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Abstract: Satellite precipitation estimation provides crucial information for those places lacking rain-
fall observations from ground–based sensors, especially in terrestrial or marine areas with complex
climatic or topographic conditions. This is the case over much of Western China, including Upper
and Middle Lancang River Basin (UMLRB), an extremely important transnational river system in
Asia (the Lancang–Mekong River Basin) with complex climate and topography that has limited
long–term precipitation records and high–elevation data, and no operational weather radars. In
this study, we evaluated three GPM IMERG satellite precipitation estimation (IMERG E, IMERG L
and IMERG F) over UMLRB in terms of multi–year average precipitation distribution, amplitude
consistency, occurrence consistency, and elevation–dependence in both dry and wet seasons. Results
demonstrated that monsoon and solid precipitation mainly affected amplitude consistency of precipi-
tation, aerosol affected occurrence consistency of precipitation, and topography and wind–induced
errors affected elevation dependence. The amplitude and occurrence consistency of precipitation
were best in wet seasons in the Climate Transition Zone and worst in dry seasons in the same zone.
Regardless of the elevation–dependence of amplitude or occurrence in dry and wet seasons, the dry
season in the Alpine Canyon Area was most positively dependent and most significant. More signifi-
cant elevation–dependence was correlated with worse IMERG performance. The Local Weighted
Regression (LOWERG) model showed a nonlinear relationship between precipitation and elevation
in both seasons. The amplitude consistency and occurrence consistency of both seasons worsened
with increasing precipitation intensity and was worst for extreme precipitation cases. IMERG F had
great potential for application to hydroclimatic research and water resources assessment in the study
area. Further research should assess how the dependence of IMERG’s spatial performance on climate
and topography could guide improvements in global precipitation assessment algorithms and the
study of mountain landslides, floods, and other natural disasters during the monsoon period.

Keywords: satellite precipitation estimation; elevation–dependence; complex climate; GPM IMERG

1. Introduction

Precipitation is the result of the comprehensive influence of geographical location,
atmospheric circulation, weather system conditions and other factors at multiple levels
and scales [1–6]. Obtaining accurate, high–resolution, and continuous spatiotemporal
coverage of precipitation data is very important for hydrological process simulation, re-
mote sensing & climate research, water resources management and allocation, and disaster
monitoring [7,8]. Although many studies have shown that surface–observation–derived
precipitation data have minor disadvantages including insensitivity to light rainfall rates
and vulnerability to wind direction, evaporation, and rainstorm sputtering, they are con-
sidered to be the most reliable and intuitive source of precipitation information [9–11].
However, terrestrial or marine areas with complex climatic and topographic conditions
often lack sufficient surface observation data or consistent distributions of surface obser-
vation stations, hindering remote–sensing–based hydrological research and long–term
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water–resource planning and development in such areas. Therefore, finding suitable alter-
native sources of precipitation data and studying the spatial performance of data in regions
with complex climatic and topographic conditions is a hotspot in hydrological remote
sensing research as well as a challenge for water resources assessments and management
under complex conditions in future.

The Global Precipitation Measurement (GPM) mission was launched by NASA and
JAXA on 28 February 2014 to obtain accurate global precipitation data from geostationary
satellites (GEO) making full use of visible infrared (VIS–IR), passive microwave sensors
(PMW) and low–orbit (LEO) satellite radar [12–14]. Subsequently, NASA released the GPM–
based global precipitation estimation (IMERG), which uses an algorithm to estimate global
precipitation data at ultrafine spatiotemporal resolution. The internal calibration of GPM
microwave data is similar to previous generations of satellite precipitation estimations
(TRMM), but there have been fundamental improvements in terms of data acquisition:
(1) more advanced dual–frequency precipitation radar (DPR) (Ka band 35.5 GHz and
Ku band 13.6 GHz) has improved light–sensing and solid precipitation measurements;
(2) the observation accuracy of different precipitation levels has been improved by us-
ing a microwave multi–frequency imager (10–183GHz); and (3) the orbital inclination
angle has increased from 35◦ to 65◦, broadening the research scope in terms of climatic
zones and allowing breakthroughs in monsoon climate research [12,15]. Overall, GPM’s
higher spatiotemporal resolution and wider coverage has successfully replaced its pre-
decessor TRMM [16–20]. Many studies have assessed IMERG’s general performance in
terms of time (year, quarter, month, day, hour, etc.) [16,20–26], geographic coordinates
(longitude, latitude, etc.) [27,28], different topographic or climatic conditions (plateaus,
plains, basins, monsoon, etc.) [27,29,30], uses (precipitation cycle, hydrological process sim-
ulation, extreme precipitation events, mountain torrents warning, etc.) [24,31–36], scales
(point–to–pixel, pixel–to–point, watershed, region, northern or southern hemispheres,
etc.) [25,27,35,37–39], and regions (Brazil, South America, Nepal, Chile, etc.) [13,31,40,41],
and multiple types of satellite precipitation estimation (SPEs) (TRMM, CMORPH, PER-
SIANN, etc.) [37,42].

