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Abstract: Under increased greenhouse gas (GHG) forcing, climate models tend to project a warmer
sea surface temperature in the eastern equatorial Pacific than in the western equatorial Pacific. This
El Niño-like warming pattern may induce an increase in the projected occurrence frequency of
extreme El Niño events. The current models, however, commonly suffer from an excessive westward
extension of the equatorial Pacific cold tongue accompanied by insufficient equatorial western Pacific
precipitation. By comparing the Representative Concentration Pathway (RCP) 8.5 experiments with
the historical simulations based on the Coupled Model Intercomparison Project phase 5 (CMIP5),
a “present–future” relationship among climate models was identified: models with insufficient
equatorial western Pacific precipitation error would have a weaker mean El Niño-like warming
pattern as well as a lower increase in the frequency of extreme El Niño events under increased GHG
forcing. Using this “present–future” relationship and the observed precipitation in the equatorial
western Pacific, this study calibrated the climate projections in the tropical Pacific. The corrected
projections showed a stronger El Niño-like pattern of mean changes in the future, consistent with
our previous study. In particular, the projected increased occurrence of extreme El Niño events
under RCP 8.5 forcing are underestimated by 30–35% in the CMIP5 multi-model ensemble before the
corrections. This implies an increased risk of the El Niño-related weather and climate disasters in
the future.

Keywords: extreme El Niño frequency; observational constraint; model bias; Pacific cold tongue; El
Niño-like warming

1. Introduction

The El Niño-Southern Oscillation (ENSO) is a tropical Pacific interannual mode of
coupled ocean–atmosphere variability with global reach [1–9]. El Niño, as the warm phase of
ENSO, is characterized by anomalously warm sea surface temperature (SST) in the equatorial
Pacific and a basin-wide equatorial trade wind slowing or reversal. This is accompanied
by a pronounced eastward shift of atmospheric convection and hence a large increase in
precipitation in the eastern equatorial Pacific, where it is usually cold and dry [10]. It has been
recognized that such an anomalous condition of atmospheric convection/precipitation has
substantial remote effects on weather and climate patterns around the globe, affecting the
Indian summer monsoon [11–15], North American weather and climate [16–18], East Asian
summer monsoon [19–22], Western North Pacific (WNP) tropical cyclone activity [23–26],
global precipitation, SST, and sea level pressure (SLP) [5,27–34].

The 1982/83 and 1997/98 events have been regarded as “extreme El Niño episodes” [35,36],
with an extraordinary eastward extension of warm SSTs exceeding 28 ◦C into the eastern
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equatorial Pacific and exceptional precipitation over the usually dry eastern equatorial Pacific
(Figure 1a) [10,30]. Such a strong adjustment of atmospheric convection/precipitation critically
disturbs global weather and climate patterns, leading to devastating consequences in several
parts of the globe [37,38]. For instance, Indonesia and its surrounding countries experienced
catastrophic droughts and wildfires [36,39] as well as severe human health problems associated
with smoke and haze [40,41]. By contrast, the eastern equatorial regions and northern Peru
suffered from devastating floods [35] and severe ecological environment problems [42,43].
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Niño events, we also identified six moderate El Niño events, as shown in (b). 

Such widespread socio-economic consequences urgently call for attention to poten-
tial changes in extreme El Niño occurrences under global warming. Because it is still too 
difficult to reliably extract extreme El Niño changes under global warming forcing from 
observed records [44–49], climate model projections are widely used at present. In par-
ticular, the multi-model ensembles from the Coupled Model Intercomparison Project 
phase 5 (CMIP5) [50] and CMIP3 [51] suggested that greenhouse warming tends to in-
duce a higher frequency of extreme El Niño occurrences, predicting approximately one 
event every 10 years in future greenhouse gas (GHG) emission scenarios compared with 
one event every 20 years in the historical runs [10,38]. This has an important implication 
for the increasing risk of natural disasters induced by El Niño since an extreme El Niño 
event can exert considerable influences on the weather and climate, environmental eco-
systems, and human health both locally and in remote regions [35,36]. 

