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Abstract: The Mediterranean Basin, located in a transition zone between the temperate and rainy
climate of central Europe and the arid climate of North Africa, is considered a major hotspot of climate
change, subject to water scarcity and drought. In this work, dry and wet spells have been analyzed
in the Wadi Cheliff basin (Algeria) by means of annual precipitation observed at 150 rain gauges in
the period 1970–2018. In particular, the characteristics of dry and wet spells (frequency, duration,
severity, and intensity) have been evaluated by means of the run theory applied to the 12-month
standardized precipitation index (SPI) values. Moreover, in order to detect possible tendencies in the
SPI values, a trend analysis has been performed by means of two non-parametric tests, the Theil–Sen
and Mann–Kendall test. The results indicated similar values of frequency, severity, duration, and
intensity between the dry and the wet spells, although wet events showed higher values in the
extreme. Moreover, the results of the trend analysis evidenced a different behavior between the
northern side of the basin, characterized by a negative trend in the 12-month SPI values, and the
southern side, in which positive trends were detected.

Keywords: drought; SPI; run theory; Sen’s estimator; Mann–Kendall; Wadi Cheliff Basin

1. Introduction

Drought, similar to floods, is a dangerous natural hazard that can affect almost every
region of the world at any time. Its genesis and course depend on many factors, both natural
and those resulting from human pressure. Unlike floods, drought develops gradually and
exhibits a high temporal inertia, so its symptoms are often underestimated and mistakenly
perceived as less of a threat to humans compared to other natural disasters. Long-term
droughts affect all sectors of the economy and, as a result, society as a whole. Drought
is mainly related to a rainfall deficit leading to a decrease in water supplies affecting
the flora and fauna of a given region [1,2]. Meteorological drought is characterized by a
deficit of precipitation, an elevated temperature, and low humidity. These anomalies then
propagate to impact the surface water and groundwater sources, ecosystems, and human
activities. The impact of drought on society, the environment, and the economy depends
on its duration and spatial extent. Water stress or water deficit caused by drought has a
substantial influence on low production in major agricultural crops [3,4].

The extent of the water deficit on the land surface can be quantified by various
indices based on meteorological variables. These include the Palmer Drought Severity
Index (PDSI), the Crop Moisture Index (CMI), the Surface Water Supply Index (SWSI),
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the Rainfall Anomaly Index (RAI), the Standardized Precipitation Index (SPI), and the
Standardized Precipitation Evapotranspiration Index (SPEI) [5,6]. The World Meteoro-
logical Organization has recommended that the standardized precipitation index (SPI)
developed by McKee et al. [7] is used as a universal meteorological drought index because
of its standardized form and the lower requirement of available data that is needed [8–11].
For example, a study described by Ekewzuo and Ezeh [12] and performed in West Africa
used a 3-month SPI and showed that the most exposed area to extreme drought conditions
occurs over the northern Sahel domain though the frequency of occurrence is very low.

In general, climate change has worsened the extremes of high temperature and both
low and high precipitation, and thus has increased the risk of drought [13,14]. For example,
Vilaj et al. [15] reported that the SPI reveals an increasing occurrence of droughts in Kerala,
India, caused by a decreasing trend of extreme precipitation indexes and an increasing trend
of extreme temperature indexes. Algeria is a good example of the worrying manifestations
of climate change. As Hadour et al. [16] reported for the RCP8.5 scenario, a decrease in
winter rains for the 2039, 2069, and 2099 horizons is projected, while the temperatures
will increase. To help with water management under this increasing risk of drought,
spatially detailed long-term meteorological data are needed. These data can inform an
analysis of the tendency of meteorological drought indicators and better represent their
spatiotemporal complexity. The western part of Algeria has experienced several droughts
over the last century [16–18]. Drought effects within the country are modulated by the
high heterogeneity of the spatial distribution of the rainfall [19].

