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Abstract: In the context of the outbreak of coronavirus disease 2019 (COVID-19), strict lockdown
policies were implemented to control nonessential human activities in Xi’an, northwest China, which
greatly limited the spread of the pandemic and affected air quality. Compared with pre-lockdown,
the air quality index and concentrations of PM2.5, PM10, SO2, and CO during the lockdown reduced,
but the reductions were not very significant. NO2 levels exhibited the largest decrease (52%) during
lockdown, owing to the remarkable decreased motor vehicle emissions. The highest K+ and lowest
Ca2+ concentrations in PM2.5 samples could be attributed to the increase in household biomass fuel
consumption in suburbs and rural areas around Xi’an and the decrease in human physical activities
in Xi’an (e.g., human travel, vehicle emissions, construction activities), respectively, during the
lockdown period. Secondary chemical reactions in the atmosphere increased in the lockdown period,
as evidenced by the increased O3 level (increased by 160%) and OC/EC ratios in PM2.5 (increased by
26%), compared with pre-lockdown levels. The results, based on a natural experiment in this study,
can be used as a reference for studying the formation and source of air pollution in Xi’an and provide
evidence for establishing future long-term air pollution control policies.

Keywords: COVID-19; city lockdown; air pollutants; PM2.5; global comparison

1. Introduction

Since the Industrial Revolution in the 18th century, industrialization has transformed
production patterns and lifestyles in society. However, industrialization and modernization
have led to major environmental problems [1–3]. Anthropogenic emissions, including
vehicle and industrial exhaust emissions, fossil fuel combustion, resident smoking, and
household heating, are an important cause of deteriorating air quality [4–6].

Ghaffarpasend et al. [7] concluded that motor vehicle emissions accounted for an
average of 45% of the air pollutants in Tehran, Iran. Industrial processes contributed 10.7%
of particulate matter with aerodynamic diameter equal to or less than 2.5 µm (PM2.5),
and fossil fuel combustion contributed 15.8% of particulate matter with aerodynamic
diameter equal to or less than 10 µm (PM10) emissions in Shandong Province of China [3].
Moreover, Zhang et al. [2] reported that industrial processes were the main source of
organic carbon (OC) emissions in total suspended particulate (TSP), accounting for 23.6%
of the total OC emission in Henan Province, China. The emission inventory reported by
Zhong et al. [4] proved that the contribution rate of power plants and industrial combustion
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to SO2 emissions can reach approximately 80% in Guangdong Province, and emissions
from on-road mobile sources were the most important contributor to NOx, accounting for
35.5%. Transportation also contributed 88% of the total annual CO in Brunei Darussalam
in 2012 [8], and the blast furnaces of iron and steel smelting contributed 38.4% of CO
emissions in Beijing and the surrounding five cities of China [1].

In addition to the contribution of primary emission sources, the level of air pollutants
is greatly affected by the formation of secondary sources, especially PM2.5, which is largely
influenced by secondary organic aerosol (SOA). SO2 and NO2 are important precursor
gases in the formation of sulfate and nitrate through gas-to-particle conversion [9,10].
Feng et al. [11] reported that nitrate aerosol was the main contributor to particulate pollution
in Beijing, and the mass fraction of nitrate in PM2.5 ranged from 20.1% to 28.9% from 2013
to 2015. Guo et al. [12] observed that the proportion of sulfate in PM2.5 ranged from 28.2%
to 50.5% in Nanjing in 2015. The secondary air pollutants generated by the reaction of the
primary pollutants also exert considerable effects on regional environmental quality and
human health [13,14].

Cases such as major sports events, large-scale international conferences, and pandemic
outbreak and control are excellent examples wherein stringent emission control measures
to limit human activities significantly improved air quality [15]. For instance, SO2, NOx,
and PM10 concentrations in Beijing were reduced by approximately 85%, 46%, and 90% by
shutting down factories producing building materials, restricting mobile source emissions,
and prohibiting building construction programs during the 2008 Beijing Olympic Games,
respectively [16]. Cheng et al. [17] found that traffic restrictions effectively improved air
quality and reduced secondary particle emissions during the China-Africa Summit held
in Beijing in 2006. The apparent improvement in air quality was observed as a result of
control strategies implemented through policies and air quality before, during, and after
the Shanghai World Expo in 2010 [18]. The 2014 Asia-Pacific Economic Cooperation (APEC)
meeting held in Shanghai, China, reported the effectiveness of government pollution
source control measures on air quality; NO2 emissions decreased by 47% during the
APEC period in 2014 [19]. These cases indicate the effectiveness of temporary restrictions
on anthropogenic sources in reducing air pollution. Thus, the lockdown caused by the
COVID-19 pandemic provided a natural experiment for assessing the effect of limiting
anthropogenic activities on air pollutant levels.