Figure 1. Time series of December–January–February (DJF) mean (a) precipitation (mm/day) and (b) detrended SST
anomalies (◦C) over the Niño3 (150◦ W–90◦ W, 5◦ S–5◦ N) region during 1979–2010 in observations. The red line in (a) and
the blue line in (b) denote the 5 mm/day precipitation and 0.5 ◦C SST anomaly, respectively. The events of 1982/83 and
1997/98 are two extreme episodes, with more than 5 mm/day mean precipitation over the Niño3 region during DJF, as
shown in (a). Based on the definition that detrended Niño3 SSTs greater than 0.5 ◦C are anomalies but not extreme El Niño
events, we also identified six moderate El Niño events, as shown in (b).

Such widespread socio-economic consequences urgently call for attention to poten-
tial changes in extreme El Niño occurrences under global warming. Because it is still
too difficult to reliably extract extreme El Niño changes under global warming forcing
from observed records [44–49], climate model projections are widely used at present. In
particular, the multi-model ensembles from the Coupled Model Intercomparison Project
phase 5 (CMIP5) [50] and CMIP3 [51] suggested that greenhouse warming tends to induce
a higher frequency of extreme El Niño occurrences, predicting approximately one event
every 10 years in future greenhouse gas (GHG) emission scenarios compared with one
event every 20 years in the historical runs [10,38]. This has an important implication for
the increasing risk of natural disasters induced by El Niño since an extreme El Niño event
can exert considerable influences on the weather and climate, environmental ecosystems,
and human health both locally and in remote regions [35,36].

Cai et al. [10] attributed this projected increased frequency of extreme El Niño to an El
Niño-like warming pattern in response to increased GHG forcing [52–56]. This projected
mean change in the tropical Pacific SST pattern would be conducive to more frequent
development of atmospheric deep convection [38] and hence increased precipitation in
the equatorial eastern Pacific (even higher than 5 mm/day). The El Niño-like projection
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largely arises from the equatorial Pacific west–east contrast for mean clouds and SST [53,55].
Toward the equatorial western Pacific, with high SSTs and strong atmospheric convec-
tion/precipitation, an increased SST can reduce surface radiation by increasing convection
and cloud cover, resulting in negative feedback onto the SST increases [57,58]. By contrast,
in the equatorial eastern Pacific where SST is lower, an SST increase can increase the radia-
tion at the ocean surface by breaking up the low clouds, resulting in positive feedback onto
the SST increases [59–64].

However, several generations of coupled general circulation models (CGCMs) have
commonly produced insufficient equatorial Pacific gradients in west–east SSTs along with
insufficient precipitation/clouds over the equatorial western Pacific [60,65]. This is because
of an excessive cold tongue that extends too far westward relative to observations [66–69].
Moreover, our previous study [70] revealed that CGCMs with an excessive equatorial
Pacific cold tongue tend to have a weaker El Niño-like warming because of insufficient
negative SST radiation feedback in the western Pacific. Therefore, we further calibrated
the projected SST warming pattern over the tropical Pacific based on an observational
constraint of equatorial western Pacific precipitation.

The present study further explored the effect of the Pacific cold tongue error on the
projected frequency change in the occurrence of extreme El Niño events from 22 CMIP5
CGCMs, as an extension of our previous work [70]. Similar to our previous study [70], an
observational constraint of western Pacific precipitation was applied to calibrate the model
error effects. The corrections indicate that both the projected increase in the occurrence of
extreme El Niño events and the El Niño-like response pattern under global warming were
greatly strengthened.

