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Abstract: Maximum latewood density (MXD) measurements from long-lived Black pines (Pinus nigra
spp. laricio) growing at the upper treeline in Corsica are one of the few archives to reconstruct southern
European summer temperatures at annual resolution back into medieval times. Here, we present
a compilation of five MXD chronologies from Corsican pines that contain high-to-low frequency
variability between 1168 and 2016 CE and correlate significantly (p < 0.01) with the instrumental
April–July and September–October mean temperatures from 1901 to 1980 CE (r = 0.52−0.64). The
growth–climate correlations, however, dropped to −0.13 to 0.02 afterward, and scaling the MXD
data resulted in a divergence of >1.5 ◦C between the colder reconstructed and warmer measured
temperatures in the early-21st century. Our findings suggest a warming-induced shift from initially
temperature-controlled to drought-prone MXD formation, and therefore question the suitability of
using Corsican pine MXD data for climate reconstruction.

Keywords: dendroclimatology; tree-ring density; climate signals; Pinus nigra; climate change;
Mediterranean; France

1. Introduction

Southern Europe is predicted to experience increasing aridity in the 21st century
mainly due to rising temperatures [1–3], and the intensity, frequency, and duration of
heatwaves and droughts are expected to increase [4,5]. The precise assessment of climate
changes requires proxy-based reconstructions of pre-instrumental conditions to place recent
changes into a long-term context. The employment of trees as high-resolution natural
climate archives can provide such valuable insights into past climate fluctuations [6].
Although ancient trees growing under extreme conditions and still preserved in their
natural state are difficult to find, dendroclimatic studies in Corsica offer the opportunity to
reconstruct southern European climate variability over several centuries [7–9].
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Located in the central-western Mediterranean region (Figure 1a), Corsica is character-
ized by strong elevational gradients between the coastal plains and the central mountain
massif (Figure 1b). Due to the island’s steep relief, altitude-dependent local climate regimes
can be observed [10,11]. Coastal regions are characterized by typical Mediterranean cli-
mate with hot dry summers (June–August) and temperate rainy winters (October–April).
Meteorological observations along the coast record an annual mean temperature of 15.1 ◦C
and precipitation sums of 694 mm from 1961–1990 CE (Figure 1c), with the driest condi-
tions in July (22.7 ◦C and 12 mm). Over recent decades (1951–2016 CE), a warming trend
has been observed which is higher in the June–August summer season (+0.035 ◦C/year)
than in the December–February winter season (+0.014 ◦C/year) and has been stronger
since 1980 CE [12]. With increasing elevation, the temperature generally decreases by
0.31–0.49 ◦C/100 m and precipitation increases by approx. 160 mm/100 m [11]. However,
spatial precipitation patterns are strongly influenced by topographical features and are,
thus, geographically much more diverse than temperature. Although precipitation gener-
ally increases with altitude, high elevation areas can be subject to severe droughts during
summer, especially between July–August. Consequently, the Corsican mountains can be
characterized as xeric in summer and alpine in winter [13].

Figure 1. Study site and climate. (a) Geographical location of Corsica in the Mediterranean. (b) Topographic map of Corsica
indicating the sampling sites and meteorological stations. (c) Climate diagram showing monthly temperatures (red curve)
and precipitation (blue bars) of the combined station data from Ajaccio and Bastia (1961–1990 CE).

Due to the great variety of microclimates, the Corsican mountains feature a high
ecological biodiversity [14] including two native pine species: Maritime pine (Pinus pinaster
AITON) and Corsican Black pine (Pinus nigra ssp. laricio MAIRE). The former mainly covers
lower elevations <1300 m a.s.l. that are strongly influenced by anthropogenic activities.
In contrast, Black pine forests are in the high elevation belt between 1400–1800 m with
remnants of natural stands near the upper treeline (Figure 2a).
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Figure 2. Corsican pines and wood density. (a) Living trees and (b) relict trunks of Pinus nigra at
the upper treeline in the Asco valley. (c) Thin section of three tree rings and the density profile (red
curve) across the earlywood (EW) and latewood (LW). Yellow dots indicate the maximum latewood
density (MXD).

The drought- and frost-tolerant P. nigra [15,16] may reach ages up to 850 years [7],
ranking these trees among the oldest in the Mediterranean Basin [17]. Particularly resistant
to parasites and decomposition due to their high resin content [18], relict pine stems can
remain for centuries on the rocky slopes (Figure 2b). The presence of these well-preserved
trunks in the vicinity of old living stands offers the opportunity to develop multi-centennial
tree-ring chronologies.

In drought-dominated regions, tree-growth is typically determined by the availability
of water resulting from the mutual interaction of temperature, precipitation, and evapo-
transpiration [19,20]. Due to low water supply in summer, Mediterranean forest produc-
tivity is dependent on the frequency and amount of rainfall events before and during the
growing season. Consequently, tree-ringwidth (TRW) chronologies have been used as
proxies to reconstruct precipitation [21–24] and hydroclimatic variability across southern
Europe [25–29]. High-resolution summer temperature reconstructions are restricted to
other tree-ring parameters, such as the maximum latewood density (MXD), as the TRW is
less temperature sensitive in Mediterranean environments [30].

MXD chronologies are generally less influenced by biological memory effects and cor-
relate more closely with instrumental temperature data [31]. However, compared to the ex-
tensive networks in Fennoscandia [32,33] and the Alps [34], the availability of temperature-
sensitive density records spanning 500+ years in the Mediterranean is restricted to the
Spanish Central Pyrenees [35,36], the Cazorla Natural Park in southern Spain [37], and
the Pindos National Park in north-western Greece [38,39]. With respect to the central
Mediterranean region, comparably long-term MXD chronologies are still missing.

Nonetheless, two annually resolved temperature reconstructions provide initial in-
sight into the region’s past climate variability: Leonelli et al. [40] developed a 300-year
temperature reconstruction based on a multi-site MXD network in Italy, while the only
temperature reconstruction for Corsica was derived from stable carbon isotopes (δ13C)
extending 560 years into the past [8]. Hence, a long-term MXD-based temperature recon-
struction from Corsica is still lacking and remains key to unfold the region’s climate history
into the early second millennium.

Here, we present the longest MXD record for the Central-Western Mediterranean
based on 35 P. nigra trees growing at three high-elevation sites on the island of Corsica
(France). Covering the period 1168–2016 CE, the dataset extends existing MXD measure-
ments (1518–1980 CE) [41] back to medieval times as well as into the 21st century. To
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evaluate the application of Regional Curve Standardization (RCS), age-band chronologies
were produced and different chronology variants were correlated against regional climate
data. In this study, we (1) assess climate signals in five chronology variants of the new Cor-
sican MXD compilation, (2) compare new density data with existing records and summer
temperature reconstructions across the southern European region, and (3) evaluate the
potential of the Corsican MXD network for climate reconstruction.