SPEs’ performance, including but not limited to GPM IMERG under different climatic
and topographic conditions, has been assessed by various preliminary studies. For example,
Chen et al. studied the performance of SPEs in the continental United States and found
that while IMERG could detect the spatial variability of precipitation, its precision is easy
to go down in areas with high rainfall [17]. Wang et al. evaluated 9 different SPEs in
Eastern Tibetan Plateau (ETP) and found that different types of complex precipitation such
as extreme precipitation, snowfall, freezing rain could lead to poor SPEs performance in
winter or the dry season (October–April) [27]. Sharifi et al. compared 3 SPEs against the
Iran Meteorological Organization (IMO) daily precipitation over four regions with different
topography and climate conditions in Iran and indicated that regions characterized by
complex terrain and snowy/ice cover would remain to be problematic for multi–satellite
retrieval in GPM IMERG under the current monitoring skills [14]. In the rugged basin of
Tekeze–Atbara, Ethiopia, the conversion of point rainfall to areal rainfall (point to pixel)
affected SPEs’ performance over complex topography; the latter was underestimated
over plateaus, overestimated over low–elevation areas, and overestimated relative to the
former [43]. Navarro et al. showed that climate region, seasonal variation, elevation,
and precipitation intensity were the most important factors affecting SPEs’ performance
over the Pyrenees in the western Mediterranean region [36]. Moreover, different versions
of IMERG have shown variable performance. For example, IMERG F more accurately
detects precipitation maxima and spatial gradients and was shown to better capture the
precipitation gradient of severe convective storms, though it easily overestimated general
precipitation in low– (<500 m) and middle– (600–1200 m) elevation areas of Northwest
in Pyrenees in summer and autumn. IMERG E provided a better representation of the
maximum rainfall pixels (location and intensity), while IMERG F was better in summer
and autumn for the temperate and Mediterranean climate zones [36]. IMERG F has tended
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to underestimate the topographic enhancement of precipitation in coastal mountains and
the Andes, with particularly clear errors in underestimating precipitation in wet seasons
(by ~50%) [13].

Western China’s location in eastern Eurasia has unique topographic and climatic
conditions (subtropical monsoon climate, continental climate, or plateau climate), with
~48% of its land area consisting of deserts, mountains, and alpine areas > 3000 m above
sea level, leading to various studies assessing SPP performance under these conditions.
For example, in the Qinghai–Tibet Plateau and Xinjiang, Guo et al. showed that SPE
performance differed by elevation and season, such as overestimating precipitation in wet
seasons [44]. In the southern Qinghai–Tibet Plateau, Wang et al. showed that IMERG
performance decreased with increasing elevation: the higher the elevation, the easier it
was to underestimate precipitation, while extreme precipitation (>50 mm/d) was easily
underestimated in high–elevation (>3500 m) areas detection accuracy was better in low–
elevation (<3500 mm) areas [25]. In Sichuan, Yang et al. showed that IMERG E could define
a single precipitation event when the interval between two heavy precipitation events
was small enough, while IMERG F produced better estimates of continuous torrential
rain [29]. Overall, the performance of different SPEs is highly variable under different
climatic and topographic conditions, and research on IMERG performance in mountain
areas is insufficient.

Although various studies have verified the applicability of SPEs to complex climate
and topographic settings both globally and in Asia [23,45], to the best of our knowledge
none have yet evaluated both the horizontal and vertical spatial performance of IMERG
or other SPEs in the UMLRB, part of the most important transnational river system in
Asia. Chen and Wang evaluated different versions of IMERG and TMPA in Lancang
River Basin (LRB) at different temporal scale (day and month) and spatial scales (grid
and basin) and found that the accuracy could be greatly improved with the expansion
of temporal and spatial scales [46,47]. What’s more, they found that TMPA tended to
misidentify non–precipitation events as light precipitation events (<1 mm/d) while its
successor (GPM IMERG) has significant improvements in the ability to detect the light
and solid precipitation. Wang et al. compared the TMPA with other SPEs (e.g., CMORPH,
PERSIANN) and ground–based precipitation data in LRB at temporal scales (day, month,
and year) and concluded that TMPA showed best capability to capture a rainfall event [48].
Yang et.al evaluated the applicability of TMPA using gauge observations in LRB at different
temporal and temporal scales (e.g., day and month, grid and basin) and reported that
TMPA generally tended to underestimate precipitation slightly, especially for extreme
precipitation events, which need be considered in the future algorithm development
(e.g., GPM IMERG) [29]. Overall, previous studies of LRB were mostly conducted at a
large temporal and horizontal spatial scale, with little focus on the pixel scale, climatic &
topographic zone scale and vertical spatial scale related to the elevation. To overcome these
existing limitations, this study was conducted.

In this study, we established a spatial performance evaluation framework based
on the latest GPM (IMERG) precipitation retrieval algorithm to provide a reference for
IMERG performance research under different climatic and topographic conditions and
to study the shortcomings of IMERG applications. Specific research questions included:
(1) how climate zones in the UMLRB should be divided based in monsoon influence and
whether the monsoon affects the amplitude and occurrence consistency of precipitation
between IMERG and gauge observations in different climatic regions; (2) whether and
how topography (correspond to elevation) differences between UMLRB affect IMERG
performance in dry and wet seasons; and (3) the extent and nature of IMERG applicability
in the UMLRB.

This paper is organized as follows. Section 2 introduces the study area, spatial
performance statistics, LOWERG modeling process and the research process. Section 3
evaluates the spatial performance of IMERG. Section 4 discusses the effects of monsoon



Atmosphere 2021, 12, 780 4 of 27

and topography on precipitation. Section 5 is the conclusion and the prospect of the
future work.