2. Models, Datasets, and Methods
2.1. Models

Both the Representative Concentration Pathway (RCP) 8.5 (a high emission scenario)
and the historical runs from the CMIP5 models [50] were examined. Monthly outputs in 22
CMIP5 models were used, including SST, precipitation, and surface wind stress. The model
names, their letter labels, as well as the modeling groups/centers, are shown in Table 1. In
this study, only one ensemble member output (“r1i1p1”) of each model is shown, as the
results from different members of each model were very similar (figure not shown) [71]. In
particular, the 1999–2098 means from the RCP 8.5 experiments are featured as the future
climatology, and the 1899–1998 means are used as the present climatology. Compared with
our previous work [70], we increased the study years to identify more extreme events. Here,
for each model, all the climatology changes were normalized by a global mean SST increase
to eliminate the effect of the inter-model response sensitivity differences in increased GHG
forcing. The multi-model ensemble (MME) mean, unless otherwise specified, is a simple
average from 22 CGCMs.

Table 1. A list of the 22 models used in this work and the letter labels used to denote them in the text
and figures.

Model Name Model Group (or Center) Letter Label

ACCESS1-0 CSIRO-BOM M1
bcc-csm1-1-m BCC M2

CanESM2 CCCma M3
CCSM4 NCAR M4

CESM1-CAM5 NSF-DOE-NCAR M5
CMCC-CESM CMCC M6
CNRM-CM5 CNRM-CERFACS M7

CSIRO-Mk3-6-0 CSIRO-QCCCE M8
FGOALS-s2 LASG-IAP M9
GFDL-CM3 NOAA GFDL M10
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Table 1. Cont.

Model Name Model Group (or Center) Letter Label

GFDL-ESM2G NOAA GFDL M11
GISS-E2-R NASA GISS M12

HadGEM2-AO MOHC M13
HadGEM2-CC MOHC M14

inmcm4 INM M15
IPSL-CM5A-LR IPSL M16
IPSL-CM5A-MR IPSL M17
IPSL-CM5B-LR IPSL M18
MPI-ESM-LR MPI-M M19
MPI-ESM-MR MPI-M M20
MRI-CGCM3 MRI M21
NorESM1-ME NCC M22

2.2. Datasets

The observed datasets for the satellite era (1979–2010) were used in this study. The
winds at 1000 hPa were obtained from the ERA-Interim reanalysis [72]. The precipitation
data were from the Global Precipitation Climatology Project [73]. We used the SST data
from the Hadley Centre Sea Ice and SST reanalysis [74]. Both the observed datasets and the
model outputs were interpolated into a uniform 1◦ × 1◦ horizontal grid.

2.3. Definition of Extreme El Niño Events

Following our previous work [10], this study identified an extreme El Niño event when
the December–January–February (DJF) mean precipitation over the Niño3 (150◦ W–90◦ W,
5◦ S–5◦ N) region was greater than 5 mm/day unless otherwise specified. Because El Niño-
related SST anomalies cause a pronounced eastward shift in atmospheric convection and
precipitation in the equatorial Pacific, which in turn affect global weather and climate [5,30,68],
Niño3 precipitation is a good index for extreme El Niño events [75,76].

Figure 1a shows the DJF Niño3 precipitation from observations between 1979 and
2010. The Niño3 region is located in the descending branch of the Pacific Walker circulation,
and the local climate condition, because of large-scale atmospheric subsidence, is generally
dry, with DJF mean precipitation of less than 2.0 mm/day. However, the periods of
1982/83 and 1997/98 were two extremely unusual (extreme El Niño) years, with DJF Niño3
precipitation of about 7.5 mm/day and 10.5 mm/day, respectively. Based on the definition
that detrended Niño3 SSTs greater than 0.5 ◦C are anomalies but not extreme El Niño
events, we identified six moderate El Niño events (1986/87, 1991/92, 1994/95, 2002/03,
2006/07, and 2009/10) for 1979–2010 (Figure 1b).