The variability of precipitation and thus the variability of the drought intensity is
linked with many physical mechanisms. For example, in the Iberian Peninsula, Vicente-
Serrano et al. [20] linked the increasing drought tendency with greater atmospheric evapo-
rative demand associated with temperature rises. Markonis et al. [21] showed that drier
conditions over the Mediterranean are in accordance with a recent north–south polarization
of drought patterns over Europe. Parry et al. [22] analyzed three major pan-European
droughts in the second half of the twentieth century through synoptic conditions and
large-scale circulation patterns, emphasizing that each major drought episode had its
own unique spatiotemporal signature. Studies performed by Littman [23] evidenced the
influence of the phase pace of the NAO (North Atlantic Oscillation) teleconnection pattern
on the precipitation and temperature variability in Turkey. Kingston et al. [24] found that
the combination of the NAO and the EA/WR circulation patterns was the most important
driver of drought that the European land area was experiencing on a monthly time scale.
López-Moreno and Vicente-Serrano [25] found opposing NAO–SPI relationships between
northern and southern Europe. Precipitation and drought are also linked to sea surface
temperature (SST) anomalies [26,27].

The Wadi Cheliff is the longest river in Algeria and plays a vital role in its socio-
economic development. The Wadi originates from the Saharan Atlas, near Aflou in the
mountains of the Jebel Amour, and has a length of approximately 750 km, flowing into
the Mediterranean Sea. Accordingly, the present paper shows the results from an analysis
of meteorological drought performed on a large number of (150) rainfall stations with
long-term precipitation records, which is a unique contribution for the Wadi Cheliff basin.

The aim of the paper is the spatiotemporal analysis of the Standardized Precipitation
Index (SPI) variability on the Wadi Cheliff basin in the period 1970–2018. Run theory has
been applied on the 12-month SPI series and some characteristics of the drought and wet
spells have been identified. Additionally, trends of annual 12-month SPI are shown.

2. Materials and Methods
2.1. Study Area and Data

The Wadi Cheliff Basin (WCB) covers an area of 43,750 km2 and lies between 00◦07′44′′ E
and 03◦31′07′′ E and between 33◦53′13′′ N and 36◦26′34′′ N (Figure 1). The topography of
the basin is complex and rugged. The altitude varies from −4 m to 1969 m.
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the average annual precipitation evaluated from the 150 rain gauges with a spline interpolation.

Climatically, the basin is arid and semi-arid. The mean annual temperature decreases
gradually from the north to south as the elevation increases going upstream [28]. The
mean annual precipitation recorded at different stations (1970–2018) ranged from 161 mm
to 662 mm, 80% of which fell between November and March. For this study, datasets of
several rainfall stations (Figure 1) with long-term annual precipitation records from 1970 to
2018 across the WCB were taken from the National Agency of the Water Resources (ANRH).
However, the period of the records for these stations varies and some have missing records.
To improve the data quality, only the observing stations with data series accounting for
70% or more of the overall period were chosen for our study. After excluding the stations
with too many missing values, the double mass curve technique was used to analyze the
remaining missing data. The data was subjected to quality control and data gap filling
using the linear regression method. The period of study was chosen as 1970–2018, which is
as long as possible based on the availability of recorded data for the majority of the stations
in the region [29].

2.2. The Standardized Precipitation Index (SPI)

The SPI is an index by which we can evaluate wet and the dry spells for any region
in the world. According to McKee et al. [7], drought has a beginning date, an end date, a
drought intensity and a drought magnitude. The SPI quantifies the intensity of a drought
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or wet spell and is mathematically based on the cumulative probability of the precipitation
amount recorded at each station.

