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Abstract: Despite the great significance of precisely forecasting the wind speed for development of
the new and clean energy technology and stable grid operators, the stochasticity of wind speed makes
the prediction a complex and challenging task. For improving the security and economic performance
of power grids, accurate short-term wind power forecasting is crucial. In this paper, a deep learning
model (Long Short-term Memory (LSTM)) has been proposed for wind speed prediction. Knowing
that wind speed time series is nonlinear stochastic, the mutual information (MI) approach was used
to find the best subset from the data by maximizing the joint MI between subset and target output. To
enhance the accuracy and reduce input characteristics and data uncertainties, rough set and interval
type-2 fuzzy set theory are combined in the proposed deep learning model. Wind speed data from an
international airport station in the southern coast of Iran Bandar-Abbas City was used as the original
input dataset for the optimized deep learning model. Based on the statistical results, the rough set
LSTM (RST-LSTM) model showed better prediction accuracy than fuzzy and original LSTM, as well
as traditional neural networks, with the lowest error for training and testing datasets in different time
horizons. The suggested model can support the optimization of the control approach and the smooth
procedure of power system. The results confirm the superior capabilities of deep learning techniques
for wind speed forecasting, which could also inspire new applications in meteorology assessment.

Keywords: wind speed; time series; forecasting; deep learning; uncertainty

1. Introduction

The depletion of fossil fuel resources, environmental pollution, and greenhouse effect
have required the development of clean and safe energy sources for power generation [1,2].
Among different renewable energy alternatives, wind energy is considered as a promising
and applied solution for making a renewable society and reducing emissions of greenhouse
gas [3]. Wind is also abundant, inexhaustible, and affordable, which makes it a feasible,
large-scale energy source alternative and one of the most sustainable ways of electricity
generation. Despite being one of the fastest-developing energy sources in the world [1,4],
due to the stochastic nature of wind speed, producing practical and sustainable energy
becomes challenging for wind farms [3].

Since wind speed largely determines the amount of electricity generated by a turbine,
accurate prediction can provide a reliable and secure source for the production of wind
energy and also decrease the operating cost of the power system [3,5].
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This also helps the power system to adapt the dispatch schedule in time according to
changes in the input of wind power, ensures the quality of power, and reduces the cost of
maintaining the service [6].

Since the time series of wind speed are mostly chaotic with stochastic characteristics,
complex nonlinear approaches are needed for the forecasting tasks [7]. The wind speed
prediction method can generally be divided into two groups: physical [8] and statistical
approaches [9]. The physical models are plain methods, using physical data such as
temperature, atmospheric pressure, obstacles and roughness [10]. While physical models
may have satisfactory prediction potential, due to complicated meteorological conditions,
difficult model initialization and extensive computation, their application is limited [11].
Statistical models have improved computational efficiency, but they also suffer from the
weak generalization of learning the nonlinear characteristics, particularly for the wind
speed series. The intelligent methods with the ability to map the nonlinear characteristics
received great attention in the wind speed forecast field to address these disadvantages
with its superior nonlinear fitting and generalization capabilities [5]. Potential applications
for wind speed forecasting have been discussed in several studies in the literature. Chang
et al. [12] suggested an improved neural network approach containing error feedback for
forecasting short-term wind speed and power generation. In another piece of research,
Noorollahi et al. [13] used ANN models to forecast temporal and spatial wind speeds in
Iran.

In spite of numerous advantages of traditional neural networks [14], most of the archi-
tectures are shallow with weak generalization capability with less effective ability to learn
complex patterns from highly erratic wind data [7]. Compared to the conventional neural
network, deep learning algorithms with several layers of nonlinear functions can capture
the characteristics of the wind speed time series more efficiently with lower parameters
and computational costs [15,16].

The application of deep learning in time series modeling has drawn the attention of
many researchers in recent years. For example, Lv et al. [17] proposed a deep learning
method for traffic flow prediction with big data and Qiu et al. [18] suggested using an
ensemble deep learning method to forecast electrical load. Additionally, deep learning
methods have been successfully applied to the forecasting of wind speeds. Hu et al. [19]
developed a deep auto-encoder-based model for short-term wind speed prediction using
transfer learning. Wang [20] also developed a novel deterministic and probabilistic wind
speed forecasting approach using deep belief network models.

A Recurrent Neural Network (RNN) is an extension of conventional deep learning
neural networks incorporating connections that feedback the hidden layers of the neural
network into themselves, called recurrent connections. However, due to the gradient
disappearing, exploding problems, and trouble learning long-term patterns, RNNs are
usually difficult to train [21].