Figure 2 compares the composite DJF anomalies in SST, precipitation, and 1000 hPa
winds over the tropical Pacific between the moderate and extreme El Niño events. For
moderate El Niño events, the SST along the central and eastern equatorial Pacific was
warmer than normal, accompanied by increased convection/precipitation and anomalous
westerly winds near the central part of the equatorial Pacific, while the WNP region
experiences drought. Compared with moderate El Niño events, the warm SST anomaly is
larger in extreme El Niño events, and the anomalous precipitation is stronger and expands
farther eastward along the equator, resulting in uncommon precipitation of more than
5 mm/day in the usually dry equatorial eastern Pacific. The easterly wind anomalies along
the equator are a response to and act to amplify the extreme El Niño-related SST warming
by deepening the eastern thermocline, which is suggestive of Bjerknes feedback [1]. In
addition, the anomalous anticyclonic circulation over the WNP [22], as an important
response to the El Niño, is more evident, and the corresponding WNP precipitation decrease
is more intense in extreme El Niño events relative to moderate El Niño events.
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Figure 2. Composite anomalies in 1000 hPa winds (m/s; only wind speeds larger than 1 m/s are shown) and precipitation
(color-shaded; mm/day) for (a) moderate and (b) extreme El Niño events.

Figure 3a shows the relationship between Niño3 DJF precipitation values and the
detrended Niño3 DJF SST anomalies for 1979–2010. When the Niño3 SST anomalies are
negative, the Niño3 precipitation values are nearly constant and less than 2 mm/day. By
contrast, the Niño3 precipitation increases sharply with SST when the Niño3 SST anomalies
are more than zero. Following the largest SST anomalies, the Niño3 precipitation for the
1982/83 and 1997/98 extreme El Niño events is striking, with the DJF values of more than
5 mm/day. The strongest Niño3 DJF precipitation is accompanied by strong anticyclone
(Figure 2b) and large precipitation decrease (Figure 3b) anomalies over the WNP, which
could in turn remotely affect the East Asian climate [22]. Both inter-model correlation
coefficients in Figure 3 exceed the 0.001 significance level obtained using the Student’s t-test.
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2.4. Correction Method of the Future Projections

Given the historical state, H(s,m), and future state, F(s,m), of two dimensional fields,
future climate changes can be defined as:

C(s,m) = F(s, m) − H(s, m) (1)

where s and m denote space (latitude and longitude) and model, respectively. Following
our previous study [70], the calibrations in this study used the relationships between
the climatological mean precipitation in the equatorial western Pacific and future climate
projections in a multi-model ensemble to constrain projections. This is similar to the concept
of “emergent constraints” [70,77–81]. The mean precipitation bias in the present climate for
model m is expressed as:

P(m)′ = P(m) − Pobs (2)
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where the P(m) and Pobs represent the climatological mean precipitation values in the equatorial
western Pacific (140◦ E–170◦ W, 2◦ S–2◦ N) for model m and observations, respectively.

Because of an excessive equatorial cold tongue, CGCMs tend to have insufficient
precipitation over the equatorial western Pacific compared with observations [60,65,70].
The present–future relationship among CGCMs between the simulated present-day precip-
itation, P(m), and projected future climate changes, C(s,m), can be performed by a linear
regression analysis, defined as:

C(s,m) = a(s) × P(m) + b(s) (3)

where a is regression pattern and b is the regression constant term.
Considering the assumption that the simulated present-day precipitation bias in the

equatorial western Pacific would transmit into future climate projections over the tropical
Pacific and that the identified present–future relationship in Equation (3) is statistically
significant, we can estimate the errors in climate changes, C(s,m)′, projected by the simu-
lated equatorial western Pacific precipitation bias from each model. By projecting P(m)′

into future climate changes, C(s,m)′ can be estimated as:

C(s,m)′ = a(s) × P(m)′ (4)

Therefore, the corrected future climate changes for each model are given as:

C(s, m)* = C(s,m) − C(s,m)′ (5)

Finally, the MME mean of corrected future climate changes in individual models is
calculated as:

C(s, m)∗ =
1
N

N

∑
m=1

C(s, m)∗ (6)

where N is the total number of climate models. Alternatively, by directly substituting Pobs
into Equation (3), we obtain the corrected MME mean of future climate projections among
models as follows:

C(s, m)∗ = a(s)× Pobs + b(s) (7)

Equations (6) and (7) are identical for the MME mean.