A period of observation at one meteorological station was used to determine the
parameters of scaling and the forms of precipitation probability density function:

g(x) =
1

βαΓ(α)
xα−1e−x/β for x > 0 (1)

where α and β are the shape and scale parameters respectively, x is the precipitation
amount and Γ(α) is the gamma function. The gamma function is defined as follows:

Γ(α) =
∫ ∞

0
yα−1e−ydy. (2)

The shape and scale parameters can be estimated using the approximation of Thom [30]:

α =
1

4A

(
1 +

√
1 +

4A
3

)
, (3)

and
β =

x
α

, (4)

with

A = ln(x)− ∑ ln(x)
n

, (5)

where x is the mean value of the precipitation quantity; n is the precipitation measurement
number; x is the quantity of the precipitation in a sequence of data.

The acquired parameters were further applied to determine the cumulative probability
of a certain precipitation for a specific time period in a time scale of all the recorded
precipitation. The cumulative probability can be presented as:

G(x) =
∫ x

0
g(x)dx =

1
βαΓ(α)

∫ x

0
xα−1e−x/βdx, (6)

Since the gamma distribution is undefined for a rainfall amount x = 0, in order to take
into account the zero values that occur in a sample set, a modified cumulative distribution
function (CDF) must be considered.

H(x) = q + (1− q)G(x), (7)

with G(x) the CDF and q the probability of zero precipitation, given by the ratio between
the number of zeros in the rainfall series (m) and the number of observations (n).

The calculation of the SPI is presented on the basis of the following equation [31,32]

SPI =

 −
(

t− c0+c1t+c2t2

1+d1t+d2t2+d3t3

)
0 < H(x) ≤ 0.5

+
(

t− c0+c1t+c2t2

1+d1t+d2t2+d3t3

)
0.5 < H(x) ≤ 1.0

, (8)

where t is determined as:

t =



√
ln
(

1
(H(x))2

)
0 < H(x) ≤ 0.5√

ln
(

1
(1−H(x))2

)
0.5 < H(x) ≤ 1.0

, (9)

and c0, c1, c2, d1, d2 and d3 are coefficients whose values are:
c0 = 2.515517, c1 = 0.802853, c2 = 0.010328
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d1 = 1.432788, d2 = 0.189269 d3 = 0.001308
According to the criteria of McKee et al. [7], severe and extreme droughts correspond

to categories of negative SPI (below-average precipitation amount), as shown in Table 1.

Table 1. Climate classification according to the SPI values.

SPI Value Class Probability (%)

SPI ≥ 2.00 Extremely wet 2.3
1.50 ≤ SPI < 2.00 Severely wet 4.4
1.00 ≤ SPI < 1.50 Moderately wet 9.2
0.00 ≤ SPI < 1.00 Mildly wet 34.1
−1.00 ≤ SPI < 0.00 Mild drought 34.1
−1.50 ≤ SPI < −1.00 Moderate drought 9.2
−2.00 ≤ SPI < −1.50 Severe drought 4.4

SPI < −2.00 Extreme drought 2.3

2.3. Run Theory

The run theory proposed by Yevjevich [33] refers to the occurrence of consecutive
comparable conditions, such as wet or dry periods, allowing the characterization of each
spell by assessing some characteristics such as duration, frequency, severity, and intensity.
Figure 2 shows an example of the run theory for a fixed threshold.
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level [34].

A “run” is defined as an interval in which the values are all above (positive run) or
below (negative run) the threshold [33]. Once the runs, and thus the dry (SPI below the
threshold) or wet (SPI over the threshold) spells, have been identified, it is possible to
extract some characteristics. The percentage of dry or wet spells over the study period
constitute the dry (DF) and wet (WF) frequencies. The dry and wet durations (DD and
WD) are the time period lengths in which SPI values are constantly below or above the
threshold. Durations can be expressed in weeks, months, years or any other time period.
The average drought and wet durations (ADD and AWD) are the ratio between the sum of
the durations of all the drought and wet spells and the number of drought and wet spells
(ND and NW). The cumulated drought and wet values during each spell represent the
drought and wet severities (DS and WS). The average drought and wet severities (ADS and
AWS) are the ratio between the sum of the DS and WS of all the spells and ND and NW,
respectively. The drought and wet intensities (DI and WI) were evaluated, for each event,
as the ratio between the DS and DD and the WS and WD, respectively, thus the average
drought and wet intensities (ADI and AWI) are the ratios between the sum of the DI and
WI of all the spells and ND and NW, respectively.
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In this study, drought and wet periods were evaluated considering the SPI thresholds
of −1 and 1, respectively. Moreover, duration, severity, and intensity were estimated using
the run theory applied to the 12-month SPI series, and thus DD and WD are expressed in
years. This methodology has been applied in past studies performed for several areas of
the world [35].