2. Materials and Methods
2.1. Wood Density Data and Chronology Development

In 2017, 39 increment cores from 20 living and relict Black pines (Pinus nigra ssp. laricio)
were sampled at two high-elevation sites in the adjacent Asco (Asc, 1600 m a.s.l.) and
Tartagine valleys (Tar, 1450 m a.s.l.), located near the upper treeline in the north-western
mountains of Corsica (Figure 1b). Long-lived trees from these valleys were previously used
to develop multi-centennial tree-ring records [7–9]; however, no wood density measure-
ments have been performed. To obtain the longest possible time series, mainly old and
dominant trees as well as cross-dated relict stems were selected for this study.

Following standard radio-densitometric techniques [42–44], all cores were heated in
96% ethanol in a Soxhlet extraction system to remove the hydrophobic components. The
purified samples were split into 3-cm segments to saw out 1.2-mm thick laths orthogonally
to the longitudinal stem axis. The laths were acclimatized at 20 ◦C and 50% relative
humidity for 4 h to ensure a homogeneous cell wall moisture content of ~10%. Subsequently,
the samples were radiographed for 14 min at 10 kV and 20 mA and the wood densities
determined at 0.01 g/cm3 resolution using a Walesch high-precision DENDRO2003 X-ray
densitometer. The density peaks in each tree ring were used to produce inter-annual MXD
data (Figure 2c).

After aligning the MXD data by cambial age, a Hugershoff-shaped age trend was
observed, including an average increase of 0.1 g/cm3 over the first 70 years of growth
and a gradual decrease of 0.13 g/cm3 over the subsequent 330 years (71–400 years). To
remove this characteristic biological trend from the raw MXD data [32,33], a Hugershoff
Standardization (HGS) and a Regional Curve Standardization (RCS) were applied in
the detrending program ARSTAN [45], resulting in two chronology variants: CORHGS
and CORRCS.

After applying a data adaptive power-transformation to minimize heteroscedasticity
within the individual series [46], all data were detrended by calculating residuals from the
smoothed HGS-/RCS-mean curves and variance-stabilized using a 300-year spline with
a fixed 50% cutoff to avoid deviations caused by changing sample replications and inter-
series correlations [47]. Robust bi-weight mean chronologies were computed [48] and the
covariance of each chronology was assessed by calculating the inter-series correlation (Rbar)
and the Expressed Population Signal (EPS) over semi-overlapping 30-year periods [49].

The new density data produced in our laboratory in Mainz (Germany) were compared
with older measurements (n = 30 series), produced in the early 1980s in Birmensdorf
(Switzerland) covering the period 1518–1980 CE [41] (data available from the International
Tree-Ring Data Bank, www.ncdc.noaa.gov/data-access/paleoclimatology-data, accessed
on 5 October 2020). The latter were derived from Black pines growing at the mountain pass
Col de Sorba on Monte Renoso (Sor, 1400 m a.s.l.), which is located ~45 km southeast of the
new sites (Figure 1b). Given the significant correlation (ravg = 0.46) among the three site
chronologies Asc, Tar, and Sor from 1636 to 1980 CE (Figure 3, see Supplementary Table S1
for detailed site chronology characteristics), we produced a merged dataset integrating all
Corsican MXD data (COR).

www.ncdc.noaa.gov/data-access/paleoclimatology-data
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Figure 3. (a) Hugershoff-detrended MXD composite (CORHGS) and site chronologies (Asc, Tar,
and Sor) (thin curves) and their 31-year smoothing splines (bold curves). (b) The 51-year running
correlations between the site chronologies (grey) shown together with their mean (black). The
inserted table indicates inter-site correlations calculated over the sufficiently replicated (n ≥ 5 series)
common period 1636–1980 CE (1636 CE is marked by a vertical dashed line). (c) Sample replication
of each chronology.

The composite dataset contained 69 MXD series and exceeded a robust EPS of ≥0.85
back to 1425 CE (Figure S1). When merging the data, the absolute MXD values were
adjusted among the sites to mitigate significant (p < 0.001) elevational MXD effects between
Tar and Sor (0.96 g/cm3) and Asc (0.89 g/cm3) calculated for the first 200 years of growth
(Figure S2).

Both detrending techniques applied in this study—HGS and RCS—are able to preserve
multi-centennial variability in dimensionless index chronologies [50,51], although HGS
is an individual detrending method and is restricted by the “segment length curse” [52].
Accurate RCS detrending, however, requires the mean cambial age of the series combined
in a chronology to be constant over time [53,54]. To avoid the typical increase in mean tree
age toward the present, age-band chronologies (ABC) [55] were produced by removing tree
rings younger than 30 years and older than 200 years (ABC200), 300 years (ABC300), and 400
years (ABC400) of cambial age (see Supplementary Table S2 for chronology characteristics).
Accordingly, five methodologically different chronologies were developed considering
HGS and RCS with all data, as well as RCS with three age bands: CORHGS, CORRCS,
ABC200, ABC300, and ABC400.

2.2. Climate Data and Signal Estimation

To assess the climate sensitivity of Corsican Black pine MXD and evaluate its suitability
for reconstruction purposes, climate data from the meteorological stations in Ajaccio
(41.92◦ N, 8.80◦ E, 9 m a.s.l.) and Bastia (42.54◦ N, 9.49◦ E, 10 m a.s.l.), CRU TS4.04
temperature data [56], and GPCC v2020 precipitation data [57] were compiled using
the KNMI Climate Explorer [58]. The selected CRU and GPCC grids extended across
42–42.5◦ N and 8.5–9.5◦ E, covering the entire study area.

The GPCC data were chosen for the analysis of precipitation signals due to the
high station density in Europe and long temporal coverage back to 1891 CE [57]. The
temperature means and precipitation totals were converted into monthly and seasonal
anomalies with respect to 1961–1990 CE. The observations from Ajaccio and Bastia were
merged by calculating the arithmetic means from 1951 to 2016 CE. Comparison of the
coastal station means with recordings from a local higher station in Calacuccia (875 m a.s.l.,
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42.34◦ N and 9.01◦ E) back to 1975 CE [59] revealed 3.76 ◦C warmer conditions from April
to October in Ajaccio and Bastia.