Recently, the problem of gradient vanishing in RNNs was solved using the Long
Short-Term Memory (LSTM) model [22]. Ma et al. [23] used LSTM to forecast traffic speed,
showing that LSTM was capable of capturing the long-term temporal dependency of
traffic data. In a study by Liu et al. [24], it is shown that an end-to-end deep learning
architecture that combines convolution and LSTM is able to extract spatial-temporal traffic
flow information. In the complex and deep processing of large, and long-term data series,
LSTM has successfully achieved satisfactory functional application results [25,26].

For real-world applications, the management of uncertainty in datasets is important
in any forecasting model, including LSTM. Rough and fuzzy sets, which provide valuable
techniques that can be used to model data uncertainty as well as spatial relationships
between data entities, are increasingly being used in different types of data sets [27]. Both
theories model various forms of uncertainty.

In light of the value of energy alternatives and environmental pollution, the use
of renewable energy has become a priority for people and governments throughout the
Middle East, especially in Iran, where a variety of renewable energy sources are available
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and can be implemented to meet energy needs [28]. The wind turbine technology is quickly
developing in the region concerning the efficient location, efficiency, and management
scenarios. Based on a preliminary studies, regions located in the southern coasts of Iran are
suitable for generating up to about 6500 megawatts electricity from the wind energy. The
wind characteristics and assigned forecasts must, therefore, be studied in detail in order to
provide an efficient wind resource assessment of Iran [29].

Therefore, this paper presents short-term wind speed forecasting using LSTM network
with Rough Set Theory and Interval Type-2 Fuzzy Sets, with wind speed data obtained
from international airport station located in southern coast of Iran, Bandar-Abbas City,
the capital of the Hormozgan province. It is Iran’s largest port city and a vital economic
and commercial hub. Bandar Abbas is also susceptible to tidal action, wave set-up, wind
formation, and storm surges along the Persian Gulf and Oman Sea coasts [30]. Additionally,
the Hormozgan Province is well-suited for wind turbine installation, as aerology data
indicate that there are eight regions in this region with adequate wind energy capacity, one
of which is Bandar Abbas City [31]. Wind forecasting data are, therefore, essential for a
reliable and secure power generation system, especially at airports in developing countries.
The lack of such knowledge may be the primary cause of the airport’s poor air traffic flow
control and the delay of renewable energy projects. The Bandar Abbas International Airport
is situated in a wide-open area with favorable wind patterns for air traffic. Wind activity is
influenced by the surrounding topography, which blocks, intensifies, or changes the path
of the wind as it passes, resulting in local wind effects that are not resolved by numerical
weather prediction models. This airport’s characteristics make it ideal for researching
the issue of wind speed downscaling as wind is heavily influenced by local topography
and the nearby sea at the study site. Importantly, the lack of knowledge and related
studies about wind speed at international airports is a major impediment to the airport’s
sustainable development and accurate short-term wind speed forecasts will be thus crucial
in ensuring the Air Traffic Flow Management’s safety mandate at the airport. The rough
and fuzzy sets are applied to address the uncertainties of the wind speed data and improve
the performance of proposed deep learning model. In order to assess the efficacy of the
approach suggested, forecasting performance of LSTM is compared with regular RNN and
multi-layer neural network (MLNN) models using modeling performance criteria.

2. Materials and Methods
2.1. Dataset

A wind measurement station in Bandar-Abbas City, located at an international airport
on Iran’s southern coast, is selected and wind speed data are retrieved from the Iran
Meteorological Organization. In this case study, wind dataset contains wind speed data in
60-min (1 h) intervals for 3 years from 2016 to 2019. Given the possible seasonal behavior of
wind speed data, ideally, more than one year should be used in the training set and use the
remaining data for testing. In order to assess the proposed models and prevent overfitting,
the 2016/01-2017/09 data are considered as the training (60% of datasets) and validation
set, and the 2017/09-2019/01 data are considered as a testing set (40% of datasets).

Wind Characteristics

The meso-scale structure of the near-surface atmospheric conditions over the Persian
Gulf are characterized by low-level winds with a single, coherent, land–sea breeze [32].
Wind speed data for 10m height was obtained from airport station. While southern winds
are the predominant direction in the area, the average hourly wind speed in Bandar Abbas
does not vary significantly throughout the year, with the maximum speed reaching 18–21
knots.