Around the end of December 2019, Wuhan City, Hubei Province, China, became the
first place to report an unexplained pneumonia outbreak, which attracted widespread
attention internationally [20]. The World Health Organization (WHO) named the disease
caused by the novel coronavirus as COVID-19 on 11 February 2020. In 30 January 2020, the
WHO declared that the COVID-19 outbreak was a public health emergency of international
concern, which is the highest level of alarm [21]. As of 11 April 2021, there have been
135,446,538 confirmed cases of COVID-19 and 2,927,922 deaths globally [22]. Due to the
high infectivity and mortality rate of COVID-19 [23], to prevent the transmission of the virus
effectively, strict city lockdown policies were implemented by the Chinese government
from 23 January 2020.

Xi’an is the capital city of Shaanxi Province with a permanent population of 10,203,500
in 2020. As the center of the Guanzhong Plain Urban Agglomeration, Xi’an is responsible for
important environmental protection and needs more scientific research and attention [24].
In order to avoid the spread of COVID-19, Xi’an had introduced a series of policies and
measures for restricting human activities including the closure of attractions and large
supermarkets, traffic and travel restrictions, construction site suspension, and temporary
control of the opening of enterprises and institutions. At the beginning of 2020, when the
epidemic growth rate was the most prominent in China [25], the total industrial output
of electric power and heat power production and supply industries in Xi’an declined
by 1.2% from January to February in 2020 compared with that in the same period in
2019 [26], implying a reduction in industrial emissions. In January and February 2020, the
added value of the city’s industrial enterprises above the designated size decreased by
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3.3%, and the output values of light and heavy industries decreased by 23.5% and 13.2%,
respectively [24], and the number of construction projects decreased by 16.3% compared
with that in the same period in 2019. Among them, industrial construction projects reduced
by 31.2% [27].

The lockdown brought about drastic impacts at social and economic fronts [28–31]
as well as impacts on the environment, particularly in the context of air quality, envi-
ronmental, and noise reduction [32–34]. To date, previous data and studies have shown
that the emergency measures taken by the government to prevent human activities in
the lockdown period of COVID-19 had effectively and significantly reduced ambient air
pollution [20,35–41]. However, no comprehensive investigation has been conducted on the
impact of COVID-19 control measures on gaseous and particulate air pollutants in Xi’an.
In the present study, offline PM2.5 filters and online air pollutant monitoring records were
collected simultaneously in Xi’an from 1 January to 7 March 2020. The main objective of
this study was to determine the variation in air pollutants, including PM2.5, OC, elemental
carbon (EC), water-soluble ions (WSIs), PM10, and gaseous pollutants (SO2, NO2, CO, and
O3) in Xi’an in relation to the restrictive anthropogenic activities before, during, and after
the COVID-19 lockdown. Additionally, this study referenced and categorized relevant do-
mestic and international results (also covering previous years and months of the lockdown
period) to summarize the characteristics of various air pollutants in several regions and to
obtain a more in-depth understanding of air quality improvement and PM2.5 compositions
in Xi’an during this event. The lockdown caused by the COVID-19 pandemic provided an
opportunity to perform a natural experiment for evaluating air quality responses to drastic
emission reduction, and it is helpful to formulating more targeted policies in this heavily
polluted area and sustainable development [33,42,43]. In line with this, future awareness
campaigns should focus more on a multidisciplinary area in practitioners from all walks of
life towards Penta Helix Collaboration [44–46] in the post-COVID-19 world [47,48].