The local temperatures are, however, closely correlated with the coastal records
(r = 0.86) and CRU temperatures (r = 0.84). In contrast, the annual precipitation totals
from Calacuccia were less correlated with the coastal records (r = 0.53) and GPCC data
(r = 0.67). We, therefore, used the coastal means and CRU temperatures as well as the
GPCC precipitation data to assess the climate sensitivity of high-elevation MXD records.

All MXD chronologies were correlated (Pearson’s r) with monthly and seasonal climate
data over the 1951–1980 CE period to compare the climate signals contained in the old and
new density measurements, as well as over the 1951–2016 CE period to account for recent
climate variability. To evaluate the temporal robustness of the climate signals, 31-year
running correlations were calculated between the density indices and different seasonal
averages of meteorological data (April–July and September–October temperatures as well
as June–July and August–September precipitation). Further, all MXD chronologies were
correlated with 0.5◦ gridded monthly and seasonal CRU TS4.04 data using the KNMI
Climate Explorer to assess spatial correlation patterns over the Mediterranean Basin from
37–47◦ N and −3–21◦ E.

3. Results
3.1. MXD Chronology Characteristics

The COR MXD compilation consists of 69 radii from 35 pine trees and spans the
period 1168–2016 CE, including an increasing number of measurements toward the present
(Figure 4). Replication falls below five series at 1359 CE, while the maximum of 61 series
is reached from 1872 to 1890 CE. COR replication decreases again in the late 20th century
from 55 series in 1980 CE to 29 series in 1981 CE, when the Sor data terminate. Over the
first 400 years of cambial age, average MXD (AMXD) is 0.91 g/cm3 (±0.05 g/cm3) with a
minimum of 0.78 g/cm3 in the fifth year of growth and a maximum of 1.00 g/cm3 in the
107th year of growth. This juvenile AMXD increase is followed by a small but persistent
decrease (Figure S3).

The lengths of the individual series ranged from 67 to 849 years with a mean segment
length (MSL) of 325 years, whereas the age classes are unevenly distributed across the sites.
Trees sampled at the Asc site were significantly (p < 0.01) older (MSLAsc = 543 years) than
those at the two lower sites (MSLTar = 290 and MSLSor = 211 years). Consequently, COR was
characterized by a heterogenous age structure and site composition over time. All five COR
chronologies shared annual to multi-decadal scale variability. Further, CORHGS showed
a significant (p < 0.001) agreement in correlation with the site chronologies (r = 0.67–0.82)
over the sufficiently replicated (n ≥ 5 series) 1636–1980 CE common period.

Compared to COR, the age-band chronologies—ABC200, ABC300, and ABC400—were
characterized by flatter mean age and replication curves (Figure 4b–f). Due to the removal
of tree rings older than 200, 300, and 400 years (and younger than 30 years) the age-band
chronologies cover different periods. Whereas all chronologies extend back to 1365 CE
with n ≥ 5 series, ABC200 already ends in 1980 CE, ABC300 in 1988 CE, and only ABC400
reaches into the 21st century until 2016 CE. Inter-chronology differences in replication and
site contributions, thus, increase toward the present.
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Figure 4. Effects of age-band decomposition. (a) Detrended composite chronologies (thin curves)
and their 31-year smoothing splines (bold curves) considering all MXD data (COR), data from
30–400 years (ABC400), 30–300 years (ABC300), and 30–200 years (ABC200). COR was detrended
using HGS (CORHGS) and RCS (CORRCS), while all age-band chronologies were detrended using RCS.
(b) The mean tree age of the chronologies. (c–f) Samples (bar plots) and replication (black lines) of
the chronologies. Each horizontal bar depicts one individual series. The percentages in brackets
indicate the remaining data compared to COR (=100%). Grey-shaded areas mark the periods when
replication in at least one record is n < 5 series.

The age-band chronologies showed substantial agreement in high-to-low frequency
covariance (ravg = 0.91) and correlated significantly at ravg = 0.92 with the untruncated
chronology CORRCS over the well-replicated (n ≥ 5 series) 1365–1980 CE common period.
On multi-decadal scales, MXD indices of all chronologies increased from around 1400 to
1440, 1600 to 1660, 1700 to 1730 and 1760 to 1790 CE, and decreased from 1360 to 1390, 1440
to 1460, 1580 to 1600, 1730 to 1760, 1790 to 1820, 1860 to 1910 and 1950 to 1980 CE.

In the 20th century, however, the smoothed chronologies diverged considerably:
CORRCS and ABC400 both showed a minor increase from 1975–1990 CE and a sharp
decline thereafter; the smoothed ABC300 ends in 1990 CE and showed a striking post-1975
CE increase due to low sample replication; while ABC200 only extends until 1980 CE
and showed no remarkably deviations from the other chronologies in the 20th century,
but did in periods of n < 10 series, such as the late 17th century and before ~1510 CE.
Furthermore, large differences were observed between the HGS- and RCS-indices prior
to ~1425 CE, as evidenced by a downward shift in the RCS-values in the earliest density
measurements. These differences were slightly higher between the CORHGS and the age-
bands than between the CORHGS and CORRCS.

The comparison of CORHGS with other long-term density records from southern
Europe revealed a generally decreasing correlation with increasing geographic distance
(Table 1, Figure 5a). CORHGS correlated significantly (p < 0.001) with the pine MXD
records from the Spanish Central Pyrenees (GER, r = 0.53) [35] and southern Italy (CRI,
r = 0.42) [60] from 1360–2004 CE, while weaker associations were found with more distant
(>1000 km) records from southern Spain (CAZ, r = 0.33) [37] and north-eastern Greece
(SMO, r = 0.28) [38]. Correlations with western Mediterranean sites were slightly higher
than with equidistant sites in the eastern Mediterranean.
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Table 1. Characteristics of the Mediterranean MXD records.

Code Site Species Radii Period Season Correlation Distance

CAZ Cazorla PINI 88 1288–2014 FMAM and
SO 0.53|0.45 1150 km

COR Corsica PINI 69 1360–2016 AMJJ and SO 0.56|0.16 0 km

CRI Serra di
Crispo PIHE 21 1604–1980 JAS 0.60|0.60 650 km

GER Gerber PIUN 414 1095–2014 MJ and AS 0.59|0.38 650 km
LOE Loetschental LADE 180 748–2004 JJAS 0.77|0.78 450 km
SMO Mt. Smolikas PIHE 192 672–2017 AS 0.52|0.56 1050 km

Species: LADE: Larix decidua, PIHE: Pinus heldreichii, PINI: Pinus nigra, and PIUN: Pinus uncinata. Period: Start and end dates were set
considering a sample replication of ≥5 radii. Correlation: Pearson correlations of HGS-detrended MXD chronologies calibrated against
nearby seasonal CRU TS4.04 temperatures over the 1901–1980 CE common period (left value) and from 1901 to the actual end date of each
chronology (right value). Distance: Linear distance from Corsica.