2.2. Rough Set Theory (RST)

The rough set was proposed in 1982 by Pawlak [33]. With the key principle of acquiring
the characteristics of decision making or classification rules for problems by unchanging
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the ability to identify and using information reduction. The rough set theory has since been
successfully applied in various disciplines [34,35] as one of the most powerful mathematical
methods for dealing with ambiguity and vagueness and increases the performance of the
predictor itself [36].

In this method, the key objectives are attribute reduction, correlation analysis, and
significance assessment for ambiguous information systems using indiscernibility relation-
ships to approximately approach the set of object through upper and lower approxima-
tions [37].

Suppose U is the nonempty universe with finite members; R is the equivalence relation
in U; therefore, the knowledge base can be presented as a relation system K = (U, R). For
the subset P ⊆ R and P 6= φ, the intersection of all the equivalence relation between P can
be called P-indiscernibility relation, defined by IND(P):

[x]IND(P) = ∩
R∈P

[X]R, (1)

where [X]R represents the equivalence class containing x∈U in relation R. Basic concepts of
rough set theory are lower and upper approximations, which help to quantify the descrip-
tion of uncertain information. Suppose X is the subset of U; then, the lower approximation
RX and upper approximation RX are

RX = {x ∈ U : [x]R ⊆ X}, (2)

RX = {x ∈ U : [x]R ∩ X = o}. (3)

The boundary region BNR(X) = RX − RX, meanwhile, contains of those objects
that cannot be classified with certainty as members of X with the knowledge in R. If
BNR(X) 6= o, it indicates that RX 6= RX, and X cannot be represented by the equivalence
class of R precisely. The set X is then called “rough” (or “roughly definable”); otherwise, X
is crisp [38]. Figure 1 shows a schematic representation of RST.
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2.3. Interval Type-2 Fuzzy Sets

The definition of type-n fuzzy sets was proposed by Zadeh in 1975 [39], followed by
the definition of type-2 fuzzy sets in 1976 [40]. Unlike classical set theory, where an element
must necessarily belong to a set or not, an element can belong to a set to a certain degree
(0 ≤ k ≤ 1) in the fuzzy set approach. Fuzzy set theory and its applications extensively
developed over last years and attracted attention of practitioners, researchers and decision
makers [41].
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Li and Huang have presented relatively new definitions for type 2 fuzzy sets [42] and
since then, fuzzy sets capability to capture data uncertainty, especially type 2 fuzzy sets, has
been one of the most common directions in artificial and computational intelligence [43–45].
The type-2 fuzzy set is capable of dealing with uncertainties due to its ability to model them
and reduce their impacts. This type of uncertainty is called ‘fuzzy uncertainty’. In contrast
to ‘probabilistic’ uncertainty, which ‘relates to events with well-defined, unambiguous data,’
non-probabilistic or fuzzy uncertainty deals with ambiguities that often rely on qualitative
details. Due to the lack of common numerical criteria for determining susceptibility, as
well as the absence of “sharp” boundaries between susceptibility and non-susceptibility,
mathematical models of susceptibility are difficult to derive. A benefit of using fuzzy set
theory is that it enables the creation of inference models that express uncertainty using
“natural language” [46].

Centroid, cardinality, fuzziness, variance and skewness are known as measurements
of uncertainty for interval type-2 fuzzy sets (IT2FSs) [47]. The distinction between type-1
and type-2 fuzzy systems, having the same basic concept, is related to the type of fuzzy set
applied. The IT2 fuzzy membership function is defined as follows for the discrete universe
of discourse x and u [48]:

Ã = ∑
x∈X

∑
u∈J

µÃ(x, u)/(x, u) (4)

in which Jx ⊆ [0, 1] is the first membership function of x. The case of µÃ(x, u) = 1,
∀u ∈ Jx ⊆ [0, 1] is an interval type membership function. Consequently, an interval is the
membership grade of each element of an IT2 fuzzy set. Uncertainty is characterized by the
interval (commonly known as the footprint of uncertainty (FOU)) bounded by the upper
(UMF) and lower (LMF) (Type-1) membership functions (MF). This secondary membership
function determines the possibilities of the first MF. As can be seen in Figure 2, the IT2FS
scheme is similar to the normal fuzzy scheme. Only the defuzzification mechanism is
different, as it includes a type reducer block that converts the IT2 output set to a Type-1
set prior to performing a defuzzification step. In fact, type reduction is a phase in the
process of defuzzifying type-2 fuzzy sets. Defuzzification of a type-2 fuzzy set consists of
two steps: (a) type-reduction of the type-2 fuzzy set, which is the process of converting
the type-2 fuzzy set to a type-1 fuzzy set, referred to as the type-reduced set (TRS); and
(b) defuzzification of the type-1 fuzzy set, which is the process of defuzzing the TRS to
obtain a crisp number, referred to as the type-2 fuzzy set’s centroid [49]. A more detailed
summary is available elsewhere [50,51].
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2.4. Long Short-Term Memory (LSTM) Network

