It is clear that the densities from the LSTM-NRL (blue lines) are much closer to the 
“true” density (red lines) than those from the NRLMSISE-00 (green lines) on both days. 
Both in the general trends and at extremes, the densities from the LSTM-NRL are highly 
consistent with the “true” densities. The RMSE and R with respect to the empirical model 
and LSTM-NRL on the two days are presented in Table 5. The improvement on RMSE is 
67.3% and 73.0%on day 30 and day 231, respectively. 

Table 5. The performance of the LSTM-NRL in Test 4. It is noted that the best results, in terms of 
RMSE and R, are bold in the table. 

Day Model 
RMSE 

(𝒌𝒈𝒎𝟑 × 𝟏𝟎 𝟏𝟐) R Improvement on RMSE 

Test4-d30 
(𝐹10.7 = 84.9𝑠𝑓𝑢, 𝐴𝑝 =24𝑛𝑇) 

NRLMSISE-00 0.9128 0.8643 - 

LSTM-NRL 0.2987 0.9184 67.3% 

Test4-d231 
(𝐹10.7 = 69.4𝑠𝑓𝑢, 𝐴𝑝 =4𝑛𝑇) 

NRLMSISE-00 0.7653 0.9230 - 

LSTM-NRL 0.2065 0.9440 73.0% 
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As shown in Table 5, using LSTM-NRL, the RMSE between the calibrated densities 
and the “true” densities is reduced from 0.9128 and 0.7653 to 0.2987 and 0.2065 on the day 
30 (high activity) and the day 231 (low activity), respectively. It is presented by Perez et 
al. [22] and Gao et al. [24] that the RMSE improvement on these two days uses different 
machine learning methods. The improvements by Perez et al. using RTDNN are 36.1% 
and 59.5% on day 30 and day 231, respectively. Following Gao et al.’s use of the Gaussian 
Process method, they are 43.1% and 66.4%, respectively. . As a comparison, the LSTM-
NRL achieves better RMSE improvements of 67.3% and 73.0%, respectively. The improve-
ment on day 231 of low activity is more significant than that on day 30 of high activity. 

On other days in Test 5, the RMSE improvements from the calibration are further 
confirmed, as shown in Table 6. 

Table 6. The performance of the LSTM-NRL in Test 5. It is noted that the best results, in terms of 
RMSE and R, are bold in the table. 

 Day Model RMSE (𝒌𝒈𝒎𝟑 × 𝟏𝟎 𝟏𝟐) R 

Test5-high 

2007d118 
LSTM-NRL 0.5114 0.9403 

NRLMSISE-00 1.2177 0.9270 

2007d195 
LSTM-NRL 0.4908 0.8672 

NRLMSISE-00 0.6937 0.8302 

2007d345 
LSTM-NRL 0.4029 0.7684 

NRLMSISE-00 1.0659 0.8146 

Test5-low 

2007d103 
LSTM-NRL 0.2122 0.9692 

NRLMSISE-00 0.9479 0.9657 

2007d204 
LSTM-NRL 0.2322 0.8975 

NRLMSISE-00 0.5989 0.8303 

2007d322 
LSTM-NRL 0.1996 0.8032 

NRLMSISE-00 1.0596 0.7489 

As shown in Table 6, the RMSE values between the calibrated densities and the 
“true” densities, which are shown in bold, are smaller than the no-calibrated densities, 
and the values of R are almost similar in all six days. On the three days of high activity, 
the improvements of the RMSE values by the calibration are 58.0%, 29.2%, and 62.2%, 
respectively. They are 77.6%, 61.2% and 81.2%, respectively, on the three days of low ac-
tivity. There are strong linear correlations between the calibrated densities and the “true” 
densities in all six days. Again, the improvements on days of low activity are more signif-
icant than those on days of high activity. 

From these results, it could be concluded that the LSTM-NRL model has a better per-
formance in both the times of high and low solar and geomagnetic activities in 2007. 

3.4. Performance of the LSTM-NRL over the CHAMP Operational Life 
Test 2 and Test 3 have shown the performance improvements from the LSTM-NRL 

model over a month and a year after the training window of one month. In Test 6, the 
LSTM-NRL model is applied over the six operational years of CHAMP satellite from 2003 
through 2008, and thus a more comprehensive performance evaluation is made. These six 
years not only cover most operational life of CHAMP, but also high solar and geomagnetic 
activity year (2003) and low year (2007). The yearly RMSE and R values over the six years 
are presented in Table 7, as well as the yearly mean F10.7 and ap values. 
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Table 7. The performance of the LSTM-NRL in 6 years from 2013 through 2018. It is noted that the 
best results, in terms of RMSE and R, are bold in the table. 

