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Abstract: Recent advances in the development of large eddy simulation (LES) atmospheric models
with corresponding atmospheric transport and dispersion (AT&D) modeling capabilities have made
it possible to simulate short, time-averaged, single realizations of pollutant dispersion at the spatial
and temporal resolution necessary for common atmospheric dispersion needs, such as designing
air sampling networks, assessing pollutant sensor system performance, and characterizing the
impact of airborne materials on human health. The high computational burden required to form
an ensemble of single-realization dispersion solutions using an LES and coupled AT&D model has,
until recently, limited its use to a few proof-of-concept studies. An example of an LES model that
can meet the temporal and spatial resolution and computational requirements of these applications
is the joint outdoor-indoor urban large eddy simulation (JOULES). A key enabling element within
JOULES is the computationally efficient graphics processing unit (GPU)-based LES, which is on the
order of 150 times faster than if the LES contaminant dispersion simulations were executed on a
central processing unit (CPU) computing platform. JOULES is capable of resolving the turbulence
components at a suitable scale for both open terrain and urban landscapes, e.g., owing to varying
environmental conditions and a diverse building topology. In this paper, we describe the JOULES
modeling system, prior efforts to validate the accuracy of its meteorological simulations, and current
results from an evaluation that uses ensembles of dispersion solutions for unstable, neutral, and
stable static stability conditions in an open terrain environment.

Keywords: large eddy simulation; graphics processing unit computing; atmospheric dispersion
modelling; microscale dispersion; model validation

1. Introduction

The methods used to simulate outdoor dispersion of airborne materials range from
simple, computationally efficient empirical approaches to complex computational fluid
dynamics (CFD)-based approaches. The simplest methods use empirical formulations that
utilize information on the meteorological conditions to control the corresponding disper-
sion behavior produced by the model. More complex CFD methods, on the other hand,
are capable of resolving (explicitly or implicitly) the time-varying wind, turbulence, and
dispersion patterns that drive the downwind transport and dispersion of the material. This
enables the development of dispersion simulations that can reconstruct the detailed struc-
tures in the contaminant dispersion that qualitatively resembles the “single-realization”
visual depictions of smoke dispersion observed in photographs. The challenge inherent
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with creating “single-realizations” of dispersion with a CFD model is that atmospheric
measurements are typically not sufficient to adequately initialize these microscale atmo-
spheric simulations (e.g., at spatial resolutions in the 10s of meters and timescales on the
order of 1 s). To produce ensembles of “single-realization” dispersion solutions, the CFD
model is initialized with the mean atmospheric conditions that can be measured and then
an ensemble of uncorrelated dispersion solutions can be created by moving the release (e.g.,
in location and/or time) within the turbulent flow. This approach provides a distribution
of dispersion solutions that can then be averaged (in time and space) to determine the
mean properties of downwind dispersion analogous to the products produced by standard
Gaussian plume and puff models. Alternatively, this distribution of dispersion solutions
can be sampled/analyzed to understand the variance from the mean and the skewness of
the distribution if present [1]. While this approach can be used to provide a wealth of infor-
mation on the properties of dispersion for a given scenario, the production of ensembles
of single-realization dispersion solutions is computationally expensive when compared
to traditional Gaussian plume/puff and Lagrangian particle modeling techniques. The
computational expense associated with producing these ensembles has, until recently,
limited the use of CFD models for dispersion to research and academic applications.

Here, we introduce a large eddy simulation (LES) CFD model that has been imple-
mented to run on a GPU computing platform and discuss the computational performance
advantages provided by this GPU-LES approach. The accuracy of the dispersion solutions
is critical for providing confidence in the use of this emerging technology. In this paper,
we provide an illustration of an approach for validating dispersion simulations at these
spatial and temporal scales. Our validation discussion includes a description of the ob-
servational data sets used to evaluate the model and the methodology used to simulate
these experiments and to compare predictions to the observations. Detailed results across
environmental conditions ranging from unstable to stable planetary boundary layer (PBL)
conditions (i.e., daytime to nighttime) are provided. We conclude with a summary of the
findings, and a brief description of the plans to extend this capability to support modeling
urban environments and building interiors.

1.1. Ensemble-Average and Single-Realization Dispersion Solutions

A common simulation method for estimating the dispersion of airborne contaminants
are ensemble-average approaches. These are largely empirical approaches in which the
model is designed to represent the apparent stochasticity of atmospheric turbulence and
its corresponding impact on downwind dispersion. Here, empirical parameters are used
to describe dispersion that might have occurred over many atmospheric and dispersion
conditions. When formulated for a Eulerian reference frame, these empirical parameters
are used to describe airborne material dispersion relative to the mean wind direction where
the rate of dispersion changes as a function of downwind distance for a given atmospheric
condition. When formulated for a Lagrangian reference frame, airborne material dispersion
in these tools is computed from the perspective of a hypothetical air parcel following the
mean winds. The empirical parameters used to control the material spread following the
flow are typically represented by a series of Gaussian puffs or individual particles. For
the Lagrangian puff models, an assumption is made to represent localized concentration
patterns using a Gaussian distribution, where the empirical parameters control the localized
crosswind spread of the material as a function of downwind distance and atmospheric
conditions [2,3]. In Lagrangian particle models, the empirical parameters are typically
used to control the magnitude of particle spread within a random-walk method that
redistributes the particles at each model time step [4,5]. In both approaches, there is an
implicit assumption that the material concentration at each point in space and time is an
ensemble average over a large number of realizations of this apparent stochastic process.