In 1997, the Long-Short-Term Memory (LSTM) Network, a version of the RNN, was
proposed [52] to build large recurring networks that can, in turn, be used to tackle difficult
sequence problems in machine learning and achieve state-of-the-art outcomes. The basic
unit of the hidden layer of LSTM, unlike traditional neural networks, is the memory
block [53], which includes memory cells with self-connections that memorize the temporal
state, and a pair of adaptive, multiplicative gating units that control information flowing
into the block (Figure 3). As an input and output gate, two additional gates control the
input and output activations in the block [21]. Due to the LSTM’s specific structure, it is
capable of effectively resolving the gradient disappearance and explosion problems that
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occur during the RNN training procedure [54]. In Figure 3, the plus sign indicates that
element levels are being added, the multiplication sign indicates that element levels are
being multiplied, and the con indicates that vectors are being merged. The forgotten gate,
input gate, input node, and output gate, respectively, are presented by ft, it, gt, and ot. The
relationship of the dependencies between the data in the input sequence is captured by
the cell.
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While the input gate regulates the volume of data that enters the cell, the forget gate
regulates the amount of data that remains in the cell. The values in the cell are used to
calculate the LSTM’s output activation; their extent is determined by the output gate. The
LSTM structure’s calculation formulas are shown in Figure 3:

ft = σ
(

W f [ht−1, xt] + b f

)
(5)

it = σ(Wi[ht−1, xt] + bi) (6)

gt = tanh
(
Wg[ht−1, xt] + bg

)
(7)

ot = σ(Wo[ht−1, xt] + bo) (8)

st = st−1 � ft + gt � it (9)

ht = tan h(st)� ot (10)

In Equations (6)–(11), W f , Wi, Wg, Wo are the corresponding weight matrix connecting
the input signal [ht−1, xt], and � represents the element level multiplication. σ is the
function of sigmoid activation, and tan h describes the hyperbolic tangent function. The
state (st) of cell remembers previous values over arbitrary time intervals and the three
gates control the flow of information into and out of the cell.

Therefore, the LSTM network is very appropriate for prediction problems based on a
time sequence [54]. The overall flowchart of the methodology has been depicted in Figure 4.

2.5. Evaluation Criteria

Performance of the proposed models were evaluated considering the uncertainties
in model outputs using model evaluation criterial. The sum of squares error (SSE) and
relative error (RE) are used as two evaluation metrics

SSE =
N

∑
t=1

[ŷ(t)− y(t)]2 (11)

RE =
|y(t)− ŷ(t)|
|ŷ(t)| 100% (12)

where, ŷ(t) and y(t) are the predicted and measured output, respectively.
The optimal model is selected based on the minimum statistical error.
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3. Results and Discussion
3.1. Selection of Input Variable

The selection of input variables is a critical step in deciding the optimal structure of
data-driven models. The wind speed time series in this case exhibits excessive variability
(Figure 5), and linear regression does not function well for forecasting because the time
series is nonlinear [55].
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Figure 5. Wind speed (km/h) time series fluctuations in the current study.

Several papers [56] have used the autocorrelation function (ACF) to determine the
cross-correlation of a time series with itself at different points in time. Due to the fact
that ACF quantifies a variable’s linear dependence on itself and wind speed is a nonlinear
time series, mutual knowledge (MI) is used to efficiently test both linear and nonlinear
correlations.

MI’s objective is to determine the stochastic dependency between two random vari-
ables without making any assumptions about their relationship’s nature (e.g., linearity) [57].
In other words, MI evaluates the dependencies between random variables, where each
variable contains information about the other [58].

The basic idea behind a variable selection algorithm based on MI is to maximize the
joint MI between the subset and the target output [59]. Battiti [60] used MI in data analysis
and presented feature selection algorithm based on this measure. An MI-based input
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selection algorithm was used by Rashidi Khazaee et al. [61] to select the proper inputs for
the prediction model, demonstrated that the proposed input selection model, can efficiently
select relevant input variables.