Year Model RMSE (𝒌𝒈𝒎𝟑 × 𝟏𝟎 𝟏𝟐) R 
2003 

(𝐹10.7 = 139.4𝑠𝑓𝑢, 𝐴𝑝 = 12.5𝑛𝑇) 
NRLMSISE-00 0.9659 0.8668 

LSTM-NRL 0.4393 0.9398 
2004 

(𝐹10.7 = 106.5𝑠𝑓𝑢, 𝐴𝑝 = 13.4𝑛𝑇) 
NRLMSISE-00 0.6882 0.9075 

LSTM-NRL 0.3886 0.9435 
2005 

(𝐹10.7 = 91.72𝑠𝑓𝑢, 𝐴𝑝 = 13.5𝑛𝑇) 
NRLMSISE-00 0.7696 0.8902 

LSTM-NRL 0.4575 0.9244 
2006 

(𝐹10.7 = 80.0𝑠𝑓𝑢, 𝐴𝑝 = 8.5𝑛𝑇) 
NRLMSISE-00 0.7705 0.9068 

LSTM-NRL 0.3184 0.9346 
2007 

(𝐹10.7 = 73.1𝑠𝑓𝑢, 𝐴𝑝 = 7.5𝑛𝑇 
NRLMSISE-00 0.9277 0.9025 

LSTM-NRL 0.2844 0.9331 
2008 

(𝐹10.7 = 68.6𝑠𝑓𝑢, 𝐴𝑝 = 6.9𝑛𝑇) 
NRLMSISE-00 1.3110 0.8988 

LSTM-NRL 0.3611 0.9335 
2003~2008 

(𝐹10.7 = 91.4𝑠𝑓𝑢, 𝐴𝑝 = 11.9𝑛𝑇) 
NRLMSISE-00 0.9297 0.8721 

LSTM-NRL 0.3791 0.9411 
2004~2008 

(𝐹10.7 = 84.0𝑠𝑓𝑢, 𝐴𝑝 = 9.5𝑛𝑇) 

NRLMSISE-00 0.9221 0.8761 
LSTM-NRL 0.3654 0.9395 

As presented in Table 7, the performance of the LSTM-NRL model in terms of RMSE 
and R is significantly better than that of the NRLMSISE-00 model throughout the six years, 
although the LSTM-NRL model is trained using one month of data only. The yearly RMSE 
improvements are presented in Table 8. For comparison, the improvements using the 
RTDNN by Perez et al. are presented too. It is noted that the result of the RTDNN has the 
best performance without the velocity as input in the paper of Perez et al. 

Table 8. The RMSE improvement comparison between LSTM-NRL and RTDNN-3inputs in 6 years. 

Year 
Yearly RMSE Improvement 

LSTM-NRL Perez (RTDNN-3inputs) 1 

2003 54.5% - 
2004 43.1% 14.7% 
2005 40.5% 5.9% 
2006 58.7% 28.6% 
2007 69.3% 47.2% 
2008 72.5% 45.0% 

2004–2008 60.4% 32.6% 
1 3 inputs include the density estimated by the DEM-2013, JB2008 and NRLMSISE-00. 

It can be seen that the yearly improvement of the RMSE by the LSTM-NRL is at least 
more than 40%, and they are 69.3% and 72.5% for 2007 and 2008, respectively. The better 
performance in 2007 can be attributed to the closeness between 2007 and the training win-
dow, and the similar solar and geomagnetic activity levels during these two time periods. 
On the other hand, Perez et al. use the data in 2003 to train RTDNN-3inputs model, and 
the density data in 2007 is to find the appropriate time delay. That results in better perfor-
mance of the RTDNN-3inputs in 2007 and 2008, and worse performance in 2004 and 2005, 
which are furthest away in time from 2007. Comparing with the RTDNN-3inputs model, 
the LSTM-NRL not only has better performance in 2007 and 2008, but also is good in 2004 
and 2005. From these analyses, it is demonstrated that the LSTM model is better suited to 
the problem of density calibration since the LSTM is better at memorizing and processing 
data over much longer periods of time. 
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3.5. Transferring Ability of the LSTM-NRL 
An important feature of machine learning models is their transferring ability. In the 

case of the density calibration discussed in this paper, the data from CHAMP satellite is 
used to train the LSTM-NRL model. To evaluate the transferring performance of this 
LSTM-NLR model, experiments using data from GRACE satellites are made. 