2. Materials and Methods
2.1. Experimental Design

Our study focused on air quality variation during the COVID-19 lockdown in the
city of Xi’an (the capital of Shaanxi Province), China. The COVID-19 lockdown period
in this study was divided into three time intervals, namely pre-lockdown (1 January to
23 January 2020), during lockdown (24 January to 13 February 2020), and post-lockdown
(14 February to 7 March 2020). Air quality was expected to improve because a series
of policies had been implemented to control human activities (Figure 1). In this study,
offline PM2.5 filter samples were collected, and the carbonaceous fraction and WSIs were
analyzed. Simultaneously collected online and offline air quality data during the study
period were used for comparison. The aforementioned information was processed to
study the changes in air pollution sources and the improvement in air quality during the
COVID-19 lockdown.

2.2. PM2.5 Sample Collection

Daily PM2.5 samples were collected on the roof top of a five-storied building (16.3 m
above the ground) on the campus of Xi’an Jiaotong University (108.990◦ E, 34.252◦ N)
that is surrounded by residential areas and other campus buildings, and is approximately
200 m away from the Xingqing Road and South Second Ring Road (Figure 2), which have
heavy traffic, making it a suitable region with a mixture of mobile emission and stationary
emission sources. Twenty-four-hour PM2.5 samples (10:00 am to 10:00 am next day local
time) were collected using pre-fired (780 ◦C, 3 h) 90 mm PALLFLEX TISSUQUARTZ filters
(QM/A, PALL, Ann Arbor, MI, USA) with the HY–100SFB high-load PM sampler at a flow
rate of 100 L min−1 from 1 January 2020 to 7 March 2020. A total of 67 PM2.5 samples and
3 field blank filters (1 for each period) were collected in this study. The final data were
obtained by subtracting all field blanks to avoid any artifacts induced by gas absorption.
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Figure 2. Location of PM2.5 filter sampling site (black dot) and the nearest air quality monitoring
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2.3. Gravimetric and Chemical Analyses

Gravimetric analysis: The PM2.5 samples required to be equilibrated at 20–23 ◦C and
35–45% of relative humidity for 24 h. Then, filters were weighed for mass concentration
determination using a Sartorius LA 130S-F (Sartorius, Germany) electronic microbalance
(sensitivity: 0.1 mg). Each filter was weighted at least four times (two times before sampling
and two times after sampling), and the weight of PM2.5 was obtained by subtracting the
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pre-sampling weights from the post-sampling weights. The mass concentration of PM2.5
was obtained by dividing the weight mass by the sampling volume.

OC and EC analyses: A 0.5 cm2 punch was cut from each filter and placed into the
Desert Research Institute Model 2001 Thermal/Optical Carbon Analyzer (Atmoslytic Inc.,
Calabasas, CA, USA) for the OC and EC analyses in PM2.5 following the IMPROVE_A
(Interagency Monitoring of Protected Visual Environment) thermal/optical reflectance pro-
tocol. The filter was heated gradually and analyzed first in an oxygen-pure He atmosphere,
and OC1, OC2, OC3, and OC4 were obtained at 140, 280, 480, and 580 ◦C, respectively.
Then, OP (carbon formed during the cracking process of OC) and EC were analyzed in
a He atmosphere containing 2% oxygen. EC1, EC2, and EC3 were obtained at 580, 740,
and 840 ◦C in a step-by-step manner. The detection limits for OC and EC were 0.82 and
0.20 µg·m−2, respectively. Details of quality assurance and quality control (QA/QC) are
provided in Cao et al. [56] and Xu et al. [57].

Water-soluble ions (WSIs) analysis: Nine WSIs (Na+, NH4+, K+, Ca2+, Mg2+, F−, Cl−,
NO3

−, and SO4
2−) were detected using an ion chromatograph (IC) analyzer (Dionex–

600, Dionex, Sunnyvale, CA, USA). The detection limits of Na+, NH4+, K+, Ca2+, Mg2+,
F−, Cl−, NO3

−, and SO4
2− were 4.6, 4.0, 10.0, 10.0, 10.0, 0.5, 0.5, 15, and 20 µg·L−1,

respectively. IC was calibrated by measuring varying concentrations of the standard
reference materials of the standard agent (National Research Centre for Certified Reference
Materials, China) in the external calibration. Details of the IC principle and QA/QC are
provided in Shen et al. [58] and Xu et al. [10].