Individual realizations of dispersion can differ significantly from the ensemble-average
solution, and it is typically not possible to recover specific details of a given dispersion real-
ization from the ensemble-average statistics [6]. While ensemble-average solutions can in
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general provide reasonable model assessments, they have been shown to provide incorrect
and misleading results, particularly for scenarios involving high-frequency data sampling,
strong spatial and temporal correlations between variables, and nonlinear effects [1,7]. For
example, the consequences of exposure to airborne contaminants may depend nonlinearly
on the concentration, so that brief exposure to a high concentration can have greater impact
than longer exposure to the same time-averaged concentration. CFD models can be used
to create ensembles of what we refer to as “single-realization” dispersion solutions that use
a very short time average relative to the eddy turn-over time of the eddies in the flow field.
Individual uncorrelated dispersion realization ensemble members can be created in a cou-
ple of ways. One approach is to create multiple independent simulations where the model
is started from slightly different initial conditions. One way to do this is by modifying
the random number seed on the initial heat flux distribution that initiates the turbulence
within the model. A second approach is to create uncorrelated releases by spacing a set of
releases within a simulated boundary layer with spatially homogenous conditions (e.g.,
roughness length, heat flux, etc.). A third way this can be done is to create realizations
by creating releases within a spatially and homogeneous environment at different times.
The use of this approach with a CFD and dispersion model has been demonstrated to
produce an ensemble of dispersion solutions that when averaged can closely replicate
the dispersion solution from a Gaussian puff model that calculated dispersion based on
empirical relations designed to replicate an ensemble averaged dispersion. A more detailed
discussion of this can be found in Bieringer et al. [1].

The large eddy simulation (LES) modeling approach has demonstrated the ability to
successfully predict unique simulations of many types of atmospheric scenarios relevant for
airborne dispersion and defense analyses described above [1,6,8,9]. LES models have been
developed to explicitly resolve the motions associated with the largest eddies in the atmo-
spheric boundary layer and use parameterizations or closures to represent the small-scale
turbulent eddies. The large eddies are resolved or separated from the small, unresolved
eddies by filtering the governing Navier–Stokes equations in the inertial subrange, whereby
the eddies smaller than the filter width are treated by a subgrid model and the eddies larger
than the filter are explicitly resolved [10]. The filter size used is dependent upon the type
of atmospheric conditions being modeled and the corresponding turbulence length scales
involved. Air-flow solutions from LES models can be produced at spatial grid increments
approaching 1 m and be solved at very short time-steps that when used to drive dispersion
models (in both Lagrangian and Eulerian reference frames), can produce single-realization
dispersion patterns [1,6,11–14]. When combined with an immersed boundary method
(IBM) surface layer parameterization, necessary to keep the model numerically stable at
the walls of the buildings, LES models have also been demonstrated to be capable of simu-
lating the detailed winds and dispersion that occur in urban environments [15,16]. When
compared to observational data, the results indicate that an LES approach has been shown
to accurately represent both the mean properties of dispersion and the variance present in
the observations from open terrain convective boundary layer field trials [11,12,17].

1.2. GPU-Enabled Atmospheric Computing

General purpose computing on graphics processing unit (GPGPU) hardware, hereafter
referred to as a GPU, has emerged as a high-performance computing (HPC) option for a
variety of applications, including scientific computing. GPUs typically have many times
the number of computational cores relative to central processing unit (CPU) computers
and are purpose built to solve problems in graphics shaders for the calculation of the levels
for light, darkness, and color for the rendering of graphics on computer screens. Scientific
computing with this technology began in the early 2000s with a demonstration using a
matrix multiplication application that was shown to run considerably faster on a GPU than
on a CPU [18]. Since then, programming languages and standards, such as OpenCL and
Nvidia’s CUDA, provide an application programming interface that enables the use of
C and C++ software to be executed on GPUs. Modern GPUs, such as the Nvidia A100,
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have even more densely packed computational cores (nearly 7000), and higher memory
bandwidth (2 Terabytes per second) [19], which collectively enable faster computations
and reduced data latency (reduced time spent waiting for data load/store processes to
complete). Collectively, these characteristics enable the GPUs to significantly outperform
CPUs for calculations in data-parallel applications, which require the same instruction (or
calculation) to be made concurrently. Many scientific calculations, including CFD and LES
calculations, fall into this data parallel paradigm.

The atmospheric science modeling community recognized the computational potential
provided by the GPU in the mid to late 2000s. Early examples where the use of a GPU
for an atmospheric modeling application explored the porting of computationally expen-
sive elements of the Weather Research and Forecast (WRF) model [20] to run on a GPU.
This work, commonly referred to as GPU acceleration, includes work by Michalakes and
Vachharajani [21], Mielikainen et al. [22], Silva et al. [23], and Wahib and Maruyama [24].
An alternative approach that has been more recently taken by atmospheric modelers is to
port the entire atmospheric model to run resident on the GPU. Examples of models that
take this approach include the GPU Resident Atmospheric Simulation Program (GRASP)
(previously referred to as the GPU-resident Atmospheric Large-Eddy Simulation (GALES)
model) by Schalkwijk et al., 2012 [25]; Schalkwijk et al., 2015 [26]; Schalkwijk et al., 2016 [27];
the Parallelized Large Eddy Simulation Model (PALM) by Maronga et al., 2015 [28]; the
MicroHH model by van Heerwaarden et al., 2017 [29] and the FastEddy model (Sauer, J.
A., & Muñoz-Esparza, D. (2020) [30]. Using the CPU to handle data input and output (I/O)
and moving all of the core atmospheric calculations to the GPU has been shown to provide
an increase in the calculation speed of an atmospheric simulation by more than an order of
magnitude over comparable calculations on CPU hardware [29].