The GRACE mission consists of twin satellites (GRACE-A and GRACE-B) at the or-
bital altitude of 500 km and inclination of 89.96°. Both GRACE satellites are equipped with 
accelerometers, and thus the densities derived from the accelerometer data can be re-
garded as the “true” densities to evaluate the transferring ability of the LSTM-NRL model 
trained using the data from CHAMP which is at the altitude of 350 km and inclination of 
87.18°. 

Test 7 takes the NRLMSISE-00 empirical densities, “true” densities of the two 
GRACE satellites, and space weather data in January 2008 as test set, to evaluate the per-
formance of the trained LSTM-NRL model along GRACE satellite orbit. The density series 
along the GRACE orbits on day 10 and day 20 in January is shown in Figures 8 and 9, 
respectively. 

 
Figure 8. The density series along the GRACE orbits on day 10 of 2008. 
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Figure 9. The density series along the GRACE orbits on day 20 of 2008. 

It can be seen that the density calibrated by the LSTM-NRL (blue lines) is closer to 
the “true” density (red lines) than the density computed from the NRLMSISE-00 (green 
lines) on the two days for both GRACE-A and GRACE-B. Both in the general trends and 
at extremes, the densities from the LSTM-NRL are highly consistent with the “true” den-
sities. The LSTM-NRL shows significant calibration effect on the NRLMISISE-00 densities 
on two days for GRACE-A and GRACE-B. The overall performance metrics are presented 
in Table 9. 

Table 9. The RMSE and R of the density series along the orbits of three satellites in January 2008. It 
is noted that the best results, in terms of RMSE and R, are bold in the table. 

Satellite Model RMSE (𝒌𝒈𝒎𝟑 × 𝟏𝟎 𝟏𝟐) R 

CHAMP 
NRLMSISE-00 1.0646 0.9269 

LSTM-NRL 0.3783 0.9479 

GRACE-A 
NRLMSISE-00 0.0743 0.7256 

LSTM-NRL 0.0357 0.7562 

GRACE-B 
NRLMSISE-00 0.0857 0.7231 

LSTM-NRL 0.0358 0.7552 

As evident from Table 9, the overall RMSE values in January 2008 are improved in 
January 2008 by 64.5%, 52.0%, and 58.2% for CHAMP, GRACE-A, and GRACE-B, respec-
tively. Although the performance on CHAMP is better than the GRACE satellites, the 
LSTM-NRL model has shown a remarkable transferring ability when it is applied to the 
two GRACE satellites. This can be further demonstrated by plotting the daily RMSE and 
R values in Figures 10 and 11. 
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Figure 10. The daily RMSE and R values in January 2018, GRACE-A. 

 
Figure 11. The daily RMSE and R values in January 2018, GRACE-B. 

From Figure 10, the RMSE values between the calibrated densities and the “true” 
densities are smaller than the NRLMSISE-00 densities for GRACE-A on each day in Janu-
ary 2008. The R values are mostly the same during the test month. Figure 11 shows almost 
the same picture of Figure 10. These two figures have clearly demonstrated the good trans-
ferring performance of the LSTM-NRL model trained using the CHAMP data, a feature 
important for the practical application of the model. 

3.6. Applying Calibrated Density to the Orbital Propagation 
A main objective of calibrating an empirical density model is to replace the empirical 

model with the calibrated one in order to improve orbit propagation accuracy. Test 8 is 
designed to demonstrate the effectiveness of the LSTM-NRL model in reducing the orbit 
propagation error for CHAMP satellite. The orbit prediction errors are computed as the 
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difference between the predicted positions and the positions computed using GPS-de-
rived precise ephemeris. In this test, three density series are used in the CHAMP orbit 
determination and prediction: the density calibrated by the LSTM-NRL, the density com-
puted from the NRLMISIE-00 model, and the “true” density derived from the CHAMP 
accelerometer data. For each density series, the orbit determination is first performed us-
ing the precise positions over one day on 1 April 2007, in which the position and velocity 
vectors as well as the drag coefficient 𝐶  are estimated, and the orbit is then predicted for 
7 days from April 2 to April 8. Figure 12 shows the three series of prediction errors in 
along the track direction, since the density error is dominantly affecting the orbit in along 
the track direction. 

 
Figure 12. The CHAMP orbit prediction errors in the along track direction in 7 days. 