2.4. Online Data Collection

Online air quality index (AQI), PM2.5, PM10, SO2, NO2, CO, and O3_8h data were
obtained from the nearest air quality monitoring station; these data were downloaded from
the website of China Environmental Monitoring Center [59]. Mann–Whitney U test was
performed on online data to determine whether there are significant differences for AQI,
and online, six national controlled air pollutants between adjacent time periods, p < 0.05 (*)
is considered to be statistically significant. The meteorological data {i.e., air temperature
(AT), relative humidity (RH), prevailing wind direction (PWD), and wind speed (WS)) used
in this study (Table 1) were derived from the air quality monitoring station [60].

Table 1. Meteorological data in three different periods.

Temperature
(T, ◦C)

Relative
Humidity

(RH)

Prevailing
Wind Direction

(PWD)

Wind Speed
(WS, m s−1)

Pre-lockdown 1.7 ± 1.4 62 ± 5% Northeast 2.4 ± 1.7
Dur-lockdown 4.4 ± 2.1 59 ± 4% Northeast 2.3 ± 1.6
Post-lockdown 7.6 ± 3.6 50 ± 5% Northeast 4.5 ± 3.0

3. Results and Discussion
3.1. AQI and Online Six National Controlled Air Pollutants

Comparisons of AQI and six national controlled air pollutants (PM2.5, PM10, SO2,
CO, NO2, and O3_8h) in the pre-lockdown, during lockdown, and post-lockdown periods
of COVID-19 in Xi’an in 2020 are shown in Figure 3. The AQI decreased in sequence
before, during, and after the COVID-19 lockdown with statistical difference between
periods of post-lockdown and during lockdown, and air quality gradually improved from
moderately polluted (AQI: 151–200) to mildly polluted (AQI: 101–150) and further, to good
air quality (AQI: 51–100; Figure 3a). In addition to the AQI, PM2.5, PM10, SO2, and CO
exhibited gradually decreasing trends, but surprisingly, they did not present the lowest
values during the COVID-19 lockdown (Figure 3b,c,e,f). This may be due to the adverse
meteorological factors and the “delayed effect” of pollutant reduction. Different from
the trends of the abovementioned air pollutants, NO2 dropped from 56.7 µg m−3 in pre-
lockdown to the lowest value in during lockdown (27.3 µg m−3), and then increased to
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32.7 µg m−3 in post-lockdown (Figure 3g) due to the most direct relationship with motor
vehicle primary emissions. Among all the national controlled air pollutants, NO2 decreased
the most during the COVID-19 lockdown to 52% in a statistically significant way. Travel
restrictions during the lockdown caused the most significant reduction in NO2, consistent
with previous studies [39,40,61–63].
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Figure 3. Variations in (a) AQI; (b) PM2.5 concentration; (c) PM10 concentration; (d) ratios of PM2.5/PM10; (e) SO2

concentration; (f) CO concentration; (g) NO2 concentration; (h) O3_8h concentration in different periods of COVID-19
lockdown (1: pre-lockdown, 2: during lockdown, 3: post-lockdown. The asterisk (*) represents the difference was
statistically significant).

PM2.5 was the only one pollutant in this study that exceeded the national ambient
air quality standard in China [64], especially in the pre- and during lockdown periods.
Compared with PM2.5 in pre-lockdown, the reduction of PM2.5 in the post-lockdown
period was the most significant (59%) among all air pollutants in this study, and statistical
difference was observed. Moreover, the proportion of PM2.5 in PM10 in pre-, during,
and post-lockdown periods of COVID-19 in Xi’an was 85%, 95%, and 64%, respectively
(Figure 3d). The proportion of PM2.5 in PM10 was the highest in the during lockdown
period, increasing by approximately 10% and 30% respectively from the pre- and post-
lockdown periods. We compared the meteorological factors among the pre-, during, and
post-lockdown periods of COVID-19 to demonstrate the drastic changes. The PWD in the
three periods was northeast. The weather conditions before and during the lockdown were
almost the same, whereas the wind speed increased and the RH decreased significantly after
the lockdown. Therefore, the significant reduction in PM2.5/PM10 during post-lockdown
was owing to the increase in coarse dust mainly from the earth’s crust resulting from the
higher wind speed and temperature. Moreover, the 10% higher proportion of PM2.5 in
PM10 during lockdown than in pre-lockdown was mainly due to the changes in particle
emissions, especially enhanced emission from anthropogenic sources and the secondary
formation of PM2.5 (discussion below). The primary emission should be reduced during the
lockdown (Figure 1; restriction on travel and temporary suspension of industries, factories,
and construction sites); thus, the elevated PM2.5 proportion may attribute to an enhanced
secondary reaction during the lockdown, that is, increased oxidation in the atmosphere.
This is more evident in an explanation of O3 variations below.

