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Abstract: Recent advances in the development of large eddy simulation (LES) atmospheric models 
with corresponding atmospheric transport and dispersion (AT&D) modeling capabilities have 
made it possible to simulate short, time-averaged, single realizations of pollutant dispersion at the 
spatial and temporal resolution necessary for common atmospheric dispersion needs, such as de-
signing air sampling networks, assessing pollutant sensor system performance, and characterizing 
the impact of airborne materials on human health. The high computational burden required to form 
an ensemble of single-realization dispersion solutions using an LES and coupled AT&D model has, 
until recently, limited its use to a few proof-of-concept studies. An example of an LES model that 
can meet the temporal and spatial resolution and computational requirements of these applications 
is the joint outdoor-indoor urban large eddy simulation (JOULES). A key enabling element within 
JOULES is the computationally efficient graphics processing unit (GPU)-based LES, which is on the 
order of 150 times faster than if the LES contaminant dispersion simulations were executed on a 
central processing unit (CPU) computing platform. JOULES is capable of resolving the turbulence 
components at a suitable scale for both open terrain and urban landscapes, e.g., owing to varying 
environmental conditions and a diverse building topology. In this paper, we describe the JOULES 
modeling system, prior efforts to validate the accuracy of its meteorological simulations, and cur-
rent results from an evaluation that uses ensembles of dispersion solutions for unstable, neutral, 
and stable static stability conditions in an open terrain environment. 

Keywords: large eddy simulation; graphics processing unit computing; atmospheric dispersion 
modelling; microscale dispersion; model validation 

1. Introduction
The methods used to simulate outdoor dispersion of airborne materials range from 

simple, computationally efficient empirical approaches to complex computational fluid 
dynamics (CFD)-based approaches. The simplest methods use empirical formulations 
that utilize information on the meteorological conditions to control the corresponding dis-
persion behavior produced by the model. More complex CFD methods, on the other hand, 
are capable of resolving (explicitly or implicitly) the time-varying wind, turbulence, and 
dispersion patterns that drive the downwind transport and dispersion of the material. 
This enables the development of dispersion simulations that can reconstruct the detailed 

Citation: Bieringer, P.E.; Piña, A.J.; 

Lorenzetti, D.M.; Jonker, H.J.J.; Sohn, 

M.D.; Annunzio, A.J.; Fry, R.N., Jr. A 

Graphics Processing Unit (GPU) 

Approach to Large Eddy Simulation 

(LES) for Transport and Contami-

nant Dispersion. Atmosphere 2021, 12, 

890. https://doi.org/10.3390/ 

atmos12070890 

Academic Editor: Patrick Armand 

Received: 18 June 2021 

Accepted: 1 July 2021 

Published: 8 July 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Atmosphere 2021, 12, 890 2 of 25 
 

 

structures in the contaminant dispersion that qualitatively resembles the “single-realiza-
tion” visual depictions of smoke dispersion observed in photographs. The challenge in-
herent with creating “single-realizations” of dispersion with a CFD model is that atmos-
pheric measurements are typically not sufficient to adequately initialize these microscale 
atmospheric simulations (e.g., at spatial resolutions in the 10s of meters and timescales on 
the order of 1 s). To produce ensembles of “single-realization” dispersion solutions, the 
CFD model is initialized with the mean atmospheric conditions that can be measured and 
then an ensemble of uncorrelated dispersion solutions can be created by moving the re-
lease (e.g., in location and/or time) within the turbulent flow. This approach provides a 
distribution of dispersion solutions that can then be averaged (in time and space) to de-
termine the mean properties of downwind dispersion analogous to the products pro-
duced by standard Gaussian plume and puff models. Alternatively, this distribution of 
dispersion solutions can be sampled/analyzed to understand the variance from the mean 
and the skewness of the distribution if present [1]. While this approach can be used to 
provide a wealth of information on the properties of dispersion for a given scenario, the 
production of ensembles of single-realization dispersion solutions is computationally ex-
pensive when compared to traditional Gaussian plume/puff and Lagrangian particle 
modeling techniques. The computational expense associated with producing these en-
sembles has, until recently, limited the use of CFD models for dispersion to research and 
academic applications. 

Here, we introduce a large eddy simulation (LES) CFD model that has been imple-
mented to run on a GPU computing platform and discuss the computational performance 
advantages provided by this GPU-LES approach. The accuracy of the dispersion solutions 
is critical for providing confidence in the use of this emerging technology. In this paper, 
we provide an illustration of an approach for validating dispersion simulations at these 
spatial and temporal scales. Our validation discussion includes a description of the obser-
vational data sets used to evaluate the model and the methodology used to simulate these 
experiments and to compare predictions to the observations. Detailed results across envi-
ronmental conditions ranging from unstable to stable planetary boundary layer (PBL) 
conditions (i.e., daytime to nighttime) are provided. We conclude with a summary of the 
findings, and a brief description of the plans to extend this capability to support modeling 
urban environments and building interiors. 

1.1. Ensemble-Average and Single-Realization Dispersion Solutions 
A common simulation method for estimating the dispersion of airborne contami-

nants are ensemble-average approaches. These are largely empirical approaches in which 
the model is designed to represent the apparent stochasticity of atmospheric turbulence 
and its corresponding impact on downwind dispersion. Here, empirical parameters are 
used to describe dispersion that might have occurred over many atmospheric and disper-
sion conditions. When formulated for a Eulerian reference frame, these empirical param-
eters are used to describe airborne material dispersion relative to the mean wind direction 
where the rate of dispersion changes as a function of downwind distance for a given at-
mospheric condition. When formulated for a Lagrangian reference frame, airborne mate-
rial dispersion in these tools is computed from the perspective of a hypothetical air parcel 
following the mean winds. The empirical parameters used to control the material spread 
following the flow are typically represented by a series of Gaussian puffs or individual 
particles. For the Lagrangian puff models, an assumption is made to represent localized 
concentration patterns using a Gaussian distribution, where the empirical parameters 
control the localized crosswind spread of the material as a function of downwind distance 
and atmospheric conditions [2,3]. In Lagrangian particle models, the empirical parameters 
are typically used to control the magnitude of particle spread within a random-walk 
method that redistributes the particles at each model time step [4,5]. In both approaches, 
there is an implicit assumption that the material concentration at each point in space and 
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time is an ensemble average over a large number of realizations of this apparent stochastic 
process. 