2. Materials and Methods
2.1. Study Region

The Lancang–Mekong River Basin (LMRB) is a north–south–trending transnational
river system in Central Asia that originates in the Tanggula Mountains of the central
Qinghai–Tibet Plateau, flows southward through Tibet into Yunnan, leaves China in
Xishuangbanna in southern Yunnan, and finally reaches the South China Sea after flowing
through several other countries. The LRB has complex topography, perennial monsoon
influence, and covers a wide range of latitude and elevation; it can be divided by topo-
graphic and climatic characteristics into upper, middle, and lower subbasins from north to
south [49,50]. We focused on the upper (ULRB) and middle (MLRB) basins, which together
cover 90,100 km2 (94.16–99.63◦ E and 25.38–33.83◦ N) (Figure 1). The ULRB (Piedmont
of Qinghai–Tibet Plateau–Changdu, 31–32.9◦ N) is a high–elevation (average > 4500 m)
Alpine Climate Region within the Qinghai–Tibet Plateau, with steep snowy peaks as well
as relatively gentle terrain and broad river valleys. River flow is generally gentle and
downward erosion is weak; the basin can be divided into River Source Basin (ULRB I)
and the Zaduo–Changdu Basin (ULRB II). Precipitation in the ULRB is slightly higher in
summer (~100 mm). In winter, cold air from westerly winds and strong radiation cooling
effect in high–elevation areas can result in extreme minimum temperatures below –30 ◦C.
The MLRB (Changdu–Guoguo Bridge, 25.4–31◦ N) has a wide elevation range (average
2520 m) with a great difference in elevation (more than 3000 m) and can be divided into an
Alpine Canyon Basin (MLRB I) and a Mid–high Mountain Canyon Basin (MLRB II). The
area spans a climatic transition from frigid to temperate to subtropical. Rainstorms are
common, with an annual precipitation of 1000–1500 mm, mostly occurring from May to
October. Vertical variations in air temperature and precipitation are distinct due to the topo-
graphic variance. Overall, the study area’s complex climatic (ranging from frigid alpine to
subtropical) and topographic (ranging from plateaus to alpine canyons) conditions, driven
by monsoons and elevation, increased the heterogeneity of precipitation in horizontal and
vertical space, respectively. According to previous research, we defined November–April
as the dry seasons and May–October as the wet seasons according to the precipitation in
Upper and Middle Lancang River Basin (UMLRB).

2.2. Data
2.2.1. Rain Gauge Data

After data screening, we acquired 44 rain gauge precipitation observations from CMA
meteorological stations (https://data.cma.cn accessed on 16 June 2021) and Yunnan Meteo-
rological Service within the study area to evaluate the IMERG data. Each meteorological
station has undergone a quality check by the National Meteorological Information Center
to eliminate errors and inconsistent assessments, including examining extreme values and
an internal consistency check, and removal of outliers [21]. These stations are more densely
distributed in the river valley of MLRB II but all of them do not feature regular observation,
especially at high–elevation mountainous regions in ULRB I. The rain gauge data is at
hourly scale from January 2015 to December 2017 (Chinese Standard Time, UTC8). Other
time–scale precipitation data are obtained from these data.

https://data.cma.cn
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Figure 1. Upper and middle Lancang River Basin with elevation range and station locations.

2.2.2. Satellite Data

We used three SPEs (IMERG E (near real–time “early” product), IMERG L (near real–
time “late” product) and post–IMERG F (real–time “final” product)) in GPM Version 6
(0.1◦ × 0.1◦ and 3–h interval) (Table 1). We downloaded precipitation data from 1 January
2015 to 31 December 2017, and adjusted times to UTC 8 (see https://disc.gsfc.nasa.gov/
datasets?keywords=GPM&page=1 accessed on 16 June 2021).

Table 1. The satellite precipitation estimations used in this study.

Temporal Extent Resolutions Coverage Description

IMERG E January 2015–
Demcember 2017 0.1◦/30 min 60◦ N–60◦ S

PMW+IR.
Forward propagation.
Near real–time (4 h)

IMERG L January 2015–
December 2017 0.1◦/30 min 60◦ N–60◦ S

PMW+IR.
Backward and forward propagation.

Near real–time (12 h)

IMERG F January 2015–
December 2017 0.1◦/30 min 60◦ N–60◦ S

PMW+IR.
monthly GPCC gauge analysis.

Post real–time (3.5 months)

2.3. Methodology
2.3.1. Performance Representation

We used three metrics to evaluate IMERG spatial performance.

Amplitude Consistency

Amplitude consistency indicated that the degree to which rain gauge data and IMERG
data were consistent in terms of precipitation variation. Higher values indicated more

https://disc.gsfc.nasa.gov/datasets?keywords=GPM&page=1
https://disc.gsfc.nasa.gov/datasets?keywords=GPM&page=1
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consistency (i.e., better IMERG performance). In this paper, we used four statistical indices
to comprehensively quantify the amplitude consistency: (1) Correlation coefficient (CC):
the correlation between IMERG and rain gauge data (1 = perfect score). (2) Root mean
square error (RMSE): the degree of discretization between IMERG and rain gauge data,
reflecting the overall error level and accuracy of IMERG. (3) Standard deviation (SD): the
discretization of IMERG. The larger the SD, the greater the discretization. Both RMSE and
SD were standardized, with perfect scores for the new root mean square error (SRMSE)
and standard deviation (SSD) being 0 and 1, respectively. (4) Percentage of bias (PBias):
the degree of deviation between IMERG and rain gauge data, in which positive (negative)
values indicated that IMERG overestimated (underestimated) precipitation (0 = perfect
score). Overall, the closer the value of the four statistical indices was to the perfect score,
the better the amplitude consistency was.2.3.1.2 Occurrence consistency.