3. Results
3.1. Extreme El Niño Occurrences vs. El Niño-Like Warming Pattern

Figure 4a compares the numbers of occurrences of extreme El Niño events between
the climate change period (1999–2098) and the present period (1899–1998) in 22 CMIP5
CGCMs. In particular, there were five CMIP5 CGCMs, i.e., CSIRO-Mk3-6-0 (M8), inmcm4
(M15), IPSL-CM5A-LR (M16), IPSL-CM5A-MR (M17), and MPI-ESM-LR (M19), which
could not reproduce the extreme El Niño events of observations; furthermore, there was no
DJF season with Niño3 precipitation greater than 5 mm/day over a 200-year period (1899–
2098) for these five CMIP5 CGCMs. In addition, the other 17 CMIP5 CGCMs consistently
projected increased occurrence of extreme El Niño events in response to the greenhouse
warming forcing, similar to the finding of Cai et al. [10]. The results were very similar when
the definition of an extreme El Niño event was the DJF precipitation value averaged over the
Niño3 region was greater than 6 mm/day (Figure 4b), further supporting the robustness.
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Multi-model statistics displayed increased (decreased) occurrence of DJF precipitation
averaged over the Niño3 region of greater (less) than 2 mm/day under RCP 8.5 forcing,
with an increase of approximately 0.9 mm/day in mean Niño3 DJF precipitation (Figure 5a).
However, the projected increased occurrence of extreme El Niño events with Niño3 DJF
precipitation greater than 5 mm/day were not simply due to an increase in mean Niño3
DJF precipitation, as the increased occurrence was also clearly found for the detrended
Niño3 DJF precipitation anomalies greater than 2 mm/day, which removed the mean shift
of climatological precipitation (Figure 5b).

Rather, the increased frequency of extreme Niño3 DJF precipitation may result from
the El Niño-like future responses in the mean to global warming (Figure 6a) [10]. The
faster SST increase in the equatorial eastern Pacific can cause an eastern shift of atmospheric
convection/precipitation [70]. As a result, a stronger convection/precipitation anomaly may
be required in the equatorial eastern Pacific for a given warm SST anomaly. Indeed, the
CMIP5 CGCMs projected a strengthened sensitivity of precipitation over the Niño3 region to
local SST anomalies under increased GHG forcing, with a statistically significant inter-model
consensus at the 0.05 significant level according to the Student’s t-test (Figure 5c). The only
exceptions in Figure 5c are IPSL-CM5A-LR (M16), IPSL-CM5A-MR (M17), and MPI-ESM-
LR (M19), which did not virtually project an increased future occurrence of extreme El Niño
either(Figure 4). The hypothesis that the projected increase in extreme El Niño occurrences
in the future is attributed to the El Niño-like warming pattern [10] is further supported by
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the inter-model statistics; models with stronger east-minus-west gradients of equatorial
Pacific SST warming tended to project larger increases in extreme El Niño occurrences
under RCP 8.5 forcing (Figure 6b,c), with the inter-model correlations of 0.57 and 0.51
exceeding the 0.05 and 0.01 significance levels according to the Student’s t-test, respectively.
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Figure 5. Multi-model histograms of the (a) Niño3 DJF precipitation and (b) detrended Niño3 DJF precipitation anomalies
greater than zero. The samples for the 20th (blue) and 21st (red) centuries are distributed into 1 mm/day bins. The MME
mean values during the 21st (red lines) and 20th (blue lines) centuries are shown in (a) and (b). (c) Comparison of regressions
of interannual Niño3 DJF precipitation upon local SST anomalies between the 20th and 21st centuries in 22 CMIP5 models.
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3.2. Effect of the Cold Tongue Bias on El Niño-Like Warming Pattern