Individual realizations of dispersion can differ significantly from the ensemble-aver-
age solution, and it is typically not possible to recover specific details of a given dispersion 
realization from the ensemble-average statistics [6]. While ensemble-average solutions can 
in general provide reasonable model assessments, they have been shown to provide in-
correct and misleading results, particularly for scenarios involving high-frequency data 
sampling, strong spatial and temporal correlations between variables, and nonlinear ef-
fects [1,7]. For example, the consequences of exposure to airborne contaminants may de-
pend nonlinearly on the concentration, so that brief exposure to a high concentration can 
have greater impact than longer exposure to the same time-averaged concentration. CFD 
models can be used to create ensembles of what we refer to as “single-realization” disper-
sion solutions that use a very short time average relative to the eddy turn-over time of the 
eddies in the flow field. Individual uncorrelated dispersion realization ensemble members 
can be created in a couple of ways. One approach is to create multiple independent simu-
lations where the model is started from slightly different initial conditions. One way to do 
this is by modifying the random number seed on the initial heat flux distribution that 
initiates the turbulence within the model. A second approach is to create uncorrelated 
releases by spacing a set of releases within a simulated boundary layer with spatially ho-
mogenous conditions (e.g., roughness length, heat flux, etc.). A third way this can be done 
is to create realizations by creating releases within a spatially and homogeneous environ-
ment at different times. The use of this approach with a CFD and dispersion model has 
been demonstrated to produce an ensemble of dispersion solutions that when averaged 
can closely replicate the dispersion solution from a Gaussian puff model that calculated 
dispersion based on empirical relations designed to replicate an ensemble averaged dis-
persion. A more detailed discussion of this can be found in Bieringer et al. [1]. 

The large eddy simulation (LES) modeling approach has demonstrated the ability to 
successfully predict unique simulations of many types of atmospheric scenarios relevant 
for airborne dispersion and defense analyses described above [1,6,8,9]. LES models have 
been developed to explicitly resolve the motions associated with the largest eddies in the 
atmospheric boundary layer and use parameterizations or closures to represent the small-
scale turbulent eddies. The large eddies are resolved or separated from the small, unre-
solved eddies by filtering the governing Navier–Stokes equations in the inertial subrange, 
whereby the eddies smaller than the filter width are treated by a subgrid model and the 
eddies larger than the filter are explicitly resolved [10]. The filter size used is dependent 
upon the type of atmospheric conditions being modeled and the corresponding turbu-
lence length scales involved. Air-flow solutions from LES models can be produced at spa-
tial grid increments approaching 1 m and be solved at very short time-steps that when 
used to drive dispersion models (in both Lagrangian and Eulerian reference frames), can 
produce single-realization dispersion patterns [1,6,11–14]. When combined with an im-
mersed boundary method (IBM) surface layer parameterization, necessary to keep the 
model numerically stable at the walls of the buildings, LES models have also been demon-
strated to be capable of simulating the detailed winds and dispersion that occur in urban 
environments [15,16]. When compared to observational data, the results indicate that an 
LES approach has been shown to accurately represent both the mean properties of disper-
sion and the variance present in the observations from open terrain convective boundary 
layer field trials [11,12,17]. 

1.2. GPU-Enabled Atmospheric Computing 
General purpose computing on graphics processing unit (GPGPU) hardware, here-

after referred to as a GPU, has emerged as a high-performance computing (HPC) option 
for a variety of applications, including scientific computing. GPUs typically have many 
times the number of computational cores relative to central processing unit (CPU) com-
puters and are purpose built to solve problems in graphics shaders for the calculation of 
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the levels for light, darkness, and color for the rendering of graphics on computer screens. 
Scientific computing with this technology began in the early 2000s with a demonstration 
using a matrix multiplication application that was shown to run considerably faster on a 
GPU than on a CPU [18]. Since then, programming languages and standards, such as 
OpenCL and Nvidia’s CUDA, provide an application programming interface that enables 
the use of C and C++ software to be executed on GPUs. Modern GPUs, such as the Nvidia 
A100, have even more densely packed computational cores (nearly 7000), and higher 
memory bandwidth (2 Terabytes per second) [19], which collectively enable faster com-
putations and reduced data latency (reduced time spent waiting for data load/store pro-
cesses to complete). Collectively, these characteristics enable the GPUs to significantly 
outperform CPUs for calculations in data-parallel applications, which require the same 
instruction (or calculation) to be made concurrently. Many scientific calculations, includ-
ing CFD and LES calculations, fall into this data parallel paradigm. 

The atmospheric science modeling community recognized the computational poten-
tial provided by the GPU in the mid to late 2000s. Early examples where the use of a GPU 
for an atmospheric modeling application explored the porting of computationally expen-
sive elements of the Weather Research and Forecast (WRF) model [20] to run on a GPU. 
This work, commonly referred to as GPU acceleration, includes work by Michalakes and 
Vachharajani [21], Mielikainen et al. [22], Silva et al. [23], and Wahib and Maruyama [24]. 
An alternative approach that has been more recently taken by atmospheric modelers is to 
port the entire atmospheric model to run resident on the GPU. Examples of models that 
take this approach include the GPU Resident Atmospheric Simulation Program (GRASP) 
(previously referred to as the GPU-resident Atmospheric Large-Eddy Simulation 
(GALES) model) by Schalkwijk et al., 2012 [25]; Schalkwijk et al., 2015 [26]; Schalkwijk et 
al., 2016 [27]; the Parallelized Large Eddy Simulation Model (PALM) by Maronga et al., 
2015 [28]; the MicroHH model by van Heerwaarden et al., 2017 [29] and the FastEddy 
model (Sauer, J. A., & Muñoz-Esparza, D. (2020) [30]. Using the CPU to handle data input 
and output (I/O) and moving all of the core atmospheric calculations to the GPU has been 
shown to provide an increase in the calculation speed of an atmospheric simulation by 
more than an order of magnitude over comparable calculations on CPU hardware [29]. 