Occurrence consistency indicated that the degree to which IMERG and rain gauge data
were consistent with the probability of precipitation events. Higher values indicated an
increased probability of IMERG correctly detecting precipitation (i.e., better performance).
In this paper, four statistical indices were used to comprehensively quantify the occurrence
consistency: (1) Detection probability (POD): the ratio of the total number of precipitation
events correctly detected to the total number of observed precipitation events, measuring
the ability of IMERG to accurately predict precipitation events (1 = perfect score). (2) False
alarm ratio (FAR): the ratio of the total number of precipitation events detected incorrectly
to the total number of precipitation events detected, quantifying the possibility of false
events detected by IMERG (0 = perfect score). (3) Frequency deviation (FB): the relative
deviation of precipitation events recorded by IMERG and rain gauge data. FB > 0 (<0)
indicated that the dataset overestimated (underestimated) the number of precipitation
events (0 = perfect score). (4) Critical success index (CSI): a function of POD and FAR,
indicating the overall ratio of precipitation events correctly detected by IMERG (1 = perfect
score). All in all, the closer the value of the four statistical indices was to the perfect score,
the better the occurrence consistency was.2.3.1.3 Elevation dependence.

Elevation dependence referred to the sensitivity of IMERG performance (or precip-
itation) to elevation. Positive values indicated increased performance (or precipitation)
with increasing elevation and negative values indicated the opposite. The more signifi-
cant the elevation–dependence, the greater the degree of performance enhancement or
weakening (precipitation increase or decrease) with increasing elevation. In this paper,
elevation dependence can be divided into the following three types: elevation dependence
of precipitation, elevation dependence of amplitude consistency and elevation dependence
of occurrence consistency.

See Figure 2 and Table 2 for details.

Table 2. List of indexes used to quantify the performance of satellite precipitation estimations.

Metrics Index Type Index Name Equation Unit Perfect Score

Amplitude
consistency

Statistical
index

Correlation
coefficient

(CC)
CC =

n
∑

i=1
(Oi−Om)(Si−Sm)√

n
∑

i=1
(Oi−Om)2 ·

√
n
∑

i=1
(Si−Sm)2

NA 1

Root mean square error
(RMSE)

RMSE =

√
1
n

n
∑

i=1
(Si − Oi)

2 mm 0

The standard deviation
(SD)

SD =

√
1
n

n
∑

i=1
(Si − Sm)

2 mm 1

Percentage of bias
(PBias)

BIAS =

n
∑

i=1
(Si−Oi)

n
∑

i=1
Oi

× 100%
NA 0
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Table 2. Cont.

Metrics Index Type Index Name Equation Unit Perfect Score

Occurrence
consistency

Classification
index

The detection probability
(POD)

POD = H
H+M NA 1

The false alarm ratio
(FAR)

FAR = F
H+F NA 0

The frequency deviation
(FB)

FB = H+F
H+M − 1 NA 0

The critical success index
(CSI)

CSI = H
H+M+F =
1

1/(1−FAR)+1/POD−1

NA 1

SRMSE = RMSE/SDO, SSD = SD/SDO, SDO is the standard deviation of the gauge observation value. O is the precipitation observation
value of the rain gauge, S is the precipitation detection value of IMERG, and n is the total number of samples, (i = 1, · · · , n). m is the
average value of precipitation; A is the number of precipitation events observed by satellites and gauges at the same time. B is the number
of precipitation events observed by satellites but not by gauges. C is the number of precipitation events observed by gauges but not by
satellites. D is IMERG the number of times the precipitation is observed and the precipitation did not actually occur (Table 3).
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Table 3. Contingency table between the gauge observations and IMERG estimates.

IMERG

≥0.1 mm <0.1 mm

Rain Gauge
rain gauge observations ≥ 0.1 mm A C

rain gauge observations < 0.1 mm B D
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Assuming that the precipitation is greater than the 0.1 mm/day, precipitation will
occur. See Table 4 for details.

Table 4. Classification of different rainfall intensity.

Rainfall Intensity No Rain Light Rain Moderate Rain Heavy Rain Extreme Rainfall

Range (mm/d) (0–0.1) (0.1–1) (1–20) (20–50) (>50)

2.3.2. Linear Regression (LR) and Local Weighted Regression (LOWERG)

We used linear regression (LR) and local weighted regression (LOWERG) to analyze
the relationship between precipitation and elevation in the UMLRB. The specific steps of

the LR model are as follow: (1) fitting θ to minimize ∑
(

y(i) − θTx(i)
)2

and (2) outputting

θTx where ω(i) is the nonnegative weight value. When data with high periodicity and
volatility are fitted using LR, a large deviation will result. LOWESS deals with this problem
by fitting a line in line with the overall trend in two steps: (1) fitting θ to minimize

∑ ω(i)
(

y(i) − θTx(i)
)2

and (2) outputting θT . If ω(i) is large for a particular i, θ should be

chosen to make
(

y(i) − θTx(i)
)2

as small as possible. If ω(i) is very small, the error term of(
y(i) − θTx(i)

)2
is ignored in the fitting process. ω(i) is calculated as:

ω(i) = exp

−

(
x(i) − x

)2

2τ2

 (1)

When the sample point x(i) is close to the prediction point x, the weight is large.
ω(i) ≈ 1.