To characterize these benefits, our team conducted benchmark LES simulations using
the Weather Research and Forecast (WRF) model with LES turbulence closure [31,32]
and compared the computational performance to the GRASP model. The WRF-LES and
GRASP simulations used a 128 × 128 × 64 (X, Y, Z) grid with a spatial resolution of
20 m × 20 m × 17 m. The simulation used a periodic lateral boundary condition to spin
up convective eddies and turbulence over a 1-h period. The WRF-LES simulation was
performed on a Dell R640 running Red Hat v7.6 Linux on an Intel Xenon E5 v4, 8-core
CPU, and was configured to use the distributed memory, Message Passing Interface (MPI),
option. On this hardware, a 1-h WRF-LES simulation required approximately 1 h and 32
min of wall clock time. A comparable GRASP simulation was performed on an NVIDIA
Tesla K40 with 2880 cores operating at 745 MHz and 12 GB of onboard fast access memory.
The GRASP simulation completed in 36 s of wall clock time. This represents a GPU-LES
simulation that is approximately 150 times faster than the comparable CPU-LES simulation.

The GPU-LES has substantially lower equipment costs, power consumption, cooling
requirements, and physical space requirements than a CPU platform that can provide
comparable simulations. Based on the benchmark described above, and assuming linear
performance scaling, we estimate that a cluster of 19 Dell R640 Linux servers and a high-
speed network switch would be required to match the performance of a single NVIDIA
Tesla K40. Evidence on the hardware performance of the GPU vs. CPU suggests that
this type of computational performance difference is a sustained characteristic of these
platforms. Figure 1 shows the theoretical computational capacity and memory bandwidth
benchmarks for a series of NVIDIA GPUs and Intel CPUs over the past decade [33,34]. This
figure illustrates how the GPU continues to maintain a significant advantage over its Intel
CPU counterpart, as measured by floating point operations per clock cycle and memory
bandwidth speed, and that this advantage has continued to grow as new architecture
designs are released. For reference, the NVIDIA K40 used for the performance benchmark
cited above is a 2014 graphics card based on the NVIDIA Kepler architecture.
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Figure 1. Computational benchmarks for NVIDIA GPU vs. Intel CPU hardware platforms. The left panel illustrates
theoretical floating-point operations (FLOPS) per clock cycle and the panel on the right illustrates theoretical memory
bandwidth in gigabits per second (Gbps).

1.3. Atmospheric Dispersion Modeling on a GPU-LES Model

To form an ensemble of single-realization dispersion solutions using a LES and cou-
pled atmospheric transport and dispersion (AT&D) model comes at a high computational
expense. In spite of the computational burden that has historically been associated with
LES AT&D, it has been used in a variety of studies ranging from characterizing convective
boundary layers [13], the development of more accurate Lagrangian dispersion modeling
through the incorporation of subgrid turbulence [11,12], and the use of dispersion ensem-
bles for hazard prediction and sensor placement calculations [1,17]. In recent years, LES
models are being increasingly used for atmospheric dispersion studies [25,26] and when im-
plemented on GPU-based computing platforms, showed great promise for enabling a range
of atmospheric boundary layer research topics and applications by significantly reducing
the computational resource requirements to make the calculations [27]. Here, we present a
dispersion modeling system designed to take advantage of the GPU-LES modeling tech-
nology called the joint outdoor-indoor urban large eddy simulation (JOULES). JOULES
is a collection of modeling capabilities designed to calculate atmospheric conditions and
corresponding airborne contaminant transport in open terrain and urban locations both
inside and outside of buildings. At the core of JOULES is the GPU Resident Atmospheric
Simulation Program (GRASP) described above. GRASP was originally developed to pro-
vide high-resolution simulations of clouds, winds, and turbulence and designed to be run
on central processing unit (CPU) computing platforms. It was later adapted to run on
GPU-based architectures by scientists at Delft University of Technology (TU Delft) and
Whiffle B.V. Additional details on the origins of this model as well as information on the
turbulence closures and other formulations used within the GRASP model can be found
in [25–27].

Since its initial development, GRASP has undergone a number of evaluations to assess
its ability to provide high-resolution reconstructions of atmospheric variables and short-
term weather predictions. Of particular relevance to its use for atmospheric dispersion
applications is the work by Schalkwijk et al. [25,26] to couple GRASP to a regional-scale
atmospheric model in order to predict a continuous, year-long, three-dimensional time
series of turbulence and clouds. The predictions were compared to detailed boundary
layer observations collected at the Cabauw Experimental Site for Atmospheric Research
(CESAR). This study included favorable comparisons between the measured and simulated
power spectrum of horizontal and vertical wind speed variance across a variety of weather
conditions and temporal scales.
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2. Materials and Methods

In this section, we describe the implication of coupling JOULES with an AT&D model,
which solves for the advection and diffusion of a passive scalar (i.e., a neutrally buoyant
airborne tracer). Our study evaluates the accuracy of the GPU-LES dispersion solutions
produced by this model over flat open terrain. The evaluation was performed using data
from three separate dispersion experiments, with atmospheric conditions ranging from
unstable daytime “convective” PBLs, to stable environments that typically occur at night.
This section describes the observational data used in the model evaluation, the approach
used to develop the ensembles of dispersion solutions, the analysis methodology, and the
metrics used to compare the simulations to the observations.

2.1. Observational Data

This study uses data from three dispersion experiments, representing open terrain
environments under unstable, neutral, and stable conditions. The observations during
unstable or “convective” conditions were taken from the classic convective water tank
experiments conducted by Willis and Deardorff [35], and two outdoor atmospheric trials,
Project Prairie Grass [36,37], and the COnvective Diffusion Observed by Remote Sensor
(CONDORS) experiments [38–40]. Collectively, these three experiments provide data from
trials representing both near-surface airborne tracer releases and observations of material
concentrations at the surface and aloft. Since vertical dispersion is less significant in stable
conditions, near-surface observations from Project Prairie Grass were used to assess our
implementation for neutral and stable simulations. The following subsections describe
these data.