To characterize these benefits, our team conducted benchmark LES simulations using 
the Weather Research and Forecast (WRF) model with LES turbulence closure [31,32] and 
compared the computational performance to the GRASP model. The WRF-LES and 
GRASP simulations used a 128 × 128 × 64 (X, Y, Z) grid with a spatial resolution of 20 m × 
20 m × 17 m. The simulation used a periodic lateral boundary condition to spin up con-
vective eddies and turbulence over a 1-h period. The WRF-LES simulation was performed 
on a Dell R640 running Red Hat v7.6 Linux on an Intel Xenon E5 v4, 8-core CPU, and was 
configured to use the distributed memory, Message Passing Interface (MPI), option. On 
this hardware, a 1-h WRF-LES simulation required approximately 1 h and 32 min of wall 
clock time. A comparable GRASP simulation was performed on an NVIDIA Tesla K40 
with 2880 cores operating at 745 MHz and 12 GB of onboard fast access memory. The 
GRASP simulation completed in 36 s of wall clock time. This represents a GPU-LES sim-
ulation that is approximately 150 times faster than the comparable CPU-LES simulation. 

The GPU-LES has substantially lower equipment costs, power consumption, cooling 
requirements, and physical space requirements than a CPU platform that can provide 
comparable simulations. Based on the benchmark described above, and assuming linear 
performance scaling, we estimate that a cluster of 19 Dell R640 Linux servers and a high-
speed network switch would be required to match the performance of a single NVIDIA 
Tesla K40. Evidence on the hardware performance of the GPU vs. CPU suggests that this 
type of computational performance difference is a sustained characteristic of these plat-
forms. Figure 1 shows the theoretical computational capacity and memory bandwidth 
benchmarks for a series of NVIDIA GPUs and Intel CPUs over the past decade [33,34]. 
This figure illustrates how the GPU continues to maintain a significant advantage over its 
Intel CPU counterpart, as measured by floating point operations per clock cycle and 
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memory bandwidth speed, and that this advantage has continued to grow as new archi-
tecture designs are released. For reference, the NVIDIA K40 used for the performance 
benchmark cited above is a 2014 graphics card based on the NVIDIA Kepler architecture. 

 
Figure 1. Computational benchmarks for NVIDIA GPU vs. Intel CPU hardware platforms. The left 
panel illustrates theoretical floating-point operations (FLOPS) per clock cycle and the panel on the 
right illustrates theoretical memory bandwidth in gigabits per second (Gbps). 

1.3. Atmospheric Dispersion Modeling on a GPU-LES Model 
To form an ensemble of single-realization dispersion solutions using a LES and cou-

pled atmospheric transport and dispersion (AT&D) model comes at a high computational 
expense. In spite of the computational burden that has historically been associated with 
LES AT&D, it has been used in a variety of studies ranging from characterizing convective 
boundary layers [13], the development of more accurate Lagrangian dispersion modeling 
through the incorporation of subgrid turbulence [11,12], and the use of dispersion ensem-
bles for hazard prediction and sensor placement calculations [1,17]. In recent years, LES 
models are being increasingly used for atmospheric dispersion studies [25,26] and when 
implemented on GPU-based computing platforms, showed great promise for enabling a 
range of atmospheric boundary layer research topics and applications by significantly re-
ducing the computational resource requirements to make the calculations [27]. Here, we 
present a dispersion modeling system designed to take advantage of the GPU-LES mod-
eling technology called the joint outdoor-indoor urban large eddy simulation (JOULES). 
JOULES is a collection of modeling capabilities designed to calculate atmospheric condi-
tions and corresponding airborne contaminant transport in open terrain and urban loca-
tions both inside and outside of buildings. At the core of JOULES is the GPU Resident 
Atmospheric Simulation Program (GRASP) described above. GRASP was originally de-
veloped to provide high-resolution simulations of clouds, winds, and turbulence and de-
signed to be run on central processing unit (CPU) computing platforms. It was later 
adapted to run on GPU-based architectures by scientists at Delft University of Technology 
(TU Delft) and Whiffle B.V. Additional details on the origins of this model as well as in-
formation on the turbulence closures and other formulations used within the GRASP 
model can be found in [25–27]. 

Since its initial development, GRASP has undergone a number of evaluations to as-
sess its ability to provide high-resolution reconstructions of atmospheric variables and 
short-term weather predictions. Of particular relevance to its use for atmospheric disper-
sion applications is the work by Schalkwijk et al. [25,26] to couple GRASP to a regional-
scale atmospheric model in order to predict a continuous, year-long, three-dimensional 
time series of turbulence and clouds. The predictions were compared to detailed bound-
ary layer observations collected at the Cabauw Experimental Site for Atmospheric Re-
search (CESAR). This study included favorable comparisons between the measured and 
simulated power spectrum of horizontal and vertical wind speed variance across a variety 
of weather conditions and temporal scales. 
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2. Materials and Methods 
In this section, we describe the implication of coupling JOULES with an AT&D 

model, which solves for the advection and diffusion of a passive scalar (i.e., a neutrally 
buoyant airborne tracer). Our study evaluates the accuracy of the GPU-LES dispersion 
solutions produced by this model over flat open terrain. The evaluation was performed 
using data from three separate dispersion experiments, with atmospheric conditions rang-
ing from unstable daytime “convective” PBLs, to stable environments that typically occur 
at night. This section describes the observational data used in the model evaluation, the 
approach used to develop the ensembles of dispersion solutions, the analysis methodol-
ogy, and the metrics used to compare the simulations to the observations. 

2.1. Observational Data 
This study uses data from three dispersion experiments, representing open terrain 

environments under unstable, neutral, and stable conditions. The observations during un-
stable or “convective” conditions were taken from the classic convective water tank ex-
periments conducted by Willis and Deardorff [35], and two outdoor atmospheric trials, 
Project Prairie Grass [36,37], and the COnvective Diffusion Observed by Remote Sensor 
(CONDORS) experiments [38,39,40]. Collectively, these three experiments provide data 
from trials representing both near-surface airborne tracer releases and observations of ma-
terial concentrations at the surface and aloft. Since vertical dispersion is less significant in 
stable conditions, near-surface observations from Project Prairie Grass were used to assess 
our implementation for neutral and stable simulations. The following subsections de-
scribe these data. 