When the sample point x(i) is far from the prediction point x, the weight is small.
ω(i) ≈ 0.

τ is the attenuation factor, i.e., the rate of weight attenuation. The smaller the value of
τ, the faster the weight attenuation.

2.3.3. Regional and Elevation Level Division

As mentioned in Section 2.1, ULRB and MLRB were classified as Alpine Climate
Region and Climate Transition Zone respectively according to the climate. Besides, they
were classified into Plateau Area and Alpine Canyon Area respectively according to the
topography (Table 5).

Table 5. UMLRB regionalization.

Zone Name Latitude Elevation Climate Zone Topographic Area

ULRB

River Source Basin
(ULRB I) 31 to

32.9 (◦N)
3801 to

6458 (m)

Alpine Climate
Region (no clear

distinction between dry
and wet seasons)

Plateau Area
(high elevation)Zaduo–Changdu Basin

(ULRB II)

MLRB

Alpine Canyon Basin
(MLRB I)

25.4 to
31 (◦N)

1130 to
6458 (m)

Climate Transition Zone
(dry and wet seasons

are distinct)

Alpine Canyon Area
(great difference

in elevation)
Mid–high Mountain

Canyon
Basin (MLRB II)
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We resampled DEM (30 m) into 0.1◦ by the Cubic Convolution Interpolation (CCI).
CCI calculated the weighted average of DEM by using the centers of the 16 nearest input
units and their values, which ensured the authenticity of the data to the greatest extent.
Each pixel corresponded to one precipitation station. According to the DEM (lower left
corner of Figure 1), the terrain elevation was divided into eight levels. The ULRB had
619 pixels with an elevation range of 3801–6458 m, covering four levels. The MLRB had
248 pixels, with mountains and valleys accounting for approximately half of the total pixels.

2.3.4. Analytical Procedure

Based on the two driving factors of climate and elevation, we assessed the spatial per-
formance of IMERG in terms of (1) horizontal space (climate), which considered multi–year
average precipitation, amplitude consistency, and occurrence consistency of precipitation
in dry and wet seasons in the Alpine Climate Region and Climate Transition Zones and (2)
vertical space (topography), which considered the elevation dependence of precipitation,
amplitude, and occurrence in dry and wet seasons in the Plateau Area (ULRB) and Alpine
Canyon Area (MLRB) (Figure 2).

3. Results
3.1. Multi–Year Average Precipitation and Precipitation in Dry/Wet Seasons in UMLRB

IMERG accurately captured the distribution of precipitation in the dry and wet seasons
in different horizontal spaces within UMLRB. The spatial heterogeneity of multi–year aver-
age precipitation was significant, and the regularity of the precipitation distribution was
strong. Precipitation increased gradually from the foothills of the northern Qinghai–Tibet
Plateau to the middle reaches, with an annual average precipitation range of 229–1249 mm
(Figure 3). Combined with Figures 3a–d and A1 from Appendix A, it is interesting that
almost all IMERG versions overestimated precipitation in ULRB I at high elevations, largely
underestimated it in MLRB I, and slightly underestimated it in MLRB II. Besides, in ULRB
II, odds of overestimating or underestimating were roughly the same in IMERG E and
IMERG L while IMERG F tended to overestimate precipitation (Figure A1). Figure 3e
showed that monthly precipitation in ULRB was higher from May to October (100–200 mm)
and the difference between dry and wet seasons was ambiguous. However, precipitation
in MLRB was abundant and concentrated in summer. In comparison, the transition period
between spring and autumn was shorter, so there was a clear distinction between the dry
and wet seasons.

The probability density distribution of precipitation differed between ULRB and
MLRB, and the probability of IMERG detecting different precipitation intensities also dif-
fered from the rain gauge. As shown in Figure 4, ~70% and ~50% of ULRB and MLRB had
no precipitation probability events, respectively. In comparison, IMERG underestimated
this by ~10%. In other words, IMERG tended to overestimate precipitation events. For
light rain (0.1–1.0 mm/d), the precipitation probability of ULRB was roughly the same as
that of MLRB (~ 23%), and IMERG slightly overestimated this in the ULRB. For moderate
rain (1.0–20 mm/d), heavy rain (20–50 mm/d), and extreme precipitation (>50 mm/d), the
precipitation probability of MLRB was ~10%, ~5%, and ~5% higher than that of ULRB, re-
spectively. These results show that IMERG accurately detected differences in precipitation
in the two climate zones under the influence of monsoons.
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3.2. Influence of Monsoons on IMERG Horizontal Spatial Performance in UMLRB
3.2.1. Amplitude Consistency of Precipitation in Dry/Wet Seasons