Figure 5. Comparison of the long MXD chronologies from southern Europe. (a) Location of the
MXD sites: Cazorla (CAZ), Gerber (GER), Corsica (COR), Serra di Crispo (CRI), and Mt. Smolikas
(SMO). The matrix shows correlations between the HGS-detrended chronologies over their 1360–2004
CE common period—except for CRI, which covers a shorter period from 1604–1980 CE. (b) The
31-year smoothing splines of the normalized HGS-detrended MXD chronologies from 1375–1989 CE
(n ≥ 5 series). (c) CORHGS shown together with the August–September temperature reconstruction
from Corsican pine stable carbon isotopes (CORδ13C) [8] and a May–September temperature recon-
struction from the Pyrenees based on MXD (PYRMXD) [36]. All records were normalized (CORHGS

and PYRMXD from 1360–2005 and CORδ13C from 1448–2005 CE) and smoothed using a 31-year spline.

However, the weakest association was observed with the nearest record from the
Swiss Alps (LOE, r = 0.23) [34], located only ~450 km north of CORHGS, which is the only
chronology based on Larix decidua instead of pine species. The smoothed density records
from the Mediterranean outline both periods of high and low inter-regional correlations
(Figure 5b). High covariance was primarily found in periods of pronounced variability,
such as 1440–1500, 1580–1610, 1650–1670, 1810–1830, and 1850–1890 CE, whereby the z-
score levels differed among the sites. Moreover, some chronologies indicated substantially
deviating behavior, e.g., CAZ from 1760–1810 CE.
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Further comparison with tree-ring based temperature reconstructions (Figure 5c) from
Corsica (CORδ13C) [8] and the Spanish Pyrenees (PYRMXD) [36] demonstrated that the
inter-annual MXD variability of P. nigra was more strongly associated with reconstructed
May–September temperatures from the Iberian Peninsula (r1582–2005 = 0.55) than with
reconstructed August–September temperatures from Corsica (r1582–2005 = 0.16), although
the latter were derived from stable carbon isotopes of six Black pines sampled close to the
COR sites [8]. In contrast, the reconstruction from the Pyrenees was based on a multiple-site
Pinus uncinata MXD network [36].

3.2. Climate Sensitivity of Corsican MXD

MXD in Mediterranean conifers was primarily influenced by the warm-season tem-
peratures (Table 1). In Corsica, correlations between the site chronologies and regional
observations revealed local differences in temperature sensitivity as well as temporal
changes in signal strength (Figure 6). The site chronologies showed weak to moderate
associations to the regional April–July and September–October mean temperatures (AMJJ
and SO) over the 1951–1980 CE period, ranging from r = 0.17 at Tar to r = 0.47 at Sor.
Although correlations with regional July temperatures were low overall (r = 0.03–0.15),
analysis with the CRU temperatures indicated a significant (p < 0.01) association of r = 0.42
at Sor (Figure S4).

Figure 6. Site-specific temperature signals. Correlations between the Hugershoff-detrended chronolo-
gies and monthly and seasonal temperatures of the combined station records from (a) 1951–1980
and (b) 1951–2016 CE. Note that Sor only extends to 1980 CE and indicates same correlations in
(a) and (b). (c) The 31-year running correlations between the chronologies and seasonal AMJJ and SO
temperatures of the station records (thick solid curves) and CRU data (thin dashed curves). See Sup-
plementary Figure S4 for more detailed correlations with monthly and seasonal CRU temperatures.

The CORHGS composite record showed a similar temperature sensitivity to Sor, with
the highest correlation found for the AMJJ and SO season (r = 0.47, p < 0.01) from 1951 to
1980 CE. Extending the calibration period into the 21st century resulted in a systematic
decrease in the temperature sensitivities (Figure 6b). While the Asc correlation with AMJJ
and SO temperatures marginally weakened from r1951–1980 = 0.34 to r1951–2016 = 0.27, the
originally positive correlation of Tar turned negative when extended into the 21st century,
from r1951–1980 = 0.17 to r1951–2016 = –0.26. In line with these Asc and Tar responses (Sor
terminates in 1980 CE), a decline toward insignificant temperature correlations was also
seen in CORHGS when including the post-1980 CE data (r1951–2016 = 0.04).
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Thirty-one-year running correlations between the chronologies and seasonal AMJJ
and SO temperatures confirmed these findings (Figure 6c): CORHGS indicated a temporally
stable temperature signal until 1983 CE against station (r1966–1983 = 0.34–0.47) and CRU data
(r1916–1983 = 0.42–0.67). These results were higher than the observations for Asc and Tar but
slightly lower than Sor. However, the running correlations of all chronologies decreased
sharply after 1983 CE, and this decline was stronger in Tar and weaker in Asc, whereas
CORHGS remained in-between.

The five MXD composite chronologies all showed similar temperature sensitivi-
ties from 1901–1980 CE (Figure 7). Correlations with the April–July CRU temperatures
(r = 0.43–0.53) were slightly higher than with the September–October means (r = 0.33–0.44),
but the AMJJ and SO season fit best (r = 0.52–0.64). The strongest association with tem-
perature was observed for the most truncated age-band chronology ABC200 (r = 0.64,
p < 0.01). Spatial analyses using gridded CRU temperatures revealed strong correlations
with the April–October means across the western and central Mediterranean regions
(Figure 7a). The highest correlations (r ≥ 0.40) were found with the June–July temperatures
over Corsica, Iberia, and Maghreb.

Figure 7. Climate signals of the Corsican composite chronologies. (a) Spatial correlations between
ABC200 and 0.5◦ gridded monthly temperatures (CRU) over the Mediterranean Basin (1901–1980 CE).
Significant correlations at p < 0.1 are colored. (b) Correlations between the composite chronologies
and seasonal temperatures from 1901–1980 (left) and 1901–2016 CE (right). Note that ABC200
and ABC300 only extend until 1980 and 1988 CE, respectively. (c) MXD chronologies scaled from
1901–2016 CE against AMJJ and SO temperature anomalies (CRU). The horizontal lines display
the mean temperatures from 2000 to 2016 CE. The 31-year running correlations between the MXD
chronologies, (d) CRU AMJJ and SO temperatures, and (e) GPCC JJ precipitation. See Supplementary
Figure S5 for details on the GPCC correlations.
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In August, however, correlations over the study area declined (r = 0.21). As for the
site chronologies, a systematic decrease in signal strength was observed in the composite
records when the calibration period was extended into the 21st century (Figure 7b). All
MXD chronologies reaching 2016 CE with n ≥ 5 series (CORHGS, CORRCS, ABC400) showed
non-significant low correlations with the AMJJ and SO temperatures over the full 1901–2016
CE period. A simple scaling of CORHGS against post-1900 CE temperatures highlights a
substantial divergence of 1.56 ◦C between the colder reconstructed (t = −0.26 ± 0.78 ◦C)
and warmer measured temperatures (t = +1.30 ± 0.38 ◦C) from 2000 to 2016 CE, although
the MXD and temperature records display similar interannual to decadal scale variability
over most of the 20th century (Figure 7c).