2.1.1. Willis and Deardorff Water Tank Experiments 
Historically, the development of ensembles of dispersion realizations from outdoor 

dispersion measurements has been difficult to construct because the atmospheric condi-
tions in which the measurements are taken typically do not repeat with sufficient con-
sistency or frequency during the experiments. Laboratory experiments are one way of ad-
dressing this challenge and have been demonstrated to provide comprehensive ensembles 
of dispersion for repeatable conditions. In the 1970s and 1980s, Willis and Deardorff con-
ducted a series of water-tank experiments, to measure the temperature, heat flux, wind 
velocity, and fluctuations in temperature and velocity in a convectively forced fluid [35]. 
They later extended these experiments to include dispersion in the convective boundary 
layer [41]. These observations, and a series of numerical simulations enabled the charac-
terization of dispersion in the convective atmospheric boundary layer, and showed how 
the large variability in concentration measurements observed in convective boundary lay-
ers can be explained by the location of the release relative to the updrafts and downdrafts 
[42,43]. 

This work demonstrated that an ensemble of dispersion realizations is typically 
needed to characterize the statistical properties of dispersion in convective boundary lay-
ers. Later experiments measured crosswind-integrated concentration as a function of the 
downstream distance from the source. This led to a further extension of these earlier con-
vective water tank experiments, where additional observational experiments were de-
signed to produce ensembles of dispersion solutions [41–43] (including measurements of 
crosswind integrated concentrations as a function of the downstream distance from the 
source for a series of near-surface and elevated releases. The Willis and Deardorff obser-
vations have been used extensively to understand the convective boundary layer and in a 
variety of model evaluation studies [11,12,42,43] involving LES models. In this study, data 
from the water tank experiment were used in the assessments of the GPU-LES model sim-
ulations of downwind dispersion at the surface and aloft during convective conditions. 
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2.1.2. Project Prairie Grass Experiment 
Project Prairie Grass [36] is a classic outdoor atmospheric dispersion field trial that 

has been widely used to understand the properties of atmospheric dispersion from near 
surface releases. Briefly, the experiment featured a series of 10-min continuous sulfur di-
oxide (SO2) releases from a point 0.46 m above the ground. Downwind concentration 
measurements were made along five semi-circular arcs, located 50, 100, 200, 400, and 800 
m from the release, at spacings of 2° for the four innermost arcs, and at 1° for the 800 m 
arc. Surface-based samplers collected 10-min integrated concentration measurements. The 
mean winds were measured at 8 heights, from 0.125 m to 16 m. The micro-meteorological 
information (friction velocity (𝒖∗) and Obukhov length (L)) were determined by fitting the 
friction velocity and temperature measurements to the tower data. Approximately 70 re-
leases were conducted, and data collected across a range of atmospheric stability regimes. 
In this study, data from the Prairie Grass experiment were used in the assessments of near-
surface GPU-LES dispersion model simulations for unstable, neutral, and stable boundary 
layer conditions. The Project Prairie Grass data were obtained from Arhus University, 
Denmark [37].  We refer the reader to [36] for a full description of the experiment. 

2.1.3. COnvective Diffusion Observed by Remote Sensors (CONDORS) Experiment 
The COnvective Diffusion Observed by Remote Sensors (CONDORS) experiments 

measured both near-surface and vertical dispersion, extending to the full depth of the at-
mospheric boundary layer [38,39,40]. Measurements aloft included rawinsondes released 
near the time of the tracer experiments, acoustic sounders, and observations from a 300-
m tower, which enabled estimates of the mixing layer depth, heat, and momentum fluxes. 
The trials used three tracers (oil fog, chaff, and a passive gas), in daytime releases near 
Erie, Colorado during August and September. Concentration measurements were col-
lected by samplers at the surface, and with lidar and radar aloft. Twenty-six hours of data 
were collected across 12 separate mid-day periods. Of these data, over 11 h of data were 
processed into 29- to 60-min averaging periods during conditions where the convective 
boundary layer or mixed layer depth normalized by the Obukhov length (zi/L) ranged 
from 24 (moderately unstable) to 1125 (extremely unstable) [38]. Obukhov length is de-
fined as: 𝑳 = −𝒖∗𝟑𝑻𝒂 𝒌𝒈𝒘′𝜽′𝟎  (1)

where 𝒖∗ is the surface friction velocity, 𝑻𝒂 is the ambient temperature, 𝒌 is the von Ká-
rmán constant (𝒌 = 0.4), 𝒈 is the gravitational acceleration, and 𝒘′𝜽′𝟎 is the surface kin-
ematic heat flux. This experiment provides a comprehensive set of measurements of cross-
wind-integrated concentration, lateral dispersion, plume height, and vertical dispersion. 
Data from the CONDORS experiment were used in the unstable boundary layer evalua-
tions of the GPU-LES model dispersion at both the surface and aloft. 

2.2. Categorization of the Observations 
For each of the categories of static stability, we combined dispersion measurements 

from a combination of observations collected at multiple distances downwind from the 
release location and from a variety of individual trials conducted during similar weather 
conditions. Combining the observational data in this way enabled us to then compare both 
the mean and spread of the full distribution of observations to the model simulations. 
Taken together, the water tank, Prairie Grass, and CONDORS experiments cover a range 
of weather and stability conditions, near-surface and above-surface data, and distances 
downwind from the release location. Broadly, Prairie Grass provides near-surface disper-
sion estimates for unstable, neutral, and stable boundary layer conditions. For unstable 
boundary layers, these are supplemented by the Willis and Deardorff water tank and 
CONDORS data for both near-surface and vertical dispersion, including crosswind-inte-
grated concentration, plume height, and lateral and vertical dispersion. 
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In order to synthesize complete datasets against which to evaluate our GPU-LES 
model, we organized the data around elements of the Pasquill–Gifford stability categories 
[44,45]. We chose to represent dispersion in convective (unstable), neutral, weakly stable, 
moderately stable, and strongly stable conditions, based on the ranges of the Obukhov 
length that have been correlated to these stability categories [46,47]. Table 1 lists the Obu-
khov ranges used to select specific trials from the Project Prairie Grass and CONDORS 
data sets. To the extent possible, care was taken to group measurements taken under sim-
ilar weather conditions. Specific trials selected by these criteria included: 
1. The convective water tank experimental data from Case 1 in Willis and Deardorff [26], 

comprising data from seven experimental trials; 
2. All the surface-based releases of oil and chaff, for eight releases and five locations, in 

the CONDORS experiment; 
3. Seven Project Prairie Grass trials—Trials 7, 8, 10, 16, 25, 44, and 51. 
Table 2 gives details on the 81 individual trials distributed across the four categories and 
the corresponding mean atmospheric properties for each category. 