Contrary to the trends of other air pollutants mentioned above, the concentration of
O3_8h was the highest in the lockdown period (88.0 µg m−3), which was 2.6 times that
in the pre-lockdown period, and the difference was significant. The increase in the O3
concentration during the lockdown can be explained as follows. As mentioned earlier,
NOx emissions are closely related to motor vehicle emissions enhanced by transportation
activities and human travel. However, there are various sources of volatile organic com-
pounds (VOCs), and their emissions varied during this event. For example, one of the main
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emission sources of VOCs is the evaporation of industrial solvents; the use of industrial
solvents did not decrease as much as transportation did in the lockdown period. Therefore,
the reduction in NOx was more significant than that in VOCs. This leads to a weakening of
the titration of NOx, which reduces the depletion of ozone [65]; therefore, the concentration
of O3 in the atmosphere increased during the lockdown period. Simultaneously, the O3
production and oxidation capacity (Ox) during the day increased in this study, which
promoted the concentration of OH radicals during the day and NO3 radicals at night. As
a result, the increased oxidation capacity of the atmosphere promoted the formation of
secondary air pollutants during the COVID-19 lockdown in Xi’an. The atmospheric Ox was
roughly represented by the sum of the concentrations of NO2 and O3 [66], with a higher
Ox in the lockdown period (115.3 µg m−3) than before the lockdown (90.7 µg m−3), and Ox
was maintained at relatively high levels after the lockdown (116.4 µg m−3). The lower O3
concentration after the lockdown was due to the more favorable weather conditions and
the weakening of secondary reactions, which can also explain the variations in PM2.5 in
this study.

3.2. PM2.5 from Offline Filter Samples

The PM2.5 mass concentrations from the offline filter samples in pre-lockdown, during
lockdown, and post-lockdown periods of COVID-19 in Xi’an in 2020 are shown in Figure 4.
The PM2.5 mass concentration in offline filters obtained using the gravimetric measurement
method (x) was first compared with the online PM2.5 data obtained through automatic
monitoring by using the β ray method (y) in Section 3.1. A close correlation was found
between them, with the regression equation y = 1.06x−28.6, and a correlation coefficient
(R2) of 0.773. The pattern of change in PM2.5 in periods of pre-lockdown, during lockdown,
and post-lockdown of COVID-19 was consistent with the variation trend mentioned in
Section 3.1, showing a downward trend gradually. As shown in Figure 3, the online
concentrations of PM2.5 in the three periods were 132.8, 107.7, and 54.4, respectively,
which represent lower values than those in offline PM2.5 filter samples. In comparison,
PM2.5 in pre-lockdown was 1.2 and 1.6 times those during lockdown and post-lockdown,
respectively, according to the mass weighting (Figure 4), which may be due to the relatively
high wind speed (4.5 ± 3.0 m s−1) and low relative humidity (50 ± 5%); after lockdown
provided favorable meteorological conditions for the diffusion of air pollutants compared
with before and during the lockdown. Similar continuous decrease in PM2.5 concentration
in the post-lockdown period were observed in Wuhan, China [67] and Mumbai, India [68].
It is inferred that the lockdown policies have a relatively long-term and lasting effect on
reducing the concentration of air pollutants.