The observed 21st century divergence is caused by opposing low-frequency trends
starting in the late 1990s and is even greater when considering CORRCS and ABC400,
respectively. The 31-year running correlations support these findings (Figure 7d), as all
composite chronologies showed temporally stable temperature correlations ≥0.45 before
1967 CE, followed by r = 0.30–0.45 from 1968 to 1983 CE and a sharp decrease thereafter.
Simultaneously, running correlations with June–July precipitation increased since the 1980s
(Figure 7e).

Analyses using the GPCC precipitation data showed that the Corsican composite
records were only weakly associated with precipitation (Figure S5). Between 1891 and 1980
CE, all chronologies correlated significantly (p < 0.05) negatively with the June–September
precipitation (r = −0.28 to –0.36). Correlations were lower and insignificant over the full
1981–2016 CE calibration period for CORHGS, CORRCS, and ABC400; however, the running
correlations with the June–July precipitation showed a sharp post-1980 CE increase, while
the correlations with the August–September precipitation remained stable.

4. Discussion
4.1. Chronology Variants and Characteristics

The combination of MXD data from three different valleys enabled the development
of a regional record (COR) characterized by a high sample replication (n = 69) and a robust
common signal (EPS ≥ 0.85) back to 1425 CE. The five methodologically different composite
chronologies share high fractions of high-to-low frequency variance from 1500 to 1980
CE. Noticeable trend differences were recorded before ~1500 CE and in the late 20th and
early 21st centuries (Figure 4). The age-band datasets more closely meet the requirements
for RCS detrending [50,61], as these chronologies are characterized by more balanced
replication and age curves.

Thus, our findings imply that age-band decomposition—as introduced by Briffa et al. [55]
for a large network of Northern Hemisphere MXD data to improve the preservation of
long-timescale variability and successfully applied in recent studies by Esper et al. [33,37]—
produces a sample structure that is likely more applicable for RCS detrending. However,
the differences between ABC200, ABC300, and ABC400 remained small and restricted
to periods of weaker sample replications (n < 10 series). This is particularly the case in
ABC200, as this chronology was most affected by the systematic removal of old tree rings.

The substantial data reduction together with the marked discrepancies with all other
chronologies during low-replication periods raises questions regarding the overall reliabil-
ity of ABC200. ABC300 and ABC400, on the other hand, are characterized by less variable
replication curves. Even after the removal of tree rings older than 400 years, ABC400 ex-
tends until 2016 CE with sufficient data replication. Yet removing data from the comparably
small Corsica MXD dataset remains challenging.

Large differences between the HGS and RCS indices before ~1425 CE and smaller
deviations after 1900 CE raises doubts regarding the suitability of RCS for our dataset.
While HGS, as a tree-by-tree standardization technique, is barely able to preserve multi-
centennial variability and produces a quasi-stationary chronology fluctuating around a
mean index of one, the composite RCS technique retains more low frequency variance and
produces constantly lower values at each chronology end (Figure 4).
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Whether these low frequency trends are valid is difficult to estimate; however, we
hypothesize that the regional curves established in the RCS runs [50] do not adequately rep-
resent the earliest and latest density measurements, particularly during the low-replication
period prior to ~1425 CE. This bias might originate from the selective sampling approach
that focuses on old living trees and leads to younger trees being underrepresented in all
chronologies [62]. However, to clarify these methodological limitations, a larger MXD
dataset including different age classes is required.

4.2. Bimodal Temperature Signal

Various studies have reported warm-season temperatures to be the main climatic
driver of MXD formation in high-elevation Mediterranean conifers [30,35–40]. Regarding
the calibration with pre-1980 CE instrumental data, our results are consistent with these
findings revealing significant temperature correlations throughout the growing season
from April to October including a lack of forcing in August. In contrast, the influence
of precipitation on MXD appears to be minor. The resulting bimodal seasonality of tem-
perature signals is comparable to the findings reported by Büntgen et al. [35] and Esper
et al. [37] from Spanish sites.

Whereas bimodality at the Cazorla Natural Park in southern Spain was characterized
by a weakened response during mid-summer months from June–August [37], it was less
pronounced in the Pyrenees [35], as well as in Corsica, where only one month (July and
August respectively) was insignificant. Such bimodal response patterns have only been
observed at western Mediterranean sites thus far; eastern Mediterranean sites, such as
SMO [38,39], as well as MXD chronologies from central [34,63] and northern European
regions [32,33], have not been found to exhibit bimodality.

Given the temperature insensitive MXD formation in Morocco [64] and the bimodal
temperature signals at the two Spanish sites [35,37], our findings suggest a tendency toward
increased seasonal bimodality with decreasing latitude and/or greater aridity throughout
the Western Mediterranean. However, additional studies need to be conducted across
the region to identify the mechanisms and climatic thresholds responsible for bimodal
temperature signals.

The physiological reasons for this lack of response during peak warmth are not yet
fully understood but are potentially related to a temperature-decoupled carbohydrate
production [37] and/or an effect of summer drought limiting xylogenesis [65,66]. The latter
assumption is in line with previous work by Trouet [67], who found the MXD of P. nigra to
be more sensitive to August precipitation than to temperature at several sites in southern
Italy and Greece, whereas Esper et al. [64] reported the MXD formation in xeric regions of
Morocco to be primary controlled by drought variability.

Since the high mountain regions of Corsica can also be subject to drought from
June–August [13], our results imply that high evapotranspiration rates limit the July–
August soil water contents, thus, temporally altering the sensitivity of latewood formation
toward precipitation. This hypothesis is supported by dendrometer data obtained along an
elevational transect of pines in Corsica revealing fast changes in stem circumference after
precipitation events in summer and rainfall-induced cambial reactivation in autumn [68].
The latter might also explain the negative correlations of MXD with September precipitation
(Figure S5).