2.1.1. Willis and Deardorff Water Tank Experiments

Historically, the development of ensembles of dispersion realizations from outdoor
dispersion measurements has been difficult to construct because the atmospheric conditions
in which the measurements are taken typically do not repeat with sufficient consistency or
frequency during the experiments. Laboratory experiments are one way of addressing this
challenge and have been demonstrated to provide comprehensive ensembles of dispersion
for repeatable conditions. In the 1970s and 1980s, Willis and Deardorff conducted a series
of water-tank experiments, to measure the temperature, heat flux, wind velocity, and
fluctuations in temperature and velocity in a convectively forced fluid [35]. They later
extended these experiments to include dispersion in the convective boundary layer [41].
These observations, and a series of numerical simulations enabled the characterization
of dispersion in the convective atmospheric boundary layer, and showed how the large
variability in concentration measurements observed in convective boundary layers can be
explained by the location of the release relative to the updrafts and downdrafts [42,43].

This work demonstrated that an ensemble of dispersion realizations is typically needed
to characterize the statistical properties of dispersion in convective boundary layers. Later
experiments measured crosswind-integrated concentration as a function of the downstream
distance from the source. This led to a further extension of these earlier convective water
tank experiments, where additional observational experiments were designed to produce
ensembles of dispersion solutions [41–43] (including measurements of crosswind integrated
concentrations as a function of the downstream distance from the source for a series of
near-surface and elevated releases. The Willis and Deardorff observations have been
used extensively to understand the convective boundary layer and in a variety of model
evaluation studies [11,12,42,43] involving LES models. In this study, data from the water
tank experiment were used in the assessments of the GPU-LES model simulations of
downwind dispersion at the surface and aloft during convective conditions.
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2.1.2. Project Prairie Grass Experiment

Project Prairie Grass [36] is a classic outdoor atmospheric dispersion field trial that has
been widely used to understand the properties of atmospheric dispersion from near surface
releases. Briefly, the experiment featured a series of 10-min continuous sulfur dioxide (SO2)
releases from a point 0.46 m above the ground. Downwind concentration measurements
were made along five semi-circular arcs, located 50, 100, 200, 400, and 800 m from the
release, at spacings of 2◦ for the four innermost arcs, and at 1◦ for the 800 m arc. Surface-
based samplers collected 10-min integrated concentration measurements. The mean winds
were measured at 8 heights, from 0.125 m to 16 m. The micro-meteorological information
(friction velocity (u∗) and Obukhov length (L)) were determined by fitting the friction
velocity and temperature measurements to the tower data. Approximately 70 releases
were conducted, and data collected across a range of atmospheric stability regimes. In
this study, data from the Prairie Grass experiment were used in the assessments of near-
surface GPU-LES dispersion model simulations for unstable, neutral, and stable boundary
layer conditions. The Project Prairie Grass data were obtained from Arhus University,
Denmark [37]. We refer the reader to [36] for a full description of the experiment.

2.1.3. COnvective Diffusion Observed by Remote Sensors (CONDORS) Experiment

The COnvective Diffusion Observed by Remote Sensors (CONDORS) experiments
measured both near-surface and vertical dispersion, extending to the full depth of the
atmospheric boundary layer [38–40]. Measurements aloft included rawinsondes released
near the time of the tracer experiments, acoustic sounders, and observations from a 300-m
tower, which enabled estimates of the mixing layer depth, heat, and momentum fluxes.
The trials used three tracers (oil fog, chaff, and a passive gas), in daytime releases near
Erie, Colorado during August and September. Concentration measurements were collected
by samplers at the surface, and with lidar and radar aloft. Twenty-six hours of data
were collected across 12 separate mid-day periods. Of these data, over 11 h of data were
processed into 29- to 60-min averaging periods during conditions where the convective
boundary layer or mixed layer depth normalized by the Obukhov length (zi/L) ranged from
24 (moderately unstable) to 1125 (extremely unstable) [38]. Obukhov length is defined as:

L = −u3
∗Ta/

(
kgw′θ′0

)
(1)

where u∗ is the surface friction velocity, Ta is the ambient temperature, k is the von Kármán
constant (k = 0.4), g is the gravitational acceleration, and w′θ′0 is the surface kinematic
heat flux. This experiment provides a comprehensive set of measurements of crosswind-
integrated concentration, lateral dispersion, plume height, and vertical dispersion. Data
from the CONDORS experiment were used in the unstable boundary layer evaluations of
the GPU-LES model dispersion at both the surface and aloft.

2.2. Categorization of the Observations

For each of the categories of static stability, we combined dispersion measurements
from a combination of observations collected at multiple distances downwind from the
release location and from a variety of individual trials conducted during similar weather
conditions. Combining the observational data in this way enabled us to then compare
both the mean and spread of the full distribution of observations to the model simulations.
Taken together, the water tank, Prairie Grass, and CONDORS experiments cover a range
of weather and stability conditions, near-surface and above-surface data, and distances
downwind from the release location. Broadly, Prairie Grass provides near-surface disper-
sion estimates for unstable, neutral, and stable boundary layer conditions. For unstable
boundary layers, these are supplemented by the Willis and Deardorff water tank and CON-
DORS data for both near-surface and vertical dispersion, including crosswind-integrated
concentration, plume height, and lateral and vertical dispersion.
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In order to synthesize complete datasets against which to evaluate our GPU-LES
model, we organized the data around elements of the Pasquill–Gifford stability cate-
gories [44,45]. We chose to represent dispersion in convective (unstable), neutral, weakly
stable, moderately stable, and strongly stable conditions, based on the ranges of the
Obukhov length that have been correlated to these stability categories [46,47]. Table 1
lists the Obukhov ranges used to select specific trials from the Project Prairie Grass and
CONDORS data sets. To the extent possible, care was taken to group measurements taken
under similar weather conditions. Specific trials selected by these criteria included:

1. The convective water tank experimental data from Case 1 in Willis and Deardorff [26],
comprising data from seven experimental trials;

2. All the surface-based releases of oil and chaff, for eight releases and five locations, in
the CONDORS experiment;

3. Seven Project Prairie Grass trials—Trials 7, 8, 10, 16, 25, 44, and 51.

Table 1. Obukhov values used to define stability categories for the GPU-LES evaluation.