However, as stated in the introduction, the current CGCMs commonly suffer from an
excessive cold tongue SST error in the equatorial Pacific, along with insufficient precip-
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itation over the equatorial western Pacific [60,65]. In particular, our previous work [70]
indicated that the common cold tongue mean error and resulting underestimation in
the negative SST-convective feedback over the equatorial western Pacific could transmit
into the tropical Pacific future projections, leading to an underestimation for the El Niño-
like responses in the mean under the increased GHG. Figure 7a shows the inter-model
relationship between the projected future changes in east–west SST differences in the equa-
torial Pacific and the simulated present-day SSTs over the equatorial Pacific cold tongue
among 22 CMIP5 models. The CGCMs with a colder Pacific cold tongue SST projected
a weaker east–west SST warming gradient in the equatorial Pacific (a 0.65 inter-model
correlation). Such an inter-model relationship between the projected changes in east–west
SST differences in the equatorial Pacific and the underestimations of western Pacific pre-
cipitation was more evident, with a high inter-model correlation of 0.81 (Figure 7b). Both
inter-model correlation coefficients exceeded the 0.001 significance level according to the
Student’s t-test.
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Figure 7. Relationships of the projected future east–west SST (◦C) gradient changes between equa-
torial eastern (140◦ W–90◦ W, 2◦ S–2◦ N) and western (140◦ E–170◦ W, 2◦ S–2◦ N) Pacific with the
present-day (a) equatorial Pacific cold tongue (160 ◦E–90 ◦W, 2 ◦S–2 ◦N) SST and (b) equatorial
western Pacific precipitation (mm/day) among the 22 CMIP5 models. The red lines in (a) and (b)
indicate the corresponding observed values. The inter-model correlation (r) in each panel is given in
the top-left corner.
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Therefore, the future projections over the tropical Pacific can be further calibrated
based on an observational constraint of equatorial western Pacific precipitation (red line
in Figure 7b; see Section 2.4). Compared with the uncorrected MME mean projections
(Figure 6a), the corrected MME mean projections exhibited stronger El Niño-like
responses under RCP 8.5 forcing (Figure 8a). Figure 8b shows the corrected-minus-
uncorrected differences between MME mean projections in SST, precipitation, and surface
wind stress over the tropical Pacific. Pronounced positive (negative) SST anomalies over
the equatorial eastern (western) Pacific, along with positive precipitation responses over
the equatorial central and eastern basin, indicate an underestimated El Niño-like warming
pattern over the tropical Pacific before the corrections. At the equator, westerly wind
anomalies can amplify the El Niño-like warming pattern. This relationship between wind
and SST/precipitation is indicative of Bjerknes feedback.
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After the corrections for the observed precipitation in the equatorial western Pacific,
CMIP5 CGCMs commonly projected a stronger east–west SST warming gradient in the
equatorial Pacific relative to the uncorrected models, i.e., a stronger El Niño-like response
(Figure 9a). Correspondingly, the Niño3 precipitation increases in the future projections
of CMIP5 CGCMs were commonly larger after the corrections (Figure 9b). The corrected
Niño3 precipitation increases were strongly associated with the corrected east-minus-west
SST warming gradients, with an inter-model correlation of 0.99 (Figure 9c). Overall, the
excessive Pacific cold tongue error in the models could result in common underestimations
of the projected El Niño-like responses in the means under increased GHG forcing.
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Figure 9. The uncorrected and corrected changes in the (a) east–west SST (◦C) gradient in the equato-
rial Pacific and (b) Niño3 DJF precipitation (mm/day) under the RCP 8.5 scenario. (c) Relationship
between corrected-minus-uncorrected changes in the east-minus-west gradient of equatorial Pacific
SST and Niño3 DJF precipitation among the 22 models.
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3.3. Effect of the Excessive Pacific Cold Tongue Error on Extreme El Niño Occurrences