The wood anatomical traits of P. nigra latewood, such as the tracheid diameter, lumen
width, and cell wall thickness, are strongly determined by the trees’ water status, as
their expression results from trade-offs between the hydraulic requirements of the xylem
and the avoidance of embolism [69–71]. Protecting the trees from cavitation, smaller
tracheids with thicker cell walls are formed in summer, while larger tracheids with thinner
cell walls are needed to improve hydraulic efficiency [9,72]. Since the trees vascular
system can be severely damaged by xylem embolism, cavitation protection appears to be
primarily important. Thus, latewood cells tend to be denser in years with higher monthly
temperatures and adequate water supply [69,73].
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Temperatures at the beginning and end of the growing season appear to have a strong
influence on latewood formation, as sufficient precipitation falls in spring and autumn.
The positive relationship between April–May temperatures and MXD is likely related to
a combination of early snowmelt, reinforced photosynthetic activity, and the production
of non-structural carbohydrates prior to the onset of cambial activity [7,35]. In contrast,
correlations in September–October demonstrated a direct influence of temperature on
secondary cell wall deposition and lignification [73,74]. Although latewood cell formation
generally proceeds from July to September, wall thickening and lignification of terminal
tracheids can continue into October [7,75,76], leaving discernible imprints in MXD.

Moderate inter-site correlations (Figure 3) and varying temperature correlations at Asc,
Tar, and Sor (Figure 6) suggest that the temperature sensitivity of MXD was co-influenced
by local site conditions. Since the duration and intensity of summer drought generally
decreases with altitude, trees at lower sites generally contain stronger hydroclimatic sig-
nals [68,77,78]. This tendency might also impact the reduced temperature correlations at
Tar (1450 m a.s.l.), as this site is located approx. 150 m beneath Asc in the adjacent valley.

The MXD chronology from Sor at only 1400 m a.s.l., however, indicates the highest
temperature sensitivity, and thus elevational differences appear less influential overall.
Previous studies pointed to the combined biogeographical effects of local topography, slope
exposure, soil formation, and water availability when discussing signals in Corsican TRW
networks [7], tree ring stable isotopes [8,79], and intra-annual density fluctuations [69].
This might also be applicable for MXD; however, further measurements and a network
across the island are necessary to disentangle the impact of local site conditions on P. nigra
MXD formation.

4.3. Fading Temperature Sensitivity

In environments where temperature is the limiting factor of tree growth, MXD has
proven ideal for reconstructing past summer temperature variability [33,34,53]. How-
ever, hemispheric studies have reported a decreasing temperature sensitivity since the
second half of the 20th century [80,81]. This phenomenon, known as the “divergence prob-
lem”, describes the inability of temperature-sensitive tree-ring chronologies to adequately
capture 20th century warming. The lack of mirroring recent warming questions the relia-
bility of tree-ring-derived temperature reconstructions during putative pre-instrumental
warm periods.

Despite widespread evidence in a network of MXD data obtained from multiple sites
across the Northern Hemisphere [80], divergence appears to be more prevalent at northern
latitudes [82]. As most records were developed in the 1980s and 1990s, respectively, and
only a few extend until the second decade of the 21st century [80,83], there is a need
to update MXD records toward the present for further in-depth-investigations of the
divergence problem.

Our Corsican MXD chronologies reveal a similar decoupling from temperature in
the late 20th century, resulting in an underestimate of ≥1.56 ◦C between the warmer
instrumental and colder reconstructed temperatures in the 21st century. In contrast to the
results by Briffa et al. [80,81], this decoupling starts in the late 1990s and not in the 1960s. We
suggest that the increasing temperatures throughout recent decades have resulted in more
severe summer drought periods with higher evapotranspiration rates at our study sites.

Instrumental observations support this assumption and reveal that warm-season
temperatures have continuously increased over the past 100 years, particularly after 1980
CE (Figure 7c). While the AMJJ and SO temperatures from 1980–2000 CE are comparable to
those of the 1940s or 1950s, warming amplified rapidly thereafter surpassing nearly all 19th
century observations. Since this temperature increase is not accompanied by increasing
rainfall, the offset between precipitation and potential evapotranspiration is widening
toward the present [84].

Drought episodes have begun to occur more frequently and persist longer, particularly
since the 1990s when hydroclimate extreme events were most severe in the Western and
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Central Mediterranean [85,86]. In Corsica, the frequency of dry years since intensified
rapidly from 20% to 50%, while heavy rainfall events occurred more frequently [84] further
promoting summer drought, as water infiltration is impeded by the rocky slopes and large
portions of precipitation are lost to surface runoff [68].

We therefore conclude that the P. nigra trees growing at the upper treeline have suffered
from enhanced drought stress since the 1990s, causing the decrease in MXD sensitivity to
warm-season temperatures toward the end of the 20th century. At the same time, running
correlations revealed that the June–July precipitation became increasingly important for
MXD formation, although the precipitation signals were weak overall. The 1990s are
identified as the turning point in MXD climate sensitivity. It appears that the succession of
several severe drought events caused a shortage of carbohydrate reserves due to inhibited
photosynthetic activity during summer [70,87].

Although Black pines feature an effective stomatal control mechanism [88] and indicate
a plastic response to dryness with a rapid recovery thereafter [15], trees at Tar have suffered
particularly from prolonged drought stress since the 1990s. This could explain the anti-
correlations with temperature over the most recent calibration period. The combined
effects of high temperatures and low water availability stimulate stomatal closure, limit
the absorption of carbon dioxide, and further a shortage of non-structural carbohydrates
required for cell wall formation [87,89,90].

This conclusion is consistent with previous dendroclimatological studies detailing
drought as an important driver of Mediterranean tree growth and suggesting that the
increasing frequency and duration of summer aridity has reduced the temperature-growth
relationship at southern European sites [91–95]. The Corsican pine forests are also affected
by the regular wildfires characteristic for Mediterranean forests [96,97]. Wildfires have
been recognized as disturbance events in dendroclimatic studies as they can leave distinct
fingerprints in the tree-ring series of surviving pine trees [98–100].

However, whereas the number of recorded fires increased throughout the 20th century
in many Mediterranean regions [101], there was no indication of a change in Corsican
fire regime coinciding with the altered climate sensitivity in high elevation MXD data as
reported here. The striking coherence among TRW chronologies from multiple Corsican
pine sites, extending well into the 21st century [7,9] supports this conclusion that local fire
events are of minor importance to the climate signals recorded in tree-ring growth proxies.