As shown in Figure 12, the orbit prediction errors using any of the three density series 
in the first four days are at the similar level. However, in the final three days, the ad-
vantage of using the calibrated density becomes clear. At the end of seven days, the error 
using the NRLMSISE-00 model is 12.2 km, which is significantly larger than the error of 
6.7 km using the calibrated density. It is noted that the error at the end of seven days using 
the “true” density is 4.9 km, the smallest among the three error values. This example 
shows that the LSTM-NRL model is effective in reducing the orbit determination and pre-
diction errors. 

4. Discussion 
This paper has proposed to apply the LSTM neural network to calibrate empirical 

atmospheric density models, and the NRLMSISE-00 model is calibrated using the density 
derived from CHAMP accelerometer data, resulting in the LSTM-NRL model. The cali-
bration performance is comprehensively evaluated with RMSE and the Pearson coeffi-
cient R as the metrics and the density derived from the accelerometer data as “truth”. The 
evaluation of the LSTM-NRL performance includes the following parts. 

First of all, the effects of different combinations of two critical parameters, the time 
delay and sample rate on the performance of the LSTM-NRL, are presented in Section 3.1. 
The training of the LSTM-NRL model uses the data in four weeks from 1 January 2007 to 
28 January 2007. The two parameters are tuned using the data on 31 January 2007 (Test 1). 
The appropriate values for the two parameters are found to be 200 and 60 s, respectively. 
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Secondary, the extrapolation performance of the trained model is evaluated over a 
long time span. Test 2 and Test 3 take data over one month and one year as test sets, 
respectively; the results show that the RMSEs of the calibrated density series are reduced 
by 63.2% and 68.1% for Test 2 and Test 3, respectively, comparing with those of the density 
series computed from the NRLMSISE-00 model. Extending the testing time span to six 
years from 2003 through 2008 (Test 6), the calibrated model outperforms the NRLMSISE-
00 model in terms of the RMSE by a significant margin, with at least a 40% reduction in 
yearly RMSE. Although the LSTM-NRL model is trained using one month of data only, 
the performance of the LSTM-NRL model in terms of RMSE and R is significantly better 
than that of the NRLMSISE-00 model throughout the six years. The yearly improvement 
of the RMSE by the LSTM-NRL is at least more than 40%; they are 69.3% and 72.5% for 
2007 and 2008, respectively. The better performance in 2007 can be attributed to the close-
ness between 2007 and the training window, and the similar solar and geomagnetic activ-
ity levels during these two time periods. 

Then, the performance of the calibrated model in different space weather environ-
ment is also evaluated in Test 4 and Test 5, where eight days in 2007 of high or low solar 
and geomagnetic activity are chosen in total. The calibrated densities on all these days are 
much closer to the “true” densities than those from the NRLMSISE-00 model. It is also 
found that the calibration has better performance on the days of low activity. 

Moreover, Test 7 is designed to study the transferring performance of the LSTM-NRL 
model trained by the CHAMP data, when the model is applied along the orbits of two 
GRACE satellites. Using the densities derived from GRACE accelerometer data in January 
2008 as a reference, the LSTM-NRL is shown to have significantly better performance in 
terms of the RMSE than the NRLMSISE-00 model. The overall RMSE reduction for 
GRACE-A and GRACE-B is 52.0% and 58.2%, respectively; a clear indication that the 
LSTM-NRL model has remarkable transferring ability. 

Besides, the LSTM-NRL model is also tested to examine its effectiveness in reducing 
the orbit prediction errors in Test 8. It is found that, over a 7-day prediction time, the orbit 
errors using the calibrated, “true” and NRLMSISE-00 density, respectively, are at similar 
level in the first four days. Nevertheless, at the end of the seven days, the error is 12.2 km 
using the NRLMSISE-00 model, and is reduced to 6.7 km when the LSTM-NRL model is 
used. 

5. Conclusions 
The empirical atmospheric mass density model error remains a dominant error 

source for accurate orbit determination and prediction for LEO satellites. An effective ap-
proach to reduce the model errors is to calibrate the empirical models using satellite track-
ing data and mass densities derived from accelerometer data. The evaluation results of 
the LSTM-NRL performance show that the calibration model not only works over differ-
ent time spans, but is also suitable on days of different space weather environment. More 
than that, the transferring ability and the ability of improving orbit propagation accuracy 
of the LSTM-NRL are illustrated. 

In summary, the paper has demonstrated that the LSTM neural network is able to 
effectively calibrate the NRLMSISE-00 model, given the accurate and dense densities de-
rived from the spaceborne accelerometer data. In the next phase of the research, the de-
veloped approach will be applied to calibrate other empirical models using not only the 
density from the accelerometer data but also the density derived from precise orbit posi-
tions. 
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