Stability L
(m)

Unstable <−2
Neutral stability >75
Slightly Stable 35 to 75

Moderately Stable 8 to 35
Extremely Stable 1 to 8

Table 2 gives details on the 81 individual trials distributed across the four categories
and the corresponding mean atmospheric properties for each category.

Table 2. The mean environmental conditions of the observational data used in the evaluation.

Stability Number of
Trials

U @ 1m
(m s−1) u* (m s−1)

Heat Flux
(W m−2) T (◦C) θ (K) w* (m s−1) L (m)

Unstable 47 4.054 0.331 200.517 28.96 307.10 1.613 −18.33
Neutral
stability 12 4.84 0.38 −29.39 22.33 300.36 −0.54 167.25

Slightly
Stable 7 2.74 0.21 −25.94 22.15 300.19 −0.50 54.20

Moderately
Stable 6 2.21 0.16 −22.07 21.73 299.68 −0.49 18.91

Extremely
Stable 9 1.24 0.07 −10.74 19.03 297.13 −0.36 4.29

2.3. Scaling Methodology

In addition to their water tank experiments, Willis and Deardorff [26] also introduced
methods for scaling dispersion measurements. Their approach acknowledges that disper-
sion in the PBL depends primarily on the time over which the fluid disperses through the
media. Their initial work considered highly convective PBLs, where non-dimensional scal-
ing factors were derived using the convective boundary layer depth, zi, and the convective

velocity scale, w∗ =
(

gw′θ′ozi/Ta

) 1
3 . They further defined the turbulence time scale, or

eddy-turnover time, as zi/w∗. In the along-wind direction, they recognized that, because
dispersion in the PBL is a function of time, downwind distance, X, from the source for
convective conditions can be scaled as:

X =
w∗x
Uzi

(2)
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where x is the distance downwind of the release location, and U is the average PBL
wind speed. Willis and Deardorff [26] also suggested a dimensionless parameter for the
crosswind integrated concentration (CWIC or Cy), defined as Cy =

∫ ∞
−∞ C(x, y, z)dy. To do

so, they scaled CWIC by the concentration that would be present in a uniformly mixed
PBL, well downwind of the release. This uniformly mixed concentration is Q/Uzi where
Q is the mass-release rate. Based on this approach, a normalized dimensionless CWIC can
be calculated as:

Normalized CWIC =
CyUzi

Q
(3)

This approach was first used by Willis and Deardorff [35] to visualize the dispersion
measurements from their convective water tank experiments. Our work here leverages
these methodologies and in particular plots of CWIC like Figures 8 and 9 from Willis
and Deardorff [35] that depict measurements with a non-dimensional mean CWIC from
the water tank data that was plotted as a function of the scaled downwind distance X
and height.

Since its introduction, this scaling approach has been extended and adapted for use in
atmospheric dispersion applications that range from interpreting observational data [48]
to the development of empirical models [49,50] and the evaluation of dispersion mod-
els [11,12]. Here, we used this scaling approach to combine observations taken at different
times from a single experiment, and observations taken from different experiments, into
a collection of measurements that represent dispersion in each stability class. Similar
methods were used by Weil et al. [11,12] for unstable conditions, and Venkatram et al. [51]
for neutral and stable conditions. The scaling used in this study and by Weil et al. [11,12]
for the convective cases closely follows the approach found in [35]. For evaluating plume
height, and vertical and lateral dispersion, we also followed the Weil et al. [11,12] approach
of normalizing the results by zi.

The downwind distance scaling method used in this evaluation for the neutral
and stable static stability conditions follows the approach published in [50]. The Venka-
tram et al. [50] scaling differs slightly from that of Willis and Deardorff [35], normalizing
the downwind distance using:

X =
x
|L| (4)

where |L| is the absolute value of the Obukhov length from Equation (1). Because the
convective scale velocity of neutral-to-stable cases would be negative, we instead use a
scaling factor that utilizes friction velocity and Obukhov length. For neutral and stable
scenarios, normalized CWIC is calculated using the following relationship:

Normalized CWIC =
Cyu∗L

Q
(5)

The scaling parameters, as described above, are applied to all of the point-location
observations used in this evaluation. The same relationships are applied to the simulations
enabling a comparison with the observations.

2.4. GPU-LES Model Simulations

The development of the GPU-LES dispersion simulations involved a two-step pro-
cess. The first step was the design and execution of the atmospheric simulation. Five
configurations, corresponding to the stability categories defined in Tables 1 and 2, were
developed. The unstable configuration was based on the specifications of Weil et al. [11,12].
The neutral and stable configurations required finer spatial resolution, and a different
approach for establishing the desired stability conditions. To achieve a simulation with the
desired Obukhov length, we set the roughness length, heat flux, temperature, and initial
convective boundary layer depth to values representative of the environmental conditions
in the ensemble of field trials. Next, we adjusted the geostrophic wind (Ug and Vg) until
the Obukhov length matched the observations within the category. Table 3 provides details
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on the model configurations and initial conditions (e.g., domain size, spatial resolutions,
and core meteorological parameters). The wind speeds in Table 3 are the initial values (i.e.,
at the model start time) for the entire PBL. The turbulent PBL simulation is first spun up for
60 min from a cold start using cyclic (i.e., periodic) lateral boundary conditions. Figure 2
shows sample horizontal and vertical cross-sections of vertical velocity after the spin-up of
a convective PBL simulation over a 2 km × 2 km × 1.0 km domain. Following the initial
spin-up, we then began the tracer release, allowing the tracer mass to reach steady state.
This required another 60 min of simulated time. Hence, we did not use meteorological
or dispersion results from the first 120 min of the simulations. Our development here
emphasized model selections that aided in separating model calibration to the experiment
conditions from model calibration to the resulting data.