Considering that the projected increase in extreme El Niño occurrences in the future
is attributed to the El Niño-like warming pattern (Figure 6), we turn our attention to the
effect of the excessive Pacific cold tongue error on the projected changes in the frequency of
extreme El Niño events under global warming based on CMIP5 CGCMs. Figure 10 examines
the inter-model relationships between the simulated present-day equatorial western Pacific
precipitation and projected future changes in the number of extreme El Niño events between
the 21st and 20th centuries. Models with insufficient equatorial western Pacific precipitation
tended to have a lower future increase in the number of extreme El Niño events. When
an extreme El Niño event was defined when Niño3 DJF precipitation was greater than
5 mm/day, the inter-model correlation was 0.66 (Figure 10a), exceeding the 0.001 significance
level according to the Student’s t-test. In other words, excessive equatorial Pacific cold tongue
bias in GCCMs could result in a common underestimation of the projected increase in the
occurrence of extreme El Niño events under increased GHG forcing.
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Figure 10. Inter-model relationship between the projected future changes in the number of extreme
El Niño occurrences and simulated present-day precipitation (mm/day) over the equatorial western
Pacific. The red line for each panel denotes the observed equatorial western Pacific precipitation. An
extreme El Niño event in (a) was defined when Niño3 DJF precipitation was greater than 5 mm/day.
(b) Same as (a), but an extreme El Niño event was identified when the Niño3 DJF precipitation was
over 6 mm/day.
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Using an observational constraint of the western Pacific precipitation, the models
commonly projected a larger increase in the number of extreme El Niño occurrences
(Figure 11). The projected increased occurrence of extreme El Niño events due to global
warming was underestimated by about 30% (35%) in the multi-model ensemble before the
corrections when Niño3 DJF precipitation exceeding 5 mm/day (6 mm/day) was defined
as an extreme El Niño event.
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3.4. Uncorrected vs. Corrected WNP Precipitation Changes

Extreme El Niño warming can force an anomalous anticyclonic circulation and precip-
itation decrease in the WNP (Figure 2b), which could in turn convey widespread climatic
impacts to East Asia from the winter to the ensuing summer of an El Niño [22,82–86].
Figure 12a compares the wet anomalies over the WNP caused by extreme El Niño events
between 20th and 21st centuries among CMIP5 CGCMs. The CMIP5 CGCMs consistently
projected enhanced precipitation decreases over the WNP from the 20th to 21st century
under increased GHG forcing. Moreover, the enhanced wet anomalies over the WNP
followed the projected increased occurrence of extreme El Niño events, with a very high
inter-model correlation of 0.96 (Figure 12b). This implies a more frequent repetition of
extreme El Niño impacts on the WNP/East Asian climate.
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Figure 12. (a) Comparison of DJF precipitation anomalies (mm/day) over the WNP caused by
extreme El Niño events during the 20th versus the 21st century. The precipitation anomalies were
normalized by the corresponding WNP DJF mean precipitation for each model. (b) Scatterplot of the
projected changes in WNP precipitation anomalies caused by extreme El Niño versus changes in the
number of extreme El Niño events.

Similar to the correction of projected changes in extreme El Niño occurrence (Figure 10), the
inter-model relationship between the simulated present-day precipitation in the equatorial
western Pacific and the projected future changes in WNP precipitation anomalies caused
by extreme El Niño events under RCP 8.5 forcing among CMIP5 CGCMs was identified
(Figure 13a). Models with insufficient equatorial western Pacific precipitation tended to
project less extreme precipitation anomalies over the WNP under RCP 8.5 forcing, with
an inter-model correlation of −0.50 exceeding the 0.05 significance level according to
the Student’s t-test. After the corrections, CMIP5 CGCMs commonly projected stronger
extreme precipitation anomalies over the WNP (Figure 13b), implying a more active effect
of extreme El Niño events on the WNP/East Asian climate in the future.
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4. Conclusions

In response to global warming forcing, climate models tend to project an El Niño-like
warming pattern (Figure 6a) [54]. Such mean state changes cause an increase in projected
future extreme El Niño event frequency (Figure 6b,c) [10], implying an increasing risk for
the weather and climate disasters in regions/countries affected by extreme El Niño events,
including catastrophic droughts and wildfires in Indonesia and its surrounding countries
and devastating floods in eastern equatorial regions and northern Peru [35,36,38]. These
climate responses to increased GHG forcing are common in CMIP5 CGCMs.