Daily precipitation from IMERG and rain gauge observations was used to evaluate the
amplitude consistency of IMERG precipitation in dry and wet seasons in a horizontal space
of 0.1◦ (Figures 5 and 6). Overall, IMERG performed well in UMLRB, ULRB, and MLRB
with higher CC values (mean > 0.8), more balanced SRMSE values (mean ~0.8), SSD values,
and more reasonable PBias values (mean between –10 and 30). Although all the three
SPEs’ performances were relatively weak in MLRB(Dry), IMERG F still performed best.
Except for MLRB (Dry), IMERG F showed the outstanding performance with an average
CC of ~0.8 and maximum of >0.9 (Figure 5a), but also had a high degree of discretization
(Figure 5c) and tended to overestimate precipitation (Figure 5d).
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Figure 5. Comparison of average annual precipitation amplitude for IMERG and rain gauge precipitation in different
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Previous studies have shown differences in IMERG performance between dry and wet
seasons [26]. Figure 6 shows a comparative map of CC, SRMSE, SSD, and PBias between
IMERG and rain gauge observations in the two climatic regions, i.e., the consistent spatial
distribution of precipitation in the dry and wet seasons (results expressed by the means of
three IMERG types). During the dry season, IMERG performed well in the Alpine Climate
region overall, although CC was lower (<0.5) in the high–elevation area of ULRB I and
precipitation was underestimated in most of ULRB II (PBias < 0). However, its performance
in the Climate Transition Zone (MLRB) was very poor; for example, the correlation between
IMERG and rain gauge observations was very low (minimum of CC < 0.2). The dispersion
degree of IMERG and rain gauge observations was very high (mean SRMSE > 1.5), and the
highest SRMSE value in MLRB II was >4. The IMERG data were discrete (mean SSD > 1.2),
and the highest SSD value for MLRB II was >3. There was obvious underestimation and
overestimation in most of MLRB I and a small portion of MLRB II, respectively. In wet
seasons, IMERG performed well in ULRB I, but not ULRB II (CC < 0.5, local maximum of
PBias > 3). In addition, it tended to overestimate precipitation in ULRB II (local maximum
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of SRMSE > 200). The overall performance of MLRB was good, except for MLRB II, which
had a poor correlation (CC ~0.4).
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3.2.2. Occurrence Consistency of Precipitation in Dry/Wet Seasons

To analyze the consistency of precipitation in dry and wet seasons by horizontal
space, we drew a spatial comparison map of POD, FAR, FB, and CSI between IMERG
and rain gauge observations (Figure 7). The Alpine Climate Region (ULRB) showed good
performance in wet seasons as a whole, except that some parts of ULRB II tended to
experience misdetections and overestimations (FAR was ~0.7 and maximum FB was 0.43).
In contrast, in the dry season, the overall performance of IMERG in ULRB was poor (the
value of POD in a large area was only ~0.4). ULRB I tended to experience misdetection
and underestimation of the probability of precipitation events (FAR > 0.3, FB fluctuated
around –0.3). For the Climate Transition Zone (MLRB), IMERG performed well in the
wet season as a whole, except for MLRB II, which had a higher probability of mistaken
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detection (FAR > 0.35). In contrast, during the dry season, the overall IMERG performance
was poor, and the probability of precipitation events was underestimated over a large area
of the basin (minimum FB of –0.71). In addition, there was a lower probability of correctly
detecting precipitation events in MLRB II.
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3.3. Influence of Topography on the Vertical Spatial Performance of IMERG in UMLRB
3.3.1. Elevation Dependence of Precipitation in Dry/Wet Seasons

To analyze the influence of complex topography on precipitation as a whole, we
developed a scatter map of precipitation and elevation over the whole year, dry season,
and wet season from 2015–2017 based on LR (Figure 8). Precipitation showed a similar
trend in the Plateau Area and Alpine Canyon Area throughout the year, decreasing with
increasing elevation (Figure 8a,d). During the wet season, precipitation in the Alpine
Canyon Area was 1.5 to 2 times higher than that in the Plateau Area (Figure 8b,e). With
increasing elevation, precipitation in the Plateau Area decreased slightly (maintained at
300–350 mm), while precipitation in the alpine canyon decreased significantly (>300 mm).
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Slight precipitation was concentrated in the high mountains, while strong precipitation
was denser in the valleys. In the dry season (Figure 8c,f), precipitation in UMLRB was
relatively low. Precipitation in the Plateau Area decreased with increasing elevation,
whereas precipitation in the Alpine Canyon Area increased.
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Figure 8. Relationship between rain gauge precipitation and elevation based on LR for the whole year
(top row), wet season (middle row), and dry season (bottom row) in the (a–c) ULRB and (d–f) MLRB.
One point represents one pixel. The dotted line was the changing trend of precipitation with the
increase of altitude. The shaded region was used to show the sample size of local observation at that
elevation. The narrower the band of the shadow area was, the more local samples were observed.