3.3. OC and EC Characteristics in PM2.5 Filter Samples

Table 2 summarizes the average concentrations (mean ± standard deviation) and
percentages of TC, OC, and EC in PM2.5. TC accounted for 13.3% ± 2.7%, 14.4% ± 4.2%,
and 11.5% ± 3.8% of PM2.5 mass in pre-lockdown, during lockdown, and post-lockdown
periods of COVID-19, respectively. The proportion of EC in PM2.5 remained almost un-
changed (2.2–2.7%) during the different research intervals, whereas the proportion of OC
in PM2.5 reached the maximum (11.9%) during the lockdown, and was 1.1 and 1.3 times of
those before and after the COVID-19 lockdown in 2020. As mentioned earlier, the weather
conditions in Xi’an were basically stable in pre- and during lockdown periods. The reduc-
tion in the direct primary emission of PM2.5 sources in the during lockdown period did
not lead to a decrease in the concentration and proportion of OC. The OC generated by
the secondary conversion during lockdown was the main reason for the increase in OC
in this case, which can be also proven by the ratios of OC and EC. The OC/EC ratio can
be used to determine the characteristics of carbonaceous aerosols’ emission and transfor-
mation; an OC/EC ratio exceeding 2.0 suggests the presence of secondary organic carbon
(SOC) [69,70]. All OC/EC values were higher than 2.0 in this study, with the maximum
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average value of 4.8 ± 0.8 during the lockdown period (Table 2), thus indicating elevated
SOC (i.e., secondary reaction) during the lockdown.
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Figure 4. Time series of PM2.5 mass concentrations in offline samples during the different periods of COVID-19 lockdown.
The red lines represent the average values of PM2.5 mass concentration.

Table 2. Characteristics of OC and EC concentrations during the different periods of COVID-
19 lockdown.

TC (µg m−3) OC (µg m−3) EC (µg m−3)
OC/EC(TC/PM2.5) (OC/PM2.5) (EC/PM2.5)

Pre-lockdown 19.1 ± 7.0
(13.3% ± 2.7%)

15.2 ± 5.8
(10.6% ± 2.4%)

3.9 ± 1.3
(2.7% ± 0.4%) 3.8 ± 0.6

Dur-lockdown 17.6 ± 7.6
(14.4% ± 4.2%)

14.6 ± 6.4
(11.9% ± 3.7%)

3.0 ± 1.3
(2.5% ± 0.6%) 4.8 ± 0.8

Post-lockdown 10.8 ± 5.5
(11.5% ± 3.8%)

8.7 ± 4.5
(9.3% ± 3.2%)

2.1 ± 1.1
(2.2% ± 0.7%) 4.4 ± 0.9

3.4. WSIs in PM2.5 Filter Samples

The average total concentrations of nine WSIs were 46.8 ± 19.4, 38.9 ± 19.0, and 21.0 ±
14.5 µg m−3, accounting for 32.1% ± 8.3%, 31.3% ± 9.5%, and 20.6% ± 8.8% of PM2.5 mass
in the periods of pre-, during, and post-lockdown of COVID-19, respectively. SO4

2−, NO3
−,

and NH4
+ were the most abundant ions, accounting for 90–94% of total measured ions and

20–30% of PM2.5 mass concentration. The total ion concentrations were consistent with the
change pattern of TC, OC, and EC in the three time intervals. However, the concentration
variations of K+ and Ca2+ were not consistent with those of the other WSIs. As a good
marker for biomass burning [71,72], K+ exhibited the highest concentration during the
lockdown, 1.8 and 2.9 times those in the pre- and post-lockdown periods, which is due to
the fact that almost all people stayed at home during the lockdown, and going out was
restricted, and then the consumption of household heating and cooking biomass fuels (e.g.,
corn stalks, wheat stalks, and branches) in rural areas around Xi’an increased [73–75]. Ca2+,
an indicator of fugitive dust from the earth’s crust and construction, displayed the lowest
value during the lockdown [76], 0.8 and 0.4 times those in the pre- and post-lockdown
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periods, proving that the reduction of going out and construction activities during the
pandemic lockdown had a greater impact on the concentration of Ca2+.

From the perspective of the percentage of individual to the total ion concentration,
only the percentages of NO3

− and SO4
2− exhibited greater changes in the periods of

pre-, during, and post-lockdown. The proportion of NO3
− in total WSIs was the lowest

during the lockdown, with the value of only 36.7%, which was 15.8% and 24.3% lower
than that before and after the lockdown. The proportion of SO4

2− was the highest during
the lockdown, reaching 31.6%, which was 17.5% and 47.6% higher than that before and
after the lockdown. NO3

−/SO4
2− ratio has been usually used as a relative measure of the

importance of motor mobile sources versus stationary emission sources (such as emissions
from industrial combustion and residential fuel combustion) in many studies [10,77].
Figure 5 presents the NO3