Despite possible uncertainties in climate signal estimation emerging from the applica-
tion of gridded and instrumental station data from the coastal plain, the Corsican composite
chronologies contain crucial temperature information, as CORHGS indicated high coherence
in low-frequency variability with the world’s best replicated (n = 414) MXD record from
the Spanish Pyrenees (GER). The GER chronology correlated significantly (r1950–2014 = 0.72,
p < 0.01) with the May–June and August–September temperatures over large parts of the
Western Mediterranean [35].

Similar spatial correlations were recorded between the ABC200 and AMJJ and SO
temperatures prior to 1980 CE. Surprisingly, despite the greater geographical distance,
CORHGS was more closely related to a May–September temperature reconstruction based
on MXD from Pyrenean mountain pines [36] than to the August–September temperature
reconstruction derived from stable carbon isotopes of Corsican Black pines [8]. This
discrepancy could result from both the different seasonalities and/or the climate proxies, as
the carbon isotopes are more closely influenced by the mutual interactions of temperature,
precipitation, and transpiration and carry a mixed climate signal [8].

Based on these findings, we hypothesize that inter-annual MXD variability derived
from Corsican Black pines can reliably represent large-scale temperature patterns across the
Central-Western Mediterranean over more than 500 years. However, due to the decreasing
sensitivity since the late 20th century, a formal reconstruction of past temperatures is not
warranted. The development of more and better-replicated MXD chronologies are required
to determine how the increasing drought sensitivity affects P. nigra growth and to improve
our understanding of past climate dynamics in Corsica.
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5. Conclusions

By combining 69 MXD measurements from three high-elevation sites in Corsica,
we updated previously established density data by 36 years into the 21st century and
by 350 years back to the Middle Ages. After applying two detrending techniques that
were able to preserve multi-centennial variability, as well as age-band decomposition,
all chronologies of the now longest MXD record for the Central-Western Mediterranean
indicated similar associations with climate data. The strongest correlations were observed
with April–July and September–October temperatures over calibration periods prior to
1980 CE.

August temperatures were found to play a minor role in MXD formation, accentuating
a bimodal seasonality in temperature response that is similar to observations at Spanish
sites in the Central Pyrenees and Andalusia. The bimodality in temperature sensitivity is
likely related to (1) an unimpeded carbohydrate production during mid-summer, when
temperatures do not fall below the physiological thresholds; while, at the same time,
(2) distinct drought conditions cause stomatal closure inhibiting photosynthetic activity.
Comparisons with other temperature-sensitive MXD chronologies from the Mediterranean
showed that the Corsican density record contains large-scale climate information over
more than 500 years.

However, the weakening temperature associations since the 1990s caused by dif-
fering low-frequency trends between wood density and instrumental temperature data
raise doubts regarding the reliability of P. nigra MXD for climate reconstruction. We
demonstrated that the post-1990 CE divergence was likely due to a shift from thermal to
hydroclimate forcing. In context of recent warming, our results underline the significance
of updating tree-ring density data into the present to evaluate whether MXD-based tem-
perature reconstructions derived from 20th century calibration periods remain valid into
the 21st century. For a better understanding of underlying physiological mechanisms and
the influence of drought on MXD formation, additional studies of wood anatomical traits
would be helpful.
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.3390/atmos12070804/s1, Table S1: MXD site chronology characteristics; Table S2: MXD composite
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Figure S4: Temperature signal estimation using CRU TS4.04 data; Figure S5: Precipitation signal
estimation using GPCC v2020 data.
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76. Gričar, J.; Čufar, K.; Oven, P.; Schmitt, U. Differentiation of terminal latewood tracheids in silver fir trees during autumn. Ann.
Bot. 2005, 95, 959–965. [CrossRef] [PubMed]

77. Hartl-Meier, C.; Dittmar, C.; Zang, C.; Rothe, A. Mountain forest growth response to climate change in the northern limestone
Alps. Trees 2014, 28, 819–829. [CrossRef]

78. Häusser, M.; Szymczak, S.; Garel, E.; Santoni, S.; Huneau, F.; Bräuning, A. Growth variability of two native pine species on
Corsica as a function of elevation. Dendrochronologia 2019, 54, 49–55. [CrossRef]

79. Szymczak, S.; Bräuning, A.; Häusser, M.; Garel, E.; Huneau, F.; Santoni, S. The relationship between climate and the intra-annual
oxygen isotope patterns from pine trees: A case study along an elevation gradient on Corsica, France. Ann. For. Sci. 2019, 76,
1–76. [CrossRef]

80. Briffa, K.R.; Schweingruber, F.H.; Jones, P.D.; Osborn, T.J.; Shiyatov, S.G.; Vaganov, E.A. Reduced sensitivity of recent tree-growth
to temperature at high northern latitudes. Nature 1998, 391, 678–682. [CrossRef]

http://doi.org/10.1016/j.quascirev.2016.05.009
http://doi.org/10.1029/2000JD900617
http://doi.org/10.1038/s41597-020-0453-3
http://doi.org/10.3959/1536-1098-69.1.3
https://meteofrance.com/previsions-meteo-france/calacuccia/20224
https://meteofrance.com/previsions-meteo-france/calacuccia/20224
https://www.ncdc.noaa.gov/paleo-search/study/4644
http://doi.org/10.1126/science.1066208
http://doi.org/10.1002/joc.1210
http://doi.org/10.1111/j.1469-8137.2009.03073.x
http://doi.org/10.1163/22941932-20160132
http://doi.org/10.2458/azu_rc.56.18323
http://doi.org/10.3390/f11070758
http://doi.org/10.1007/s00468-014-1045-7
http://doi.org/10.1007/s10342-012-0652-3
http://doi.org/10.1093/treephys/tpx031
http://doi.org/10.1111/j.1365-3040.2006.01539.x
http://doi.org/10.1111/j.1469-8137.2009.03030.x
http://doi.org/10.1007/s00468-014-1107-x
http://doi.org/10.1051/forest:2000166
http://doi.org/10.1093/aob/mci112
http://www.ncbi.nlm.nih.gov/pubmed/15760912
http://doi.org/10.1007/s00468-014-0994-1
http://doi.org/10.1016/j.dendro.2019.02.002
http://doi.org/10.1007/s13595-019-0860-9
http://doi.org/10.1038/35596


Atmosphere 2021, 12, 804 19 of 19

81. Briffa, K.R.; Osborn, T.J.; Schweingruber, F.H. Large-scale temperature inferences from tree-rings: A review. Glob. Planet. Chang.
2004, 40, 11–26. [CrossRef]

82. D’Arrigo, R.; Wilson, R.; Liepert, B.; Cherubini, P. On the ‘divergence problem’ in northern forests: A review of the tree-ring
evidence and possible causes. Glob. Planet. Chang. 2008, 60, 289–305. [CrossRef]

83. Schweingruber, F.H.; Briffa, K.R. Tree-ring density networks for climate reconstruction. In Climatic Variations and Forcing
Mechanisms of the Last 2000 Years, 1st ed.; Jones, P.D., Bradley, R.S., Jouzel, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1996;
Volume 41, pp. 43–66. ISBN 978-3-642-61113-1.