2.4. Theil–Sen Estimator

Considering that precipitation is often non normally distributed, the Theil–Sen estimator
is generally considered more powerful than the linear regression methods in trend magnitude
evaluation, because it is not subject to the influence of extreme values [36]. Given x1, x2, . . . ,
xn precipitation observations at times t1, t2, . . . , tn (with t1 < t2 < . . . < tn), for each N pairs
of observations xj and xi taken at times tj and ti, the gradient Qk can be calculated as:

Qk =
xj − xi

tj − ti
for k = 1, . . . , N, (10)

with 1 < i < j < n and tj > ti.
The estimate of the trend in the data series x1, x2, . . . , xn can then be calculated as the

median Qmed of the N values of Qk, ranked from the smallest to the largest:

Qmed =

{
Q[(N+1)/2]i f Nisodd

Q[N/2]+Q[(N+2)/2]
2 i f Niseven

(11)

The Qmed sign reveals the trend behavior, while its value indicates the magnitude of
the trend.

2.5. Mann–Kendall Test

As regards the MK test [37,38], in order to evaluate the trend significance, the statistic
S based on the rank sums is calculated as:

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(
xj − xi

)
where sgn

(
xj − xi

)
=


1 if

(
xj − xi

)
> 0

0 if
(
xj − xi

)
= 0

−1 if
(
xj − xi

)
< 0

(12)

In which xj and xi are the observations taken at times j and i (with j > i), respectively,
and n is the dimension of the series.

Under the null hypothesis H0, the distribution of S is symmetrical and is normal in
the limit as n becomes large, with zero mean and variance:

Var(S) =
[
n(n− 1)(2n + 5)−∑m

i=1 tii(i− 1)(2i + 5)
]
/18 (13)

in which ti indicates the number of ties with extend i.
Given the variance of S, it is possible to evaluate the standardized statistic ZMK as:

ZMK =


S−1√
Var(S)

for S > 0

0for S = 0
S+1√
Var(S)

for S < 0
(14)

By applying a two-tailed test, for a specified significance level α, the significance of
the trend can be evaluated.

3. Results

Figure 3 shows the boxplots with the main statistics of DF, WF, ADD, AWD, ADS,
AWS, ADI, and AWI. Generally, similar values were evaluated between the dry and the
wet spells although higher frequencies and durations of wet events were detected in the
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minimum and in the maximum values across the 150 stations. In fact, as regards the
frequency, the DF ranged between 0 and almost 23% while the WF ranged between 8.3 and
25%. Similarly, considering the duration, ADD and AWD showed almost the same median,
but maximum values of 3 and 4 years were obtained for ADD and AWD, respectively. This
behavior has been confirmed also for the severity and the intensity, with AWS and AWI
showing minimum and maximum values higher than the ones obtained for ADS and ADI.
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Figure 3. Characterization through boxplots of frequency (%), average duration (in years), average severity, and average
intensity (year−1). The top and the bottom of the boxes are the third and the second quartiles, respectively; the band inside
the box is the median and the ends of the whiskers represent the minimum and maximum of all of the data.