Table 1. Obukhov values used to define stability categories for the GPU-LES evaluation. 

Stability  
L 

(m) 
Unstable  <−2 

Neutral stability  >75 
Slightly Stable  35 to 75 

Moderately Stable  8 to 35 
Extremely Stable  1 to 8 

Table 2. The mean environmental conditions of the observational data used in the evaluation. 

Stability Number 
of Trials 

U @ 1m 
(m s−1) 

𝒖∗  
(m s−1) 

Heat 
Flux 

(W m−2) 

T 
(°C) 

θ 
(K) 

𝒘∗  
(m s−1) 

L 
(m) 

Unstable  47 4.054 0.331 200.517 28.96 307.10 1.613 −18.33 
Neutral stability 12 4.84 0.38 −29.39 22.33 300.36 −0.54 167.25 
Slightly Stable 7 2.74 0.21 −25.94 22.15 300.19 −0.50 54.20 

Moderately  
Stable 

6 2.21 0.16 −22.07 21.73 299.68 −0.49 18.91 

Extremely Stable 9 1.24 0.07 −10.74 19.03 297.13 −0.36 4.29 

2.3. Scaling Methodology 
In addition to their water tank experiments, Willis and Deardorff [26] also introduced 

methods for scaling dispersion measurements. Their approach acknowledges that disper-
sion in the PBL depends primarily on the time over which the fluid disperses through the 
media. Their initial work considered highly convective PBLs, where non-dimensional 
scaling factors were derived using the convective boundary layer depth, 𝒛𝒊, and the con-

vective velocity scale, 𝒘∗ = 𝒈𝒘′𝜽′𝒐𝒛𝒊 𝑻𝒂 𝟏𝟑 . They further defined the turbulence time 
scale, or eddy-turnover time, as 𝒛𝒊 𝒘∗⁄ . In the along-wind direction, they recognized that, 
because dispersion in the PBL is a function of time, downwind distance, 𝑿, from the 
source for convective conditions can be scaled as: 𝑿 =  𝒘∗𝒙𝑼𝒛𝒊  (2)
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where 𝒙 is the distance downwind of the release location, and 𝑼 is the average PBL wind 
speed. Willis and Deardorff [26] also suggested a dimensionless parameter for the cross-
wind integrated concentration (CWIC or 𝑪𝒚), defined as 𝑪𝒚 = 𝑪 𝒙,𝒚, 𝒛 𝒅𝒚. To do so, 
they scaled CWIC by the concentration that would be present in a uniformly mixed PBL, 
well downwind of the release. This uniformly mixed concentration is 𝑸 𝑼𝒛𝒊⁄  where 𝑸 is 
the mass-release rate. Based on this approach, a normalized dimensionless CWIC can be 
calculated as: 𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝑪𝑾𝑰𝑪 =  𝑪𝒚𝑼𝒛𝒊𝑸  (3)

This approach was first used by Willis and Deardorff [35] to visualize the dispersion 
measurements from their convective water tank experiments. Our work here leverages 
these methodologies and in particular plots of CWIC like Figures 8 and 9 from Willis and 
Deardorff [35] that depict measurements with a non-dimensional mean CWIC from the 
water tank data that was plotted as a function of the scaled downwind distance 𝑿 and 
height. 

Since its introduction, this scaling approach has been extended and adapted for use 
in atmospheric dispersion applications that range from interpreting observational data 
[48] to the development of empirical models [49,50] and the evaluation of dispersion mod-
els [11,12]. Here, we used this scaling approach to combine observations taken at different 
times from a single experiment, and observations taken from different experiments, into 
a collection of measurements that represent dispersion in each stability class. Similar 
methods were used by Weil et al. [11,12] for unstable conditions, and Venkatram et al. [51] 
for neutral and stable conditions. The scaling used in this study and by Weil et al. [11,12] 
for the convective cases closely follows the approach found in [35]. For evaluating plume 
height, and vertical and lateral dispersion, we also followed the Weil et al. [11,12] ap-
proach of normalizing the results by 𝒛𝒊. 

The downwind distance scaling method used in this evaluation for the neutral and 
stable static stability conditions follows the approach published in [50]. The Venkatram et 
al. [50] scaling differs slightly from that of Willis and Deardorff [35], normalizing the 
downwind distance using: 𝑿 =  𝒙|𝑳| (4)

where |𝑳| is the absolute value of the Obukhov length from Equation (1). Because the 
convective scale velocity of neutral-to-stable cases would be negative, we instead use a 
scaling factor that utilizes friction velocity and Obukhov length. For neutral and stable 
scenarios, normalized CWIC is calculated using the following relationship: 𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝑪𝑾𝑰𝑪 =   𝑪𝒚𝒖∗𝑳𝑸  (5)

The scaling parameters, as described above, are applied to all of the point-location 
observations used in this evaluation. The same relationships are applied to the simulations 
enabling a comparison with the observations. 