Although detailed description of the MI technique can be found elsewhere [62],
portions of which are provided here to help elaborate the technique. MI between two
random variables x and y is described as [63]

I(x; y) =
x

p(x, y)log
p(x, y)

p(x)p(y)
dx dy (13)

where the probability density functions of X and Y are p(x) and p(y), the joint probability
density function of X and Y is p(x,y). The joint probability density p(x,y) will be equal to
the product of probability densities in the case of no dependence between two variables, so
the MI is equal to zero.

The MI of v(t − l + 1) and v(t + 1) is calculated using l as the time lag, and v(t) as the
wind speed time series value at time t. Figure 6 illustrates the MI for lags ranging from
1 to 100. The correlation between wind speed measurements decreases as the time lag
increases.
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The product of input variable selection using MI for the dataset results in an 81-
dimensional input vector that is fed to the suggested deep learning models. After each
training epoch, the trained model’s output is evaluated by calculating the model’s perfor-
mance on an unseen data set using the validation set data. Although there are no criteria for
the percentage of data used in the validation and training phases, the decrease in validation
errors during the training process shows that overfitting is avoided [64]. To address the
correlation in the wind speed data, the input set includes wind speed values corresponding
to time lags with MI greater than = 0.35.

3.2. Wind Speed Forecasting Models

The RST/FST generated decision rule was provided as input to the LSTM. The LSTM
analyzes the attributes of the data with decision rule for wind speed prediction. It means
that the features selected by the RST/FST are provided as input to the LSTM for the
analysis.

Through the simulation experiment, the predicted wind speed data using RST-LSTM
is shown in Figure 7. The black line is the observed data of wind speed, and the dashed
red is the predicted data. The optimal structure is calculated by test simulation calculations
amongst the observed and predicted datasets, where the LSTM prediction model comprises
of an 81-node input layer, a 25-node hidden layer, and a 1-node output layer, RST-LSTM
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(81-25-1), with a minimum RE of 0.065 and 0.085 during the training and testing phases,
respectively.
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The most accurate IT2F-LSTM model is demonstrated with 81-15-1 network structure
and Relative Error of 0.074 and 0.088 during training and testing periods, respectively
(Figure 8).
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With RST-LSTM being slightly superior, estimates from both RST-LSTM and IT2F-
LSTM models are close to the attributed observed wind speed variations possibly due to
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the application of highly correlated input data with less uncertainty for these models. In
terms of curve fitting, the curve of the predicted data in both models is very similar to
the curve of the actual data. In spite of the certain deviation of the crests and troughs in
training and testing, due to the uneven occurrence of data, there is a perfect predictability
in other locations.

Throughout the training and testing phases of the 1 h ahead prediction interval, the
majority of the points were placed along the diagonal line based on the scatterplots of the
observed versus predicted wind speed time series produced by both the RST-LSTM and
IT2F-LSTM models (Figure 9a–d). The prediction results of the proposed models were,
therefore, in good agreement with the corresponding wind speeds measured.
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The modeling results were compared with the original LSTM (Figure 10), multilayer
neural networks (MLNN), and recurrent neural network (RNN) models (Table 1) in or-
der to assess the prediction performance of the proposed models, using the same input
combinations as those used in the RST-LSTM and IT2F-LSTM models.

The overall results indicate that the RNN, MLNN, and original LSTM models cannot
surpass the performance of the improved RST-LSTM and IT2F-LSTM models in wind speed
prediction (Tables 1 and 2). The RST-LSTM model demonstrates the best performance, with
lowest SSE (Sum of Squares Error) and RE (Relative Error) of training and testing datasets
for different time steps.
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Figure 10. Wind speed forecast using the LSTM model (81-14-1) during (a) training, and (b) testing
periods, and scatter plots showing the positive linear correlation between the observed time series
and the predicted values in (c) training, and (d) testing periods.
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Table 1. SEE (sum of squares error) of training and testing datasets using forecasting approaches for
different time steps.

Training

Model

Time Step RST-LSTM MLNN IT2F-LSTM LSTM RNN

1 h 103 129 112 126 141
3 h 109 138 119 132 155
6 h 123 163 131 154 166
9 h 145 174 152 167 179

12 h 161 196 176 182 201

Testing

Method

Time Step RST-LSTM MLNN IT2F-LSTM LSTM RNN

1 h 130 155 136 149 161
3 h 137 164 148 155 170
6 h 169 187 174 183 189
9 h 210 236 218 229 241

12 h 245 272 251 263 277

Table 2. RE (relative error) of training and testing datasets using forecasting approaches for different
time steps.