84. Laffoley, D.; Baxter, J.; Pergent-Martini, C.; Pergent, G.; Otero, M.M.; Simard, F. Climate Change and the Marine Environment in
Corsica, Report Card 2018; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2018.

85. Cook, B.I.; Anchukaitis, K.J.; Touchan, R.; Meko, D.M.; Cook, E.R. Spatiotemporal drought variability in the Mediterranean over
the last 900 years. J. Geophys. Res. Atmos. 2016, 121, 2060–2074. [CrossRef]

86. Spinoni, J.; Naumann, G.; Vogt, J.V.; Barbosa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud.
2015, 3, 509–524. [CrossRef]

87. Medrano, H.; Escalona, J.M.; Bota, J.; Gulías, J.; Flexas, J. Regulation of photosynthesis of C3 plants in response to progressive
drought: Stomatal conductance as a reference parameter. Ann. Bot. 2002, 89, 895–905. [CrossRef]

88. Lebourgeois, F.; Lévy, G.; Aussenac, G.; Clerc, B.; Willm, F. Influence of soil drying on leaf water potential, photosynthesis,
stomatal conductance and growth in two black pine varieties. Ann. Sci. For. 1998, 55, 287–299. [CrossRef]

89. Hartl-Meier, C.; Zang, C.; Büntgen, U.; Esper, J.; Rothe, A.; Göttlein, A.; Dirnböck, T.; Treydte, K. Uniform climate sensitivity in
tree-ring stable isotopes across species and sites in a mid-latitude temperate forest. Tree Physiol. 2015, 35, 4–15. [CrossRef]

90. Olano, J.M.; Linares, J.C.; García-Cervigón, A.I.; Arzac, A.; Delgado, A.; Rozas, V. Drought-induced increase in water-use
efficiency reduces secondary tree growth and tracheid wall thickness in a Mediterranean conifer. Oecologia 2014, 176, 273–283.
[CrossRef]

91. Büntgen, U.; Frank, D.; Neuenschwander, T.; Esper, J. Fading temperature sensitivity of Alpine tree growth at its Mediterranean
margin and associated effects on large-scale climate reconstructions. Clim. Chang. 2012, 114, 651–666. [CrossRef]

92. Castagneri, D.; Nola, P.; Motta, R.; Carrer, M. Summer climate variability over the last 250 years differently affected tree species
radial growth in a mesic Fagus–Abies–Picea old-growth forest. For. Ecol. Manag. 2014, 320, 21–29. [CrossRef]

93. Galván, J.D.; Camarero, J.J.; Ginzler, C.; Büntgen, U. Spatial diversity of recent trends in Mediterranean tree growth. Environ. Res.
Lett. 2014, 9, 084001. [CrossRef]

94. Martín-Benito, D.; del Río, M.; Cañellas, I. Black pine (Pinus nigra Arn.) growth divergence along a latitudinal gradient in western
Mediterranean mountains. Ann. For. Sci. 2010, 67, 401. [CrossRef]

95. Thiel, D.; Nagy, L.; Beierkuhnlein, C.; Huber, G.; Jentsch, A.; Konnert, M.; Kreyling, J. Uniform drought and warming responses
in Pinus nigra provenances despite specific overall performances. For. Ecol. Manag. 2012, 270, 200–208. [CrossRef]

96. Mouillot, F.; Ratte, J.-P.; Joffre, R.; Moreno, J.M.; Rambal, S. Some determinants of the spatio-temporal fire cycle in a mediterranean
landscape (Corsica, France). Landsc. Ecol. 2003, 18, 665–674. [CrossRef]

97. Soulères, O. Les incendies de Haute-Corse. Rev. For. Fr. 2000, 52, 401–406. [CrossRef]
98. Fulé, P.Z.; Ribas, M.; Gutiérrez, E.; Vallejo, R.; Kaye, M.W. Forest structure and fire history in an old Pinus nigra forest, eastern

Spain. For. Ecol. Manag. 2008, 255, 1234–1242. [CrossRef]
99. Szymczak, S.; Bräuning, A.; Häusser, M.; Garel, E.; Huneau, F.; Santoni, S. A dendroecological fire history for central Cor-

sica/France. Tree Ring Res. 2020, 76, 40–53. [CrossRef]
100. Touchan, R.; Baisan, C.; Mitsopoulos, I.D.; Dimitrakopoulos, A.P. Fire history in European black pine (Pinus nigra Arn.) forests of

the Valia Kalda, Pindus mountains, Greece. Tree Ring Res. 2012, 68, 45–50. [CrossRef]
101. Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin?—A review. Int. J. Wildland Fire

2008, 17, 713–723. [CrossRef]

http://doi.org/10.1016/S0921-8181(03)00095-X
http://doi.org/10.1016/j.gloplacha.2007.03.004
http://doi.org/10.1002/2015JD023929
http://doi.org/10.1016/j.ejrh.2015.01.001
http://doi.org/10.1093/aob/mcf079
http://doi.org/10.1051/forest:19980302
http://doi.org/10.1093/treephys/tpu096
http://doi.org/10.1007/s00442-014-2989-4
http://doi.org/10.1007/s10584-012-0450-4
http://doi.org/10.1016/j.foreco.2014.02.023
http://doi.org/10.1088/1748-9326/9/8/084001
http://doi.org/10.1051/forest/2009121
http://doi.org/10.1016/j.foreco.2012.01.034
http://doi.org/10.1023/B:LAND.0000004182.22525.a9
http://doi.org/10.4267/2042/5375
http://doi.org/10.1016/j.foreco.2007.10.046
http://doi.org/10.3959/TRR2019-2
http://doi.org/10.3959/2011-12.1
http://doi.org/10.1071/WF07151

	Introduction 
	Materials and Methods 
	Wood Density Data and Chronology Development 
	Climate Data and Signal Estimation 

	Results 
	MXD Chronology Characteristics 
	Climate Sensitivity of Corsican MXD 

	Discussion 
	Chronology Variants and Characteristics 
	Bimodal Temperature Signal 
	Fading Temperature Sensitivity 

	Conclusions 
	References