3.3.2. Elevation Dependence of Amplitude in Dry/Wet Seasons

The amplitude of IMERG in the dry and wet seasons and its elevation dependence
had a certain regularity at different elevation levels (Figure 9). Generally speaking, IMERG
performed best in the Alpine Canyon Area in wet seasons (except for SSD > 1 at high
elevations), but worst in the Alpine Canyon Area at low elevation (below 4000 m) in
dry seasons (CC only ~0.2, SRMSE > 2, SSD > 2, maximum PBias of 94) (Figure 9). This
suggested that the dry season limited IMERG performance to some extent, supporting the
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previous conclusion (Section 3.2.1) that IMERG performance differed between the dry and
wet seasons.
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The elevation dependence of IMERG in the Plateau Area was quite different from
that in the Alpine Canyon Area, so elevation levels 1–4 were taken as an example for
comparative analysis (Figure 9). In the wet season, the amplitude consistency of the dry
and wet seasons in the Plateau Area was generally positively elevation–dependent. The
elevation dependence of SSD and PBias was strongest, while that of CC was slightly
weaker. Overall, the amplitude consistency of dry and wet seasons in the Alpine Canyon
Area showed a very significant negative elevation dependence. For example, with an
increase in elevation, the performance of the Plateau Area improved for SSD, while that of
the Alpine Canyon Area worsened. For PBias, the Plateau Area first increased and then
decreased to the optimal value (0), while the PBias of the alpine canyon region gradually
increased to 90, reflecting overestimated precipitation. In the dry season, the consistency of
precipitation in the dry and wet seasons in the Plateau Area generally showed negative
elevation dependence. The negative elevation dependence of CC and SSD was significant.
In contrast, the amplitude consistency of the dry and wet seasons in Alpine Canyon Area
showed a significant positive dependence. For example, with increasing elevation, the CC
of the Plateau Area decreased (0.8–0.3), while that of the Alpine Canyon Area increased
(0.3–0.8).

From the perspective of the Alpine Canyon Area, the entire region (levels 1–8) had
different elevation dependence in high–elevation areas (levels 1–4). CC and SRMSE in
the entire region showed positive rather than significant negative dependence in the wet
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season. Compared with high–elevation areas, CC, SRMSE, and SSD for the whole region
showed a weak positive dependence in the dry season. Interestingly, with increasing
elevation, CC and SRMSE in the dry and wet seasons both improved. At the same time,
CC and SRMSE in the dry season were 2–3 times and 2 times higher than those in the wet
season, respectively, indicating that the positive dependence of SRMSE in dry seasons was
more significant than that in wet seasons.

To further analyze the influence of topography on the amplitude of the dry and wet
seasons, we summarized the statistical indices for different elevations under different
precipitation intensities (Figure 10a,b; Figure A3a,b). The values of CC, SRMSE, SSD, and
PBias for both ULRB and MLRB at all elevation levels became increasingly worse with
increasing precipitation intensity in dry and wet seasons, except that the PBias of MLRB in
the dry season was abnormal at high elevations (levels 1–3) (performed better in moderate
rain (1.0–20 mm/d) but worse in light rain (0.1–1.0 mm/d) and extreme precipitation
(>50 mm/d)). Under the same precipitation intensity, the values of CC (Figure 10(a1–a8)),
SRMSE (Figure 10(b1–b8)) and SSD (Figure A3(a1–a8)) improved with increasing elevation.
In MLRB, IMERG performed better (in terms of CC and SSD) in the wet season than in
the dry season at low elevations (levels 4–8) (Figure 10(a4–a8), Figure A3(a4–a8)), but the
opposite at high elevations (levels 1–3) (Figure 10(a1–a3), Figure A3(a1–a3)). For SRMSE in
MLRB (Figure 10(b1–b8)), the performance at all elevations in the dry season was better
than in the wet season, except in level 1. For PBias in MLRB (Figure A3(b1–b8)), IMERG
performed better in the dry season than in the wet season at low elevations (levels 7–8), but
the opposite at high elevations (levels 1–6). However, there could be a sudden and sharp
decrease in amplitude consistency in the dry and wet seasons during extreme precipitation
events (>50 mm/d) (Figure 10(a1,b2); Figure A3(a4,b7,b8), etc).

3.3.3. Elevation Dependence of Occurrence in Dry/Wet Seasons

We then analyzed the performance and elevation dependence of dry and wet sea-
sons at different elevations in the two topographic areas (Figure 11). In general, IMERG
performed best in the Plateau Area during the wet season with a higher probability of
correctly detecting precipitation events (mean POD ~0.8), a low probability of detecting
false precipitation events (minimum FAR of 0.2), and only slight overestimation of the
probability of precipitation events (FB < 0.1). However, IMERG had the worst performance
in Alpine Canyon Area during the dry season (mean POD ~0.3, maximum FAR of 0.6,
minimum FB of –0.6).

A comparative analysis of elevation levels 1–4 showed that generally, in the wet
season, the performance of the Plateau Area was better than that of the Alpine Canyon
Area. Elevation dependence in the Plateau Area was not significant, while the Alpine
Canyon Area showed relatively weak negative dependence. However, during the dry
season, there was a slight positive dependence in the Plateau Area (for POD and FB), but
no elevation dependence in the Alpine Canyon Area, as all indices fluctuated irregularly
or remained stable at all times. The elevation dependence of the Alpine Canyon Area
(levels 1–8) was opposite that of the high–elevation area (levels 1–4). The four indexes
in the former showed no elevation dependence in the wet season, but a certain positive
elevation dependence in the dry season. CSI (from 0.3 to 0.5) had a particularly significant
positive dependence.