We noticed that these projections do not take into account the potential effects of
climate model errors. The equatorial Pacific cold tongue error remains an outstanding bias
in climate models [60,65]. Climate models commonly simulate SSTs that are too cool and
insufficient equatorial western Pacific precipitation. The insufficient precipitation error in
the western Pacific could result in a common underestimation of the projected El Niño-like
responses under GHG forcing in CMIP5 CGCMs (Figure 7b) [70]. Therefore, we calibrated
the projected SST warming pattern over the tropical Pacific based on an observational
constraint of equatorial western Pacific precipitation. The correction showed that CMIP5
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CGCMs commonly underestimate the El Niño-like response pattern to increased GHG
forcing, with a multi-model ensemble (MME) mean increase in the corrected east–west
SST warming gradient along the equatorial Pacific of a factor of 2.3 compared with the
uncorrected model. Conceivably, the common excessive cold tongue error and resulting
underestimation in the projected mean El Niño-like future response in CGCMs could
also transmit into the projected frequency change in extreme El Niño events. This study
further indicated that underestimated El Niño-like responses could also lead to a common
underestimation of the increased frequency of extreme El Niño events projected by CMIP5
CGCMs. In other words, CGCMs with a larger cold tongue bias tended to have a weaker
El Niño-like warming, resulting in a smaller increase in extreme El Niño frequency in
response to increased GHG forcing. After the corrections with the observed equatorial
western Pacific precipitation (Figure 10; also see Section 2.4), we found that the projected
increased occurrence of extreme El Niño events under RCP 8.5 forcing were underestimated
by 30–35% in the CMIP5 multi-model ensemble before the corrections (Figure 11).

5. Discussion

With a larger increase in extreme El Niño occurrences after the corrections, we should
remain vigilant for the potentially increased occurrence of weather and climate disasters
in the future in regions/countries affected by extreme El Niño events. In particular, the
anomalous anticyclonic circulation and extreme precipitation decrease over the WNP may
appear more frequently in the future than we expected before, which will have noticeable
implications for the 21st-century climate in East Asia [22,82,86], where a quarter of the
world’s population lives.

Our correction method, called “emergent/observational constraints,” was suggested
to deal with the effects of model errors on future climate projections by deriving relation-
ships between observable quantities in the present climate and projected responses of
Earth’s climate system to global warming forcing in a multi-model ensemble to constrain
future climate responses. In essence, emergent/observational constraints are based on an
assumption that projected future climate responses of one variable can strongly depend
on the model’s present-day state [70,77–81]. This approach requires a strong relation-
ship between the model’s present-day state and the projected future climate responses.
In locations where the climate response is uncorrelated with the present-day state (e.g.,
a(s) = 0 in Equation (3)), this method effectively reverts to an ensemble mean approach.
In this study, the identified present–future relationships were statistically significant. In
the approach, there is also a risk that the present –future relationship is an artifact of
climate models. In our case, however, the identified present–future relationships were
consistent with our understanding of El Niño dynamics. Thus, the corrections in this study
are physically credible.

Climate models are becoming widely used for global climate projections. There are,
however, still large biases in the mean state simulation, e.g., the excessive equatorial Pacific
cold tongue [65] and double intertropical convergence zone (ITCZ) [60,65,87] problems,
despite continued efforts of model developers to reduce biases. On the basis of our previous
study [70], this study further highlights the importance of reducing the cold tongue error
for improving the tropical Pacific future projections. On the other hand, it might be also
important to evaluate and correct the effects of other tropical biases in the mean (e.g., the
double ITCZ problem) on regional climate projections, as the coupled ocean–atmosphere
feedbacks dominating tropical climate projections are very sensitive to the simulated mean
state of the ocean–atmosphere system [53–56,88]. A previous study [89] suggested that the
double ITCZ problem may result in an overestimation (underestimation) of the projected
precipitation increase south (north) of the equatorial eastern Pacific under increased GHG
forcing, illustrating the importance of a realistic mean state simulation for reliable regional
future climate projections.
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