−/SO4
2− ratios in the pre-lockdown, during lockdown, and

post-lockdown periods in 2020. The NO3
−/SO4

2− ratios during the lockdown (average:
1.2 ± 0.4, range: 0.6–2.0) were considerably lower and less distributed than those in the
periods of pre-lockdown (average: 1.8 ± 0.6, range: 0.9–3.1) and post-lockdown (average:
2.1 ± 1.2, range: 0.2–4.8). Elevated NO3

−/SO4
2− ratios in the periods of pre- and post-

lockdown implied stronger influences from motor vehicles, consistent with the drastic
drop in traffic volume and sharp rise of NO2 during the lockdown. The decreased ratio
of NO3

−/SO4
2− during the lockdown indicated that residential combustion sources (for

heating in the cold winter) increased significantly in the context of reduced traffic (mobile
source) and industrial combustion sources (coal-fired industrial plants).
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post-lockdown (The box plot indicates the median values and the min, 1st, 25th, 50th, 75th, 99th and
max percentiles. Square (�) represents the average value of this ratio).

3.5. Comparison of Air Quality during the COVID-19 Lockdown among Studies

Table 3 summarizes previous studies that examined the impact of COVID-19 lockdown
measures on local air quality in various regions of the world. The results suggest the
positive effects of lockdown policies on air pollutant levels around the world. Compared
with the same period in the previous year or the period before the lockdown, almost all
pollutants studied exhibited significant declines during the lockdown, except for O3.
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Table 3. The impact of COVID-19 lockdown on air quality in different regions over the world. Increasing values were
indicated in bold font.

Reference Study Location Air Pollutants

PM2.5 PM10 NO2 SO2 CO O3 Others

This study Xi’an, China −17% −27% −52% −16% −25% +160% WSIs
(−16%)

Wang et al.,
2021 [78] Suzhou, China −37.2% −38.3% −64.5% +1.5% −26.1% +104.7% WSIs

(−58%)

Gao et al.,
2021 [79]

Wuhan, Beijing,
Shanghai, and

Guangzhou, China
−9.4% −43.0% −10.9%

Tello-
Leal et al.,
2020 [80]

Victoria, Mexico −45% −45% −47%

Wu et al.,
2021 [81] Shanghai, China −(30–40%) −(16.4–

28.8%)
+(5.7–
30.2%)

Ding et al.,
2021 [82] Tianjin, China −22.7% −17.7% +3.0%

Chu et al.,
2021 [83] Wuhan, China −35% −36% −53% −10% −6% +58%

Wang et al.,
2021 [84]

Beijing-Tianjin-
Hebei (BTH) and

Yangtze River
Delta (YRD), China

Bai et al.,
2021 [85]

1388 Monitoring
stations

nationwide in
China

−(30–
60%)

Shehzad et al.,
2021 [68]

Delhi and Mumbai,
India −42% −50% −53% −41% −37% +2.0% NH3

(−21%)

Chatterjee et al.,
2021 [86]

Eastern Himalaya,
India

NO
OC, EC,
OC/EC,

TC, SOC

A et al.,
2021 [87]

Eastern Himalaya,
India

Santiago, Chile
Orak et al.,
2021 [88]

All 81 cities of
Turkey −67% −59%

He et al.,
2021 [89]

380 cities across
the globe −16.1% −45.8% +5.4%

Yadav et al.,
2020 [90]

Four megacities,
India

−(25–
50%)

−(36–
50%)

−(60–
65%)