Training

Model

Time Step RST-LSTM MLNN IT2F-LSTM LSTM RNN

1 h 0.065 0.087 0.074 0.089 0.099
3 h 0.072 0.095 0.083 0.093 0.113
6 h 0.085 0.113 0.091 0.112 0.119
9 h 0.103 0.124 0.110 0.119 0.209

12 h 0.116 0.226 0.205 0.213 0.230

Testing

Model

Time Step RST-LSTM MLNN IT2F-LSTM LSTM RNN

1 h 0.085 0.106 0.088 0.096 0.109
3 h 0.099 0.119 0.105 0.112 0.132
6 h 0.128 0.153 0.135 0.141 0.159
9 h 0.149 0.224 0.152 0.201 0.252

12 h 0.181 0.276 0.193 0.270 0.281

The best structures of the prediction models developed in this study is shown in Table 3.
As can be seen in Table 3, the best performance having the lowest error was observed for
the 1 h ahead prediction for all proposed models presenting RST-LSTM (81-25-1) the most
capable deep learning model to satisfactory estimate the overall behavior and accurately
predict the short-term variations of the wind speed series.

RST-LSTM networks have the benefits of optimizing the selection and determining
the significance of the variables affecting the dataset’s internal relationships. This method
overcomes the disadvantages of quantitative interpretation of intelligent prediction models
and guarantees the objectivity of prediction model analysis [65].

In addition, compared to traditional neural networks, the benefit of the LSTM is its
ability to learn long-term dependencies between the supplied network input and output,
which are important for modeling difficult sequence issues with excessive fluctuations
and achieving state-of-the-art outcomes. In terms of uncertainty incorporation, the main
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advantage of rough set theory is that it does not require any preliminary or supplemen-
tary knowledge about the data, such as necessary probability distributions in statistics,
basic probability assignments in evidence theory, a grade of membership or the value of
possibility needed in fuzzy set theory [66].

Table 3. The best structures of the prediction models having lowest error.

Time Ahead

Model 1 h 3 h 6 h 9 h 12 h

RNN 81-28-1 81-33-1 81-35-1 81-37-1 81-29-1
LSTM 81-14-1 81-13-1 81-14-1 81-16-1 81-13-1

IT2F-LSTM 81-15-1 81-16-1 81-15-1 81-18-1 81-21-1
MLNN 81-77-30-1 81-82-41-1 81-76-38-1 81-85-40-1 81-75-45-1

RST-LSTM 81-25-1 81-29-1 81-30-1 81-20-1 81-18-1

Although the performance of both RST-LSTM and FST-LSTM models is superior to
that of the traditional neural network prediction approaches, the inter-comparison of the
obtained results shows that the RST-LSTM model outperforms the FST-LSTM model in
wind speed forecasting. Benefited from efficient variable input selection using mutual
information, RST-LSTM with the property of pattern remembrance can be further applied
by managers and decision makers to conduct better and more effective wind speed pre-
dictions and fill in the gaps between power generation and power utilization. It can help
with the smooth operation of the power system as well as the optimization of the control
strategy. Variables uncertainty that influence wind speed are reduced by the fuzzy rough
set theory, which simplifies the input of the neural network prediction model and improves
accuracy and speed.

4. Conclusions

In providing renewable and clean energy alternatives, wind power generation is
playing an increasingly important role. The intermittency and stochastic nature of wind
speed, however, makes its prediction a difficult issue for the construction and manage-
ment of wind farms. Precise wind speed forecasting is, therefore, very critical for the
efficient operation and planning of large-scale wind turbine integration. In this paper, the
framework of deep learning is applied in the prediction of wind speed using LSTM model
hybridized with rough (RST-LSTM) and fuzzy set theory (FST-LSTM) to generate more
accurate model with efficient prediction. The short-term wind speed forecasting model is
an important contribution for reliable large-scale wind power forecasting and integration
in areas influenced by Mediterranean wind. Moreover, since wind speed is a nonlinear
time series, unlike many other studies that applied ACF to measure a variable’s linear
dependency, an efficient method of MI is used here for input variable selection to evaluate
excessive fluctuations of wind speed time series, both linear and nonlinear correlations.
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