2.4. GPU-LES Model Simulations 
The development of the GPU-LES dispersion simulations involved a two-step pro-

cess. The first step was the design and execution of the atmospheric simulation. Five con-
figurations, corresponding to the stability categories defined in Table 1 and Table 2, were 
developed. The unstable configuration was based on the specifications of Weil et al. 
[11,12]. The neutral and stable configurations required finer spatial resolution, and a dif-
ferent approach for establishing the desired stability conditions. To achieve a simulation 
with the desired Obukhov length, we set the roughness length, heat flux, temperature, 
and initial convective boundary layer depth to values representative of the environmental 
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conditions in the ensemble of field trials. Next, we adjusted the geostrophic wind (Ug and 
Vg) until the Obukhov length matched the observations within the category.  Table 3 pro-
vides details on the model configurations and initial conditions (e.g., domain size, spatial 
resolutions, and core meteorological parameters). The wind speeds in Table 3 are the ini-
tial values (i.e., at the model start time) for the entire PBL. The turbulent PBL simulation 
is first spun up for 60 min from a cold start using cyclic (i.e., periodic) lateral boundary 
conditions. Figure 2 shows sample horizontal and vertical cross-sections of vertical veloc-
ity after the spin-up of a convective PBL simulation over a 2 km x 2 km x 1.0 km domain. 
Following the initial spin-up, we then began the tracer release, allowing the tracer mass 
to reach steady state. This required another 60 min of simulated time. Hence, we did not 
use meteorological or dispersion results from the first 120 min of the simulations. Our 
development here emphasized model selections that aided in separating model calibra-
tion to the experiment conditions from model calibration to the resulting data. 

Table 3. The JOULES GPU-LES model configuration parameters. 

Simulation 
Category 

Grid Points 
(nx,ny,nz) 

Model Reso-
lution 

(Hor,Vert) 
(m) 

U 
(m/s) 

Ug 

(m/s) 
Vg 

(m/s) 
Heat Flux 

(W/m2) 
zi 

(m) 
L 

(m) 

Unstable (192,192,96) (52.1,20.8) 2.8 2.8 −1.5 240 1000 −11.5 
Neutral stability (256,256,64) (6.25,6.25) 8 8 −5.5 −10 190 372.2 
Slightly Stable (256,256,64) (6.25,6.25) 4 3.5 −4.5 −10 116 47.6 

Moderately  
Stable (256,256,64) (6.25,6.25) 4 3.2 −4.2 −10 103 28.9 

Extremely 
Stable 

(256,256,64) (6.25,6.25) 3 2.5 −2.5 −10 78 7.6 

The second step in developing dispersion simulation data for this evaluation is a pro-
cess we used to develop an ensemble of uncorrelated dispersion solutions. Once the GPU-
LES model has spun up the turbulence and corresponding dispersion to a quasi-steady 
state, we calculated the model evaluation metrics. A continuous set of values in the along-
wind direction were computed for each of the evaluation metrics. The calculations used a 
10-min average or integrated value, depending on the metric in question. Individual un-
correlated realizations of the dispersion patterns, following the methodology used in [12], 
were created by varying a combination of the source location and the start time of the 
release. For example, Figure 3 depicts the predicted near-surface concentrations from five 
uncorrelated simulations. It illustrates the type of variability in the dispersion patterns 
that can be created within a convective PBL simulation using this methodology. Because 
the GPU-LES model runs quickly, we were able to generate an ensemble of 130 realiza-
tions that we believe described the unstable PBL dispersion comprehensively and do so 
in approximately two hours of wall-clock time for these experiments. Subsequently, for 
the neutral and stable simulations, we reverted to using 30 realizations per ensemble, as 
was done in [12], and we found suitable for our comparisons. The model evaluation met-
rics were then computed for each ensemble member, using the sampling characteristics of 
the field program. This enabled us to create a comprehensive distribution of model eval-
uation metrics that captured the range of dispersion patterns associated with how the air-
borne material release responds to the winds and turbulence in the PBL. 
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Figure 2. Illustration of a horizontal and vertical cross-section of vertical velocities for a convective planetary boundary 
layer (PBL) simulation. Red represents updrafts; blue represents downdrafts; and green represents areas where vertical 
motions are low. In this simulation, the depth of the boundary layer was set at 1000 km, clearly visible as the level where 
vertical velocities abruptly transition from large to small values. 

3. Results 
We assessed the suitability of the GPU-LES model to simulate dispersion in the PBL 

by comparing the plume height normalized by PBL height, vertical profiles of CWIC, 
downwind surface-based CWIC, surface crosswind dispersion, and vertical dispersion to 
comparable dispersion metrics computed from observations. Calculations of the metrics 
computed from observations are represented by symbols/markers in the forthcoming fig-
ures. Calculations of the metrics for a single dispersion realization from the GPU-LES 
model simulations are represented by either grey lines or blue dots and are plotted on the 
figure to illustrate the distribution of solutions. The following sections present results 
comparing the JOULES GPU-LES model predictions to observational data and are orga-
nized by stability category as described in Table 1. 

1 
km

2 km

2 km
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Figure 3. Variability in the dispersion patterns. Five sample realizations of near-surface concentra-
tion, 10 min after the start of the tracer release, were generated by varying the release start time or 
release location in the time-varying turbulent environment produced by the GPU-LES model. 

3.1. Unstable PBL Comparison 
The observational data sets used for the unstable PBL evaluation were from the Willis 

and Deardorff [35] water-tank, the Project Prairie Grass, and CONDORS experiments. The 
crosswind integrated concentration was computed from the release location to a down-
wind distance of 9750 m, for the full vertical depth of the simulation (2000 m). Figure 4 
shows the CWIC calculation from the unstable GPU-LES dispersion solution. Qualita-
tively, the results closely match the measurements illustrated in Figure 8 from the Willis 
and Deardorff [35] experiment for scaled downwind distances less than three. Overall, the 
GPU-LES dispersion solution shows strong qualitative agreement with the Willis and 
Deardorff [35] observations, notably the near surface concentration minimum that occurs 
between a downwind distance of ~1 to 3. Because the GPU-LES simulation extends be-
yond the downwind distance measured by Willis and Deardorff, we are able to predict an 
increase in average CWIC near surface extending out to a scaled downwind distance of X 
= ~5. 
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Figure 4. Normalized crosswind integrated concentration as a function of the downwind distance 
from the release location. This figure and corresponding calculation are frequently used in the at-
mospheric dispersion community to compare dispersion simulations to observational data. The plot 
represents the average CWIC from 130 individual GPU-LES realizations. 

Figure 5 shows a quantitative comparison of the GPU-LES CWIC solution with the 
Willis and Deardorff [35] data. The figure illustrates how CWIC varies with height, out to 
a scaled downwind distance of approximately 3 from the release location. Past X = 3, the 
CWIC value shows unity up to the height of the boundary layer. It shows promising 
agreement between the ensemble mean of CWIC from the GPU-LES model (black line) 
and the measured vertical profiles of CWIC from the water tank experiments (black dots). 