To better understand the variation characteristics of air quality in this study, the
during lockdown/pre-lockdown air pollutant levels and PM2.5 chemical composition
were compared between Xi’an and other cities/regions, as shown in Figure 6. During the
pandemic period, studies have revealed that the domestic and international lockdown
measures implemented had a positive impact on the levels of PM2.5, PM10, SO2, NO2, and
CO, with the ratios of during lockdown/pre-lockdown less than 1.0. The concentrations of
the abovementioned five air pollutants had been reduced to varying degrees (except for
SO2 in Suzhou, China), whereas O3 concentration showed an upward trend in all cities
(Figure 6a,b), consistent with the results in the current study.
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The reduction rate of PM2.5 concentration ranged from 9.4% (four megacities in China)
to 45% (Victoria, Mexico), which may be related to the specific local lockdown policies
and meteorological factors. The maximum drop rates in total average concentrations of
PM10, NO2, and CO were observed in Delhi and Mumbai (50%), Suzhou (64.5%), and
Santiago (54%), indicating the notable environmental effect of lockdown measures. The
minimum declines in PM10, NO2, and CO occurred in Xi’an (27%) in this study, Santiago
(13%), and Wuhan (6%), respectively. In comparison, the SO2 concentration exhibited a
limited decrease (Figure 6a,b). Emissions from stationary sources, such as coal-fired power
plants, were not considerably reduced compared with emissions from mobile sources
such as traffic transportation [41,83]. For example, in Xi’an, sufficient electricity and heat
were still provided as usual by the thermal power plants to ensure normal supply during
the lockdown [91]. The increase in O3 demonstrated a huge discrepancy in each city;
the O3 concentration showed a slight increase in Shanghai (5.7%), Tianjin (3.0%), Delhi
and Mumbai (2.0%), and 380 cities across the globe (5.4%), but increased more than 50%
in Wuhan (58%), Santiago (63%), Suzhou (104.7%), and Xi’an (160%). Specifically, the
maximum O3 increase was noticed in Xi’an, which is attributed not only to the emission
sources but also directly to the relative high air temperature and low wind speed during
the COVID-19 lockdown in 2020 (Table 1). The ozone pollution in Xi’an must be further
explored in a future study.

Figure 6c illustrates an irregular discrepancy of the changes in the concentrations
of chemical components in PM2.5 among Chinese cities. The most obvious variation of
WSIs in Xi’an was the significant increase in K+. The increased biomass combustion in the
lockdown period in suburban regions and rural areas of Xi’an may be attributable to this
phenomenon. Unlike in other cities, the proportions of Cl−, Na+, and Mg2+ in PM2.5 in
the lockdown period in Xi’an remained almost unchanged from the pre-lockdown period.
However, NO3

−, SO4
2−, NO3

−/SO4
2−, and NH4

+ in Tianjin, China, exhibited the opposite
trend of an increase compared with other cities. This may be attributed to the weather
conditions, local emissions, and lockdown policies. The highest declines in NO3

−/SO4
2−

observed in Xi’an may be attributed to the following reasons: (1) as a well-known tourist
attraction in China, suspension of tourism and strict traffic control in Xi’an during the
pandemic (Figure 1) resulted in a substantial reduction in the flow rate of travelers in
Xi’an; (2) except for government designation and pandemic prevention and control needs,
the operation of interprovincial and municipal long-distance passenger transport lines
and tour chartered buses into and out of Xi’an were suspended, and (3) cruising taxis
and online car-hailing operations across provinces and cities were suspended [50]. These
measures implemented in Xi’an had effectively reduced emissions from motor vehicle
sources; relatively, the restrictions on welfare-related civilian industries, such as thermal



Atmosphere 2021, 12, 788 12 of 16

power plants, were limited, which explains the maximum NO3
−/SO4

2− reduction in Xi’an
in this study. Regarding the carbon components, both OC and EC emissions were reduced
in all the four cities, with the largest OC reduction occurring in Tianjin, and the highest
EC reduction in Wuhan. The elevated OC/EC during the lockdown period was observed
in both Wuhan (47%) and Xi’an (26%), indicating a distinct increase in the secondary
formation of organic compounds to PM2.5.

4. Conclusions

In this study, the online data of AQI, six national controlled air pollutants, and daily
PM2.5 and its bounded chemicals on the filter samples from 1 January to 7 March 2020,
were used to investigate the changes in air quality in response to the control measures for
the COVID-19 lockdown (pre-lockdown, during lockdown, and post-lockdown) in Xi’an,
China. In this study, we found that restricting nonessential human activities could reduce
several gaseous pollutants, especially NO2, and the specific components (e.g., Ca2+) in
PM2.5 related to the particular anthropogenic sources. The lockdown policies in this study
also led to an increase in primary emissions from household heating sources and an increase
in secondary formation reactions in the atmosphere. Moreover, air pollution was closely
influenced by meteorological factors and atmospheric oxidation. In this case, although the
management and control of traffic and some non-livelihood industries improved air quality
to a certain extent, the reduction of air pollutants was not significant. Therefore, readjusting
the industrial and energy structure is necessary for the fundamental improvement of air
quality in Xi’an.
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