Figure 4 shows the spatial distribution of DF, ADD, ADS and ADI. With respect to the
dry frequency, the highest values largely involved the northern side of the basin, although
in one station on the southern side a DF value higher than 20% was detected. Conversely,
the southern side of the basin, which is the area with the highest elevation in which few
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rain gauges are located, was characterized by the lowest values of DF, and two rain gauges
did not show any dry event (Figure 4a).
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The average dry duration did not present any noteworthy spatial behavior. In fact,
the lowest values (≈1 year) were distributed across the basin, while the highest ones
(>2.5 years) were localized in the central part of the basin, but without any clear connection
with orography (Figure 4b).

A spatial behavior similar to ADD was detected for ADS (Figure 4c). Indeed, from the
spatial distribution of the average dry severity it is not possible to identify definite areas
characterized by the highest values (>3.5 year), which were spread across the central part
of the basin.

Finally, the spatial distribution of the average dry intensity evidenced some differences
between the northern and the southern side of the basin (Figure 4d). In fact, the ADI values
showed a distribution quite similar to the one obtained for the DF values, with intensities
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lower than 1.2 localized in the southeastern part of the basin, especially in the stations
characterized by the highest elevations.

Figure 5 is similar to Figure 4 but for the wet events and, thus, it shows the spatial
distribution of WF, AWD, AWS, and AWI.
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Regarding the frequency of the wet events, values higher than 20% were detected in
several areas of the basin, without any particular geographical difference and without any
connection with the orography (Figure 5a). Similarly, the average wet duration did not
show any significant spatial behavior with the lowest values (<1.5 years) distributed across
the basin and only two stations showed AWD values higher than 3 years (Figure 5b).

Differently from DF and ADD, the spatial distributions of the average wet severity and
intensity evidenced some differences between the northern and the southern side of the
basin (Figure 5c,d). In fact, for both AWS and AWI the highest values were localized in the
southern part of the basin, especially in the stations characterized by the highest elevations.
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In order to detect the temporal evolution of drought in the period 1970–2018, the
12-month SPI series were tested for trends through the Theil–Sen estimator and the Mann–
Kendall test. As a result, for a SL = 95%, 26 out of 150 stations (i.e., 39%) showed a negative
trend while an opposite behavior was detected in 13 out of 150 stations (i.e., 19.5%).
Spatially, the negative trend mainly involved the northern areas of the basin, with a
maximum decrease of more than −0.3/10 years (Figure 6). On the contrary, a positive
trend was evidenced in the southern part of the basin reaching values between 0.2 and
0.3/10 years.
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Finally, with the aim to assess the drought response to the global circulation variability,
a correlation analysis between the SPI values and the NAO was computed for each station.
As a result, a clear link between drought and the NAO was evidenced. In particular,
negative correlation values (<−0.4) mainly involved the northern areas of the basin, while
a positive correlation was evidenced in the southern part of the basin (Figure 7).
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4. Discussion

Although a lack of precipitation can be considered an ordinary part of the seasonal
climatic cycle within the Mediterranean basin, future climate projections have identified
the Mediterranean region as an area particularly subject to water scarcity and drought [39].
In order to monitor the drought phenomenon and to assess the climate anomalies quantita-
tively in terms of intensity, duration, frequency, recurrence probability, and spatial extent,
several indices have been developed [40]. Among the several indices, the SPI has been
applied in the trend detection of drought in many areas of the world [41]. While a trend
analysis on the SPI values can only point out the possible changes in the expected precipi-
tation amount over the years, the study of some of the main drought characteristics such as
frequency, duration, severity, and intensity is essential for politicians, local communities,
and stakeholders to identify the most vulnerable areas and their drought features.