Surface measurements for calculating CWIC were available from the Project Prairie 
Grass and CONDORS experiments. Figure 6 compared surface CWIC measurements (rep-
resented by the black circles, dots, squares, and stars) with calculations from 130 GPU-
LES realizations (represented by the small blue dots). The green line denotes a calculation 
of CWIC using surface layer similarity (SLS) theory [51]. At locations nearest the source, 
the LES model under predicts CWIC compared to SLS theory and Prairie Grass data. This 
is due to the resolution of the computational grid. Near the source, the tracer is immedi-
ately dispersed uniformly throughout each grid cell, making the model over-dispersive at 
this location. The underprediction near the source can be addressed (when required) by 
decreasing the volume of the grid cells (i.e., increasing the spatial resolution), or through 
the use of a Lagrangian particle dispersion model (LPDM) . Figure 6 shows that, except 
very near to the source, the simulations of surface-based normalized CWIC show prom-
ising agreement with the measurements from the field trials. The figure also illustrates 
how the spread in the observations and model simulations vary as a function of the scaled 
downwind distance from the source. Notably, both show the pattern of smaller spread 
near the source location, an increase in spread near a scaled downwind distance of one, 
and then a collapse of the spread to a CWIC value near one further downwind as the 
material becomes well-mixed in the PBL. 
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Figure 5. Crosswind integrated vertical dispersion as a function of the downwind distance from the 
release location, for the Willis and Deardorff [35] water tank experiments. The gray lines depict 130 
realizations from the JOLES model, and the black lines show the average of these realizations. The 
circles represent data measured by Willis and Deardorff. 
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Figure 6. Crosswind integrated concentration as a function of the downwind distance from the re-
lease location. The green line represents the dispersion based on surface layer similarity (SLS) the-
ory. The blue dots depict 130 individual realizations from the LES model, and the red line represents 
the average of these realizations. The markers (closed circles, open circles, squares, and stars) rep-
resent observations measured during convective trials in the Prairie Grass and CONDORS experi-
ments. 

Figure 7 compared lateral or horizontal crosswind dispersion, computed from sur-
face observations from both the Project Prairie Grass and CONDORS experiments, and 
corresponding calculations of lateral dispersion from the GPU-LES model. Here, again, 
there is fair agreement between the observations and the mean lateral dispersion from the 
ensemble of simulations. A majority of observations fall within the ensemble distribution, 
and the slope of the increase in plume spread with distance is well aligned with the ob-
servations. However, the mean of the ensemble appears to be slightly below the observa-
tions, including the formulation fit to the data by Briggs [48], for scaled downwind dis-
tances greater than approximately 0.1. 

 
Figure 7. Surface crosswind dispersion from the GPU-LES model as a function of the downwind 
distance, compared to observations from the CONDORS field program. The gray lines depict a se-
ries of 30 individual realizations from the LES model. The black line represents the average of those 
realizations. The circles and triangles represent observations of normalized concentrations meas-
ured during the CONDORS and Prairie Grass experiments. 

In Figure 8 we illustrate the vertical dispersion results. For this metric, the mean of 
the ensemble aligns well with the observations, and the spread of the ensemble corre-
sponds nicely to the spread observed in the CONDORS data. This metric also demon-
strates that the GPU-LES dispersion model exhibits the expected increase in vertical dis-
persion as the scaled downwind distance increases. Finally, it appears to correctly capture 
the properties in the vertical dispersion observations, where normalized vertical disper-
sion stabilizes at scaled downwind distances greater than one. 

Figure 9 shows the normalized average plume height, 𝒛𝒑, as a function of the scaled 
downwind distance. Excluding outlier observations during sampling periods 32 and 33 
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(pds 32,33) in the CONDORS field trials, noted by Briggs [49], there is good agreement 
between the CONDORS observations of 𝒛𝒑 and the dispersion realizations. The average 
value of 𝒛𝒑 from the ensemble of simulations (black line) is near the center of the scatter 
of observations. The ensemble of the plume height calculations presents little variability 
near the release location and far downwind of the release, but a greater range of results at 
scaled downwind distances between X = 0.75 and 2.5. This pattern in the ensemble spread 
agrees closely with the scatter observed in the CONDORS observations. It also matches 
expectations based on the characteristics of dispersion in a strongly convective PBL envi-
ronment. 

 
Figure 8. Normalized vertical dispersion as a function of the downwind distance. The gray lines 
depict 30 individual realizations from the LES model, while the black line represents the average of 
those realizations. The circles and triangles represent observations of normalized concentrations 
measured during the CONDORS experiments. 
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Figure 9. Normalized plume height as a function of the downwind distance. The gray lines depict 
100 individual realizations from the JOULES and the black line represents the average of those re-
alizations. The circles and triangles represent observations measured during the CONDORS exper-
iments. 

3.2. Neutral and Stable PBL Comparison 
Data from the Project Prairie Grass field experiment were also used to evaluate the 

dispersion solutions from the GPU-LES dispersion simulations for neutral and stable PBL 
conditions. Our selection criteria identified surface concentration data from 34 trials for 
use in the model evaluation. As described above, in order to account for variability of 
dispersion conditions within this range of stability categories, we categorized these data 
into four distinct subsets; see Table 1. Surface CWIC and lateral dispersion results are 
provided for each category. 

3.2.1. Neutral PBL Comparison 
Figure 10 shows a vertical cross-section of normalized CWIC as a function of the 

downwind distance calculated from the ensemble of 30 neutral GPU-LES dispersion sim-
ulations with an Obukhov length of ~372 m. It illustrates that for the neutral condition 
simulations, the airborne materials from a surface release mix up to about half the depth 
of the PBL (~95m). In Figure 11, the calculation of CWIC from the GPU-LES model was 
compared to calculations of CWIC from the surface observations from the Prairie Grass 
experiment, where the Obukhov length during the experiment was greater than 75 m. 
This figure shows good agreement between the CWIC observations (black dots) and the 
values computed from the GPU-LES simulations (blue dots). The red line depicts the en-
semble average of the CWIC simulations. Note that the slope of this line matches the slope 
of the observations. The figure also indicates that the width of the distribution from the 
ensemble of simulations is very consistent with the scatter suggested by the observations. 
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Figure 10. Normalized crosswind integrated concentration as a function of the downwind distance 
from the release location, for the neutral stability. The plot shows the average CWIC from 30 indi-
vidual GPU-LES realizations. 

