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Precipitation plays a vital role within the Earth system. Precipitation consists of a
collection of liquid or solid water particles, which are referred to as hydrometeors, that
begin within a cloud [1]. When these hydrometeors grow too heavy to continue being
suspended by vertical motions in the cloud, they fall towards the ground in the form of
rain, snow/ice or a mixture and ultimately replenish the oceans and lakes, either directly
or indirectly via surface hydrological processes such as runoff and discharge. Hence,
understanding how hydrometeors are distributed within the atmosphere and near the
ground enables a more accurate depiction of a principle component of the water cycle.
It also enables a more accurate depiction of precipitation’s erosive effects on the soil
important for modeling runoff and on human-made structures important for defining
building standards and codes [2–4].

The scientific measurement of raindrop size evolved from using flour or filter pa-
per to an electro-mechanical device named the disdrometer (drop size and distribution
meter) [5–7]. Disdrometers are the primary instrument used for measuring characteris-
tics of individual hydrometeors, such as raindrops and snowflakes. Although there are
several basic types, optical disdrometers have become the most widely used [8]. Optical
disdrometers and array probes have been used both on the ground and mounted on aircraft
to measure hydrometeor characteristics near the ground and within clouds [9,10]. They
operate off the principal that the amount of light obstructed from a photodiode array by a
particle is proportional to the particle’s size. Most ground-based optical disdrometers are
also capable of measuring the fall velocity of particles, which provides information about
the precipitation intensity and particle type. The two-dimensional video disdrometer [11]
is one type of optical disdrometer that also provides a measure of particle orientation and
shape, which is helpful for ascertaining the particle type and needed for electromagnetic
scattering simulations used in remote sensing applications such as weather radar-based
quantitative precipitation estimation. However, caution must be exercised when using par-
ticle size distribution measurements since each disdrometer has its own inherent sampling
uncertainties [12,13].

Measuring and depicting the distribution of frozen or melting hydrometeors is more
problematic than it is for liquid hydrometeors. The sizes of individual ice particles and
snowflakes are often represented with a spherical diameter and often fully enclosing the
observed particle, but unlike raindrops, their mass is not equally distributed within that
shape. This complexity has necessitated a parameterization of their mass distribution,
often as a function of the measured maximum (or median) diameter, but the diversity of
ice habits and their shapes have given rise to a multitude of mass–dimension relation-
ships [14–16]. Furthermore, snowflakes can be highly variable in space and time relative
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to raindrops. The characteristics of snow falling to the ground can change from one day
to another and can even change within a continuous precipitation event [17]. Therefore,
disdrometers are generally used to observe the bulk characteristics of snowflakes and other
ice hydrometeors. Some high-definition cameras being employed in disdrometer systems
can achieve enough detail to obtain robust estimates of the snowflake density [18], which
is needed for developing snowfall estimation algorithms that can be applied to remote
sensing measurements that cover a much larger area.

In situ measurements of the precipitation particle size distribution (PSD) have pro-
vided essential information for developing and validating microphysical processes repre-
sented within cloud-resolving and mesoscale weather models [19,20]. Precipitation size is
often parameterized in these models using either an exponential or a gamma distribution,
which require either two or three parameters that are often determined from disdrome-
ter measurements. However, these statistical models are not universally applicable for
all precipitation events, and hence the quest continues to find a more robust means for
representing the precipitation PSD.

This Special Issue of Atmosphere entitled “Measurement and Modeling of the Precipi-
tation Particle Size Distribution” consists of eleven papers reporting original research in
the area of precipitation science. They touch on some of the aforementioned PSD topics,
ranging from in situ observations of individual raindrops [21–23] and snowflakes [17,18] to
estimation of the PSD using satellite-based radar [24–26] as well as the nuances of modeling
the PSD of precipitation [16,27].
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