Table 3. The JOULES GPU-LES model configuration parameters.

Simulation
Category

Grid
Points

(nx,ny,nz)

Model
Resolution

(Hor,Vert) (m)
U (m/s) Ug (m/s) Vg (m/s) Heat Flux

(W/m2) zi (m) L (m)

Unstable (192,192,96) (52.1,20.8) 2.8 2.8 −1.5 240 1000 −11.5
Neutral
stability (256,256,64) (6.25,6.25) 8 8 −5.5 −10 190 372.2

Slightly
Stable (256,256,64) (6.25,6.25) 4 3.5 −4.5 −10 116 47.6

Moderately
Stable (256,256,64) (6.25,6.25) 4 3.2 −4.2 −10 103 28.9

Extremely
Stable (256,256,64) (6.25,6.25) 3 2.5 −2.5 −10 78 7.6

Figure 2. Illustration of a horizontal and vertical cross-section of vertical velocities for a convective planetary boundary
layer (PBL) simulation. Red represents updrafts; blue represents downdrafts; and green represents areas where vertical
motions are low. In this simulation, the depth of the boundary layer was set at 1000 km, clearly visible as the level where
vertical velocities abruptly transition from large to small values.

The second step in developing dispersion simulation data for this evaluation is a
process we used to develop an ensemble of uncorrelated dispersion solutions. Once the
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GPU-LES model has spun up the turbulence and corresponding dispersion to a quasi-
steady state, we calculated the model evaluation metrics. A continuous set of values in the
along-wind direction were computed for each of the evaluation metrics. The calculations
used a 10-min average or integrated value, depending on the metric in question. Individual
uncorrelated realizations of the dispersion patterns, following the methodology used
in [12], were created by varying a combination of the source location and the start time of
the release. For example, Figure 3 depicts the predicted near-surface concentrations from
five uncorrelated simulations. It illustrates the type of variability in the dispersion patterns
that can be created within a convective PBL simulation using this methodology. Because
the GPU-LES model runs quickly, we were able to generate an ensemble of 130 realizations
that we believe described the unstable PBL dispersion comprehensively and do so in
approximately two hours of wall-clock time for these experiments. Subsequently, for the
neutral and stable simulations, we reverted to using 30 realizations per ensemble, as was
done in [12], and we found suitable for our comparisons. The model evaluation metrics
were then computed for each ensemble member, using the sampling characteristics of the
field program. This enabled us to create a comprehensive distribution of model evaluation
metrics that captured the range of dispersion patterns associated with how the airborne
material release responds to the winds and turbulence in the PBL.

Figure 3. Variability in the dispersion patterns. Five sample realizations of near-surface concentration, 10 min after the
start of the tracer release, were generated by varying the release start time or release location in the time-varying turbulent
environment produced by the GPU-LES model.

3. Results

We assessed the suitability of the GPU-LES model to simulate dispersion in the PBL
by comparing the plume height normalized by PBL height, vertical profiles of CWIC,
downwind surface-based CWIC, surface crosswind dispersion, and vertical dispersion to
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comparable dispersion metrics computed from observations. Calculations of the metrics
computed from observations are represented by symbols/markers in the forthcoming
figures. Calculations of the metrics for a single dispersion realization from the GPU-
LES model simulations are represented by either grey lines or blue dots and are plotted
on the figure to illustrate the distribution of solutions. The following sections present
results comparing the JOULES GPU-LES model predictions to observational data and are
organized by stability category as described in Table 1.

3.1. Unstable PBL Comparison

The observational data sets used for the unstable PBL evaluation were from the Willis
and Deardorff [35] water-tank, the Project Prairie Grass, and CONDORS experiments. The
crosswind integrated concentration was computed from the release location to a downwind
distance of 9750 m, for the full vertical depth of the simulation (2000 m). Figure 4 shows
the CWIC calculation from the unstable GPU-LES dispersion solution. Qualitatively,
the results closely match the measurements illustrated in Figure 8 from the Willis and
Deardorff [35] experiment for scaled downwind distances less than three. Overall, the
GPU-LES dispersion solution shows strong qualitative agreement with the Willis and
Deardorff [35] observations, notably the near surface concentration minimum that occurs
between a downwind distance of ~1 to 3. Because the GPU-LES simulation extends beyond
the downwind distance measured by Willis and Deardorff, we are able to predict an
increase in average CWIC near surface extending out to a scaled downwind distance of
X = ~5.

Figure 4. Normalized crosswind integrated concentration as a function of the downwind distance from the release
location. This figure and corresponding calculation are frequently used in the atmospheric dispersion community to
compare dispersion simulations to observational data. The plot represents the average CWIC from 130 individual GPU-
LES realizations.

Figure 5 shows a quantitative comparison of the GPU-LES CWIC solution with the
Willis and Deardorff [35] data. The figure illustrates how CWIC varies with height, out
to a scaled downwind distance of approximately 3 from the release location. Past X = 3,
the CWIC value shows unity up to the height of the boundary layer. It shows promising
agreement between the ensemble mean of CWIC from the GPU-LES model (black line) and
the measured vertical profiles of CWIC from the water tank experiments (black dots).
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Figure 5. Crosswind integrated vertical dispersion as a function of the downwind distance from the release location, for the
Willis and Deardorff [35] water tank experiments. The gray lines depict 130 realizations from the JOLES model, and the
black lines show the average of these realizations. The circles represent data measured by Willis and Deardorff.