The detection of these characteristics is particularly relevant for Algeria, which some
studies have identified as one of the countries in North Africa that will become a global hot
spot for drought by the end of the twenty-first century [42]. In fact, the results of this study
evidenced a great spatiotemporal variability in wet and dry episodes in the Cheliff Basin,
with different results obtained between the northern side of the basin, characterized by the
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highest annual rainfall values, and the southern part, where annual rainfall values below
250 mm have been registered. In particular, the results in this area could be influenced by
the low total amount of precipitation, which makes it more difficult to accurately detect
drought development. The main outcomes of this study allow an identification of the
areas, in the northern side of the basin, that could also face water stress conditions in
the future, thus requiring drought monitoring and adequate adaptation strategies. At
the same time, in the area currently suffering from a water deficit, an increase in the
wet episodes has been detected, which is an important result that can inform people
involved in the water resource management of the changing potential for flooding and
water storage. The different behavior between the northern and the southern part of
the basin has been pointed out in previous works e.g., in [29], the authors of which
evidenced an annual rainfall decrease of more than 20 mm/10 years on the northern
side and an increase of about 5 mm/10 years on the southern side. These results can be
influenced by both global and local factors. Global factors which impact on the intra-annual
precipitation distribution include teleconnection patterns [43,44]. In fact, as evidenced in
Figure 7, a clear link exists between drought and the NAO. This result agrees with the
results obtained by several authors e.g., [29], which evidenced that the Mediterranean
rainfall regime is strongly linked to general atmospheric circulation patterns such as the
El Niño Southern Oscillation (ENSO), the Mediterranean Oscillation (MO), the Western
Mediterranean Oscillation (WeMO), and especially the North Atlantic Oscillation indices
that are negatively correlated with precipitation in Algeria [45]. Indeed, positive NAO
phases can cause dry conditions across large parts of the Mediterranean Basin, from Spain
and Morocco across to the Balkans and western Turkey [46]. Specifically, a predominant
negative phase of the NAO occurred between 1940 and 1980, corresponding to a period
when precipitation was above normal. This was followed by a predominant positive phase,
which significantly contributed to the rainfall reduction observed from the beginning of the
1980s in the Mediterranean basin, and also in Algeria [29]. Moreover, another regional-scale
system that could influence the rainfall conditions in North Africa is the well-documented
Sahelian drought and its multidecadal variability, which resulted from the response of
the African summer monsoon to oceanic forcing and was amplified by land–atmosphere
interactions [47].

In order to better appreciate the results of this study, an important final remark must
be made concerning the database. In this study a high-quality database in the period
1970–2018 has been used. Unfortunately, only annual data (evaluated for water year) were
available and thus it was not possible to perform a detailed analysis at a monthly scale.
This study is nevertheless a valuable contribution not only to the quality of the database
but also to its spatial resolution, which covers almost all the basin, with some gaps only
in the central area. Continuous and spatially distributed data allowed a reliable analysis
of the drought characteristics in the basin. Although globally gridded satellite-based
precipitation products have become available in recent years as potential sources of data,
ground-based precipitation measurements still remain the main and most accurate source
in any climatological analysis [48].

5. Conclusions

This study aimed to analyze some of the main characteristics of the wet and dry events
affecting the Cheliff Basin in the period 1970–2018 using the 12-month SPI, which is a
broad proxy for water resource availability, evaluated from 150 rain gauges distributed
across the basin. Generally, the analysis of the main statistics of the frequency, severity,
duration, and intensity were evaluated for both dry and wet events, and it was found that
their median values were similar, although higher minimum and maximum values were
detected for the wet events. These results clearly indicate that the Cheliff Basin is at risk for
extreme wet events as well as dry events. From the spatial distribution of the wet and dry
characteristics, the basin areas facing water stress were identified. Finally, the results of the
trend analysis performed on the 12-month SPI values evidenced a decreasing trend on the
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northern side of the basin and an opposite behavior on the southern side, characterized
by the highest elevations and the lowest annual rainfall values, in which positive values
were detected. These results, probably linked with the predominant positive NAO phase
which significantly contributed to the rainfall reduction observed from the beginning of
the 1980s in Algeria, could be highly relevant for people involved in natural resource
management decision-making for sustainable long-term water resource management in
semi-arid regions.
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