 
Figure 11. Normalized crosswind integrated concentration as a function of the downwind distance 
from the release location, for neutral stability conditions. The blue dots represent individual reali-
zations of dispersion from the GPU-LES model, where the simulation was designed to produce neu-
tral conditions with L = ~368. The red line represents the average of this ensemble. The black squares 
represent observations from the Prairie Grass experiment during neutral conditions. 

3.2.2. Stable PBL Comparison 
Similar calculations were made for the simulations produced for the slightly, moder-

ately, and extremely stable PBL conditions. Figure 12 depicts the vertical cross-sections of 
CWIC for each and illustrates how the simulated CWIC values vary as the environmental 
conditions become more stable. As expected, the depth to which the airborne materials 
from a surface release are mixed decreases as the static stability increases (approximately 
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62, 41, and 31 m for the weakly, moderately, and extremely stable conditions, respec-
tively). This results in higher concentrations being seen further downwind of the release 
location as the atmosphere becomes more stable. The data from these three stability cate-
gories were also directly compared to normalized CWIC calculations made using Project 
Prairie Grass observations. The results, summarized in Figure 13, show good agreement 
between the model and observations for the weakly and moderately stable conditions. 
There was considerably more scatter in the CWIC data computed from the ensemble of 
extremely stable observations and the ensemble average of the extremely stable GPU-LES 
CWIC simulations was on the high end of the pattern of observations (though still within 
the range of the scatter). This suggests that the turbulence is much lower in our GPU-LES 
simulation than what was present in the experimental data and that we do not have a 
sufficient understanding of the sources of turbulence in these very stable cases to incor-
porate it into the simulation. 
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Figure 12. Normalized crosswind integrated concentration as a function of the downwind distance 
from the release location, for the slightly (top), moderately (middle), and extremely (bottom) stable 
conditions. Each plot represents the average CWIC from 30 individual GPU-LES dispersion simu-
lation realizations. 

In Figure 14, results from the neutral through extremely stable cases are plotted to 
depict the collective information on model accuracy for this range of stabilities. These re-
sults, and the results shown earlier for the convective PBL environments, indicate that the 
GPU-LES modeling system may be able to be configured from first principal parameters 
to provide ensembles of single-realization dispersion solutions that are representative of 
this range of environmental conditions. 
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Figure 13. Normalized crosswind integrated concentration as a function of downwind distance from 
the release location, for weakly (top), moderately (middle), and extremely (bottom) stable condi-
tions. The black square markers are derived from the Prairie Grass experiments. Blue dots represent 
individual realizations of dispersion from the GPU-LES model. The red line represents the average 
of this ensemble of simulated results. 
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Figure 14. A summary of the GPU-LES dispersion simulation results for the neutral and stable boundary layer simulations. 
Each of the lines represents an ensemble average of 18 simulations. The dots represent observations from the Prairie Grass 
experiment during neutral and stable conditions. The results demonstrate that the GPU-LES can accurately represent at-
mospheric dispersion for conditions ranging from neutral to stable conditions. 

4. Discussion and Conclusions 
A research goal for developing our GPU-LES approach, JOULES, is to design a sys-

tem for computing single-realizations of detailed, coupled urban (outdoor-indoor) con-
taminant dispersion. To describe the variability inherent in the atmospheric and urban 
conditions, our design required that that each simulation is completed quickly so that we 
could generate many realizations, all equally probable. A resulting capability would allow 
us to compute mass-conserving transport in a complete urban setting for various applica-
tions, many which cannot be analyzed using ensemble-averaging methods. The capability 
also allows us to derive synthetic data to test the suitability of existing operational tools. 

Here, we present the evaluation of the JOULES dispersion solutions for open terrain 
environments. These tests are critical for many applications. It is also essential before test-
ing it for more complex urban settings. This study used observational data from three field 
trials, following peer-reviewed methods and evaluation metrics that have been extended 
to evaluate the GPU-LES dispersion model’s suitability and promise across a range of en-
vironmental conditions, including convective (daytime) and extremely stable (nighttime) 
conditions. The open terrain convective comparisons showed very close agreement, both 
at the surface and aloft, for surface-based releases across this range of stability regimes. 
The simulations and performance metrics also closely match the performance of the La-
grangian particle dispersion model (LPDM) and National Center for Atmospheric Re-
search (NCAR) LES model published in [12] for convective conditions. 

This study moved beyond the work presented by Weil et al. [12] and examined the 
accuracy of dispersion simulations for neutral and stable conditions. JOULES also per-
formed well for the neutral, weakly, and moderately stable cases when compared to sur-
face observations from Project Prairie Grass. While there was some agreement between 
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the dispersion simulations and observation for the extremely stable cases, the normalized 
CWIC calculations from JOULES were on the high end of the scatter in the observations. 

The atmospheric conditions and corresponding dispersion solutions can be produced 
by configuring first principle PBL parameters in the model to produce a simulated envi-
ronment across static stability scenarios that range from unstable convective to moder-
ately stable conditions. The results of this model evaluation study suggest that JOULES 
can produce very promising atmospheric dispersion solutions for open-terrain homoge-
neous environments. Furthermore, the GPU implementation has been demonstrated to 
enable simulations to run over 150 times faster than comparable CPU-based LES imple-
mentations. This advancement significantly reduces the computational costs associated 
with developing microscale atmospheric and dispersion simulations and now makes it 
feasible to produce ensembles of single-realization dispersion solutions that are necessary 
in a variety of airborne dispersion and defense analyses [1,8,9]. 

In future work, we plan to implement a simulation capability for urban interiors. 
Such efforts require deciding on appropriate physics-based models and improving com-
putational performance to allow for even larger simulation domains, terrains, and non-
homogeneous land covers. 
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