Surface measurements for calculating CWIC were available from the Project Prairie
Grass and CONDORS experiments. Figure 6 compared surface CWIC measurements
(represented by the black circles, dots, squares, and stars) with calculations from 130 GPU-
LES realizations (represented by the small blue dots). The green line denotes a calculation
of CWIC using surface layer similarity (SLS) theory [51]. At locations nearest the source,
the LES model under predicts CWIC compared to SLS theory and Prairie Grass data. This is
due to the resolution of the computational grid. Near the source, the tracer is immediately
dispersed uniformly throughout each grid cell, making the model over-dispersive at
this location. The underprediction near the source can be addressed (when required) by
decreasing the volume of the grid cells (i.e., increasing the spatial resolution), or through
the use of a Lagrangian particle dispersion model (LPDM). Figure 6 shows that, except very
near to the source, the simulations of surface-based normalized CWIC show promising
agreement with the measurements from the field trials. The figure also illustrates how
the spread in the observations and model simulations vary as a function of the scaled
downwind distance from the source. Notably, both show the pattern of smaller spread near
the source location, an increase in spread near a scaled downwind distance of one, and
then a collapse of the spread to a CWIC value near one further downwind as the material
becomes well-mixed in the PBL.

Figure 7 compared lateral or horizontal crosswind dispersion, computed from sur-
face observations from both the Project Prairie Grass and CONDORS experiments, and
corresponding calculations of lateral dispersion from the GPU-LES model. Here, again,
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there is fair agreement between the observations and the mean lateral dispersion from the
ensemble of simulations. A majority of observations fall within the ensemble distribution,
and the slope of the increase in plume spread with distance is well aligned with the obser-
vations. However, the mean of the ensemble appears to be slightly below the observations,
including the formulation fit to the data by Briggs [48], for scaled downwind distances
greater than approximately 0.1.

Figure 6. Crosswind integrated concentration as a function of the downwind distance from the release location. The
green line represents the dispersion based on surface layer similarity (SLS) theory. The blue dots depict 130 individual
realizations from the LES model, and the red line represents the average of these realizations. The markers (closed
circles, open circles, squares, and stars) represent observations measured during convective trials in the Prairie Grass and
CONDORS experiments.

In Figure 8 we illustrate the vertical dispersion results. For this metric, the mean of the
ensemble aligns well with the observations, and the spread of the ensemble corresponds
nicely to the spread observed in the CONDORS data. This metric also demonstrates that
the GPU-LES dispersion model exhibits the expected increase in vertical dispersion as the
scaled downwind distance increases. Finally, it appears to correctly capture the properties
in the vertical dispersion observations, where normalized vertical dispersion stabilizes at
scaled downwind distances greater than one.
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Figure 7. Surface crosswind dispersion from the GPU-LES model as a function of the downwind
distance, compared to observations from the CONDORS field program. The gray lines depict a series
of 30 individual realizations from the LES model. The black line represents the average of those
realizations. The circles and triangles represent observations of normalized concentrations measured
during the CONDORS and Prairie Grass experiments.

Figure 8. Normalized vertical dispersion as a function of the downwind distance. The gray lines
depict 30 individual realizations from the LES model, while the black line represents the average
of those realizations. The circles and triangles represent observations of normalized concentrations
measured during the CONDORS experiments.
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Figure 9 shows the normalized average plume height, zp, as a function of the scaled
downwind distance. Excluding outlier observations during sampling periods 32 and 33
(pds 32,33) in the CONDORS field trials, noted by Briggs [49], there is good agreement
between the CONDORS observations of zp and the dispersion realizations. The average
value of zp from the ensemble of simulations (black line) is near the center of the scatter
of observations. The ensemble of the plume height calculations presents little variability
near the release location and far downwind of the release, but a greater range of results
at scaled downwind distances between X = 0.75 and 2.5. This pattern in the ensemble
spread agrees closely with the scatter observed in the CONDORS observations. It also
matches expectations based on the characteristics of dispersion in a strongly convective
PBL environment.

Figure 9. Normalized plume height as a function of the downwind distance. The gray lines depict 100
individual realizations from the JOULES and the black line represents the average of those realizations.
The circles and triangles represent observations measured during the CONDORS experiments.

3.2. Neutral and Stable PBL Comparison

Data from the Project Prairie Grass field experiment were also used to evaluate the
dispersion solutions from the GPU-LES dispersion simulations for neutral and stable PBL
conditions. Our selection criteria identified surface concentration data from 34 trials for
use in the model evaluation. As described above, in order to account for variability of
dispersion conditions within this range of stability categories, we categorized these data
into four distinct subsets; see Table 1. Surface CWIC and lateral dispersion results are
provided for each category.

3.2.1. Neutral PBL Comparison

Figure 10 shows a vertical cross-section of normalized CWIC as a function of the
downwind distance calculated from the ensemble of 30 neutral GPU-LES dispersion
simulations with an Obukhov length of ~372 m. It illustrates that for the neutral condition
simulations, the airborne materials from a surface release mix up to about half the depth
of the PBL (~95m). In Figure 11, the calculation of CWIC from the GPU-LES model was
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compared to calculations of CWIC from the surface observations from the Prairie Grass
experiment, where the Obukhov length during the experiment was greater than 75 m. This
figure shows good agreement between the CWIC observations (black dots) and the values
computed from the GPU-LES simulations (blue dots). The red line depicts the ensemble
average of the CWIC simulations. Note that the slope of this line matches the slope of the
observations. The figure also indicates that the width of the distribution from the ensemble
of simulations is very consistent with the scatter suggested by the observations.

Figure 10. Normalized crosswind integrated concentration as a function of the downwind distance from the release location,
for the neutral stability. The plot shows the average CWIC from 30 individual GPU-LES realizations.

Figure 11. Normalized crosswind integrated concentration as a function of the downwind distance from the release location,
for neutral stability conditions. The blue dots represent individual realizations of dispersion from the GPU-LES model,
where the simulation was designed to produce neutral conditions with L = ~368. The red line represents the average of this
ensemble. The black squares represent observations from the Prairie Grass experiment during neutral conditions.
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3.2.2. Stable PBL Comparison

Similar calculations were made for the simulations produced for the slightly, moder-
ately, and extremely stable PBL conditions. Figure 12 depicts the vertical cross-sections of
CWIC for each and illustrates how the simulated CWIC values vary as the environmental
conditions become more stable. As expected, the depth to which the airborne materials
from a surface release are mixed decreases as the static stability increases (approximately
62, 41, and 31 m for the weakly, moderately, and extremely stable conditions, respectively).
This results in higher concentrations being seen further downwind of the release location
as the atmosphere becomes more stable. The data from these three stability categories
were also directly compared to normalized CWIC calculations made using Project Prairie
Grass observations. The results, summarized in Figure 13, show good agreement between
the model and observations for the weakly and moderately stable conditions. There was
considerably more scatter in the CWIC data computed from the ensemble of extremely
stable observations and the ensemble average of the extremely stable GPU-LES CWIC
simulations was on the high end of the pattern of observations (though still within the
range of the scatter). This suggests that the turbulence is much lower in our GPU-LES
simulation than what was present in the experimental data and that we do not have a suffi-
cient understanding of the sources of turbulence in these very stable cases to incorporate it
into the simulation.

Figure 12. Cont.
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Figure 12. Normalized crosswind integrated concentration as a function of the downwind distance
from the release location, for the slightly (top), moderately (middle), and extremely (bottom) sta-
ble conditions. Each plot represents the average CWIC from 30 individual GPU-LES dispersion
simulation realizations.

In Figure 14, results from the neutral through extremely stable cases are plotted to
depict the collective information on model accuracy for this range of stabilities. These
results, and the results shown earlier for the convective PBL environments, indicate that the
GPU-LES modeling system may be able to be configured from first principal parameters to
provide ensembles of single-realization dispersion solutions that are representative of this
range of environmental conditions.

Figure 13. Cont.
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Figure 13. Normalized crosswind integrated concentration as a function of downwind distance
from the release location, for weakly (top), moderately (middle), and extremely (bottom) stable
conditions. The black square markers are derived from the Prairie Grass experiments. Blue dots
represent individual realizations of dispersion from the GPU-LES model. The red line represents the
average of this ensemble of simulated results.
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Figure 14. A summary of the GPU-LES dispersion simulation results for the neutral and stable boundary layer simulations.
Each of the lines represents an ensemble average of 18 simulations. The dots represent observations from the Prairie Grass
experiment during neutral and stable conditions. The results demonstrate that the GPU-LES can accurately represent
atmospheric dispersion for conditions ranging from neutral to stable conditions.

4. Discussion and Conclusions

A research goal for developing our GPU-LES approach, JOULES, is to design a system
for computing single-realizations of detailed, coupled urban (outdoor-indoor) contaminant
dispersion. To describe the variability inherent in the atmospheric and urban conditions,
our design required that that each simulation is completed quickly so that we could
generate many realizations, all equally probable. A resulting capability would allow us to
compute mass-conserving transport in a complete urban setting for various applications,
many which cannot be analyzed using ensemble-averaging methods. The capability also
allows us to derive synthetic data to test the suitability of existing operational tools.

Here, we present the evaluation of the JOULES dispersion solutions for open terrain
environments. These tests are critical for many applications. It is also essential before testing
it for more complex urban settings. This study used observational data from three field
trials, following peer-reviewed methods and evaluation metrics that have been extended
to evaluate the GPU-LES dispersion model’s suitability and promise across a range of
environmental conditions, including convective (daytime) and extremely stable (nighttime)
conditions. The open terrain convective comparisons showed very close agreement, both at
the surface and aloft, for surface-based releases across this range of stability regimes. The
simulations and performance metrics also closely match the performance of the Lagrangian
particle dispersion model (LPDM) and National Center for Atmospheric Research (NCAR)
LES model published in [12] for convective conditions.

This study moved beyond the work presented by Weil et al. [12] and examined
the accuracy of dispersion simulations for neutral and stable conditions. JOULES also
performed well for the neutral, weakly, and moderately stable cases when compared to
surface observations from Project Prairie Grass. While there was some agreement between
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the dispersion simulations and observation for the extremely stable cases, the normalized
CWIC calculations from JOULES were on the high end of the scatter in the observations.

The atmospheric conditions and corresponding dispersion solutions can be produced
by configuring first principle PBL parameters in the model to produce a simulated environ-
ment across static stability scenarios that range from unstable convective to moderately
stable conditions. The results of this model evaluation study suggest that JOULES can
produce very promising atmospheric dispersion solutions for open-terrain homogeneous
environments. Furthermore, the GPU implementation has been demonstrated to enable
simulations to run over 150 times faster than comparable CPU-based LES implementations.
This advancement significantly reduces the computational costs associated with devel-
oping microscale atmospheric and dispersion simulations and now makes it feasible to
produce ensembles of single-realization dispersion solutions that are necessary in a variety
of airborne dispersion and defense analyses [1,8,9].

In future work, we plan to implement a simulation capability for urban interiors.
Such efforts require deciding on appropriate physics-based models and improving com-
putational performance to allow for even larger simulation domains, terrains, and non-
homogeneous land covers.
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