The classification indices for precipitation in the dry and wet seasons at different ele-
vations were analyzed (Figure 10c,d; Figure A3c,d). All four indices increasingly worsened
with increasing precipitation intensity, except for FB in the MLRB, which was abnormal
at high elevations (levels 1–4) in the dry season, similar to variations in PBias in MLRB
with intensity (Section 3.3.2). In other words, IMERG lacked the ability to accurately detect
precipitation and precipitation events in MLRB during the dry season at high elevation.
IMERG had the highest probability of correctly detecting precipitation events such as
light (0.1–1.0 mm/d) and moderate (1.0–20 mm/d) rain. Under the same rainfall intensity,
the probability of correctly detecting precipitation events at high elevations in the dry
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and wet seasons in MLRB was always higher than that at low elevations (Figure 10d,
Figure A3(d1–d8)). IMERG easily underestimated precipitation events in MLRB in the dry
season, and the degree of underestimation at high elevations was higher. For extreme
precipitation (>50 mm/d), the consistency of precipitation in dry and wet seasons could
decrease suddenly and sharply as well (Figure A3(c1,c3,d1–d8); Figure 10(c1,d1–d3), etc.).
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4. Discussion
4.1. Factors Affecting the Amplitude Consistency of Precipitation of IMERG in Dry and
Wet Season

Amplitude consistency of precipitation by location and season ranked as: MLRB (wet)
> ULRB (dry) > ULRB (wet) > MLRB (dry). The factors affecting the amplitude consistency
of precipitation of IMERG in both seasons can be summarized as two points: monsoon and
solid precipitation (e.g., snow).

For one thing, monsoon was one of the main sources of water vapor and some studies
discussed mainly the southwest monsoon area. The precipitation gradient of the whole basin
was enhanced, increasing gradually from the foothills of the Qinghai–Tibet Plateau toward the
south, where precipitation sources were mainly the southwest warm &moist airflow (warm
&moist in the Bay of Bengal) [50–52]. The Alpine Climate Region (ULRB) was little affected by
the monsoon, and the distinction between dry and wet seasons was not obvious. In contrast,
the Climate Transition Zone (MLRB) was greatly affected by the monsoon, with distinct dry
and wet seasons. Gao et al. drew the composite field of the horizontal wind of the LRB in the
wet season after 2002 and found that the northerly wind anomaly in the lower troposphere in
the LRB hindered the northward movement of the southwest monsoon [50]. At the same time,
there were radiation anomalies in the upper troposphere, which inhibited precipitation [50].
In this paper, it was considered that the IMERG’s performance was affected by abnormal
wind field and radiation [50], so it was difficult to detect precipitation accurately, which led to
the difference of precipitation amplitude between IMERG and Rain Gauge.

For another, IMERG did not perform well in winter or dry season because of the
presence of snow although IMERG’s ability to retrieve solid precipitation in mountainous
areas [19,27,36,38,51,53,54] was improved which can be attributed to the following reasons:
1) GPM IMERG was built on previous algorithms from PERSIANN CCS, TMPA, and
CMORPH [24]; 2) the sensitivity of the dual–frequency precipitation radar (DPR) and the
high–frequency channels on the GPM microware imager (GMI) were increased [16]. In
other words, it can be said that the ability of IMERG to retrieve solid precipitation was
improved but still limited. Many studies confirmed that the performance of SPEs in some
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areas (e.g., Tibetan Plateau, Wei River, Singapore, the Southern Slopes of the Pyrenees
etc.) [19,24,27,36] varied with seasons and most errors were concentrated in dry seasons
with snow. Our study area was located in the high–elevation area of the eastern hinterland
of the Tibet Plateau where elevation was mostly above the snow line (5000 meters) with
poor water vapor condition [55] and therefore it was easy to explain why IMERG tended
to underestimate precipitation during the dry season in ULRB II and MLRB I.

4.2. Factors Affecting the Occurrence Consistency of Precipitation of IMERG in Dry and
Wet Season

Occurrence consistency of precipitation by location and season ranked as: MLRB (wet)
> ULRB (wet) > ULRB (dry) > MLRB (dry), which we believed that aerosol was the most
important influencing factor. Previous studies have shown that the effect of aerosol on
precipitation can be traced back to the formation, development, and decay of clouds [56–59],
and its concentration had great temporal–spatial variability and seasonal heterogeneity [56],
which was one of the main factors affecting climate change and atmospheric air quality.
The inhibitory effect of aerosols on mild precipitation has also been reported in different
parts of the world [60]. For one thing, aerosols could cool the surface and heat the nearby
atmosphere by absorbing and scattering solar radiation to make the lower atmosphere more
stable and precipitation suppressed to a greater extent. For another, aerosol as cloud nodule
(CCN) and ice core (IN) can initiate the cloud with more but smaller cloud droplets and
narrower size distribution [58,61,62], which affected the subsequent cloud microphysical
processes and changed the thermodynamic and dynamic conditions and thus affected
precipitation [58,63–65]. In short, the increase in aerosol concentration changed the size of
the cloud droplets, so that the precipitation stopped or delayed.

UMLRB, originated in the Tanggula Mountains of the central TP [66,67], was repre-
sentative of typical clean atmospheric conditions with low aerosol concentration [66,67].
What’s more, aerosols were removed to a large extent by widespread rainfall prevailing
caused by Indian summer monsoon, which reduced its concentration over the UMLRB
and its surrounding area [56]. Nevertheless, it was undeniable that the concentration of
pollutants increases with the development of economy, so that the aerosol concentration
of UMLRB and its surrounding areas is still rising. Dust (from Taklimakan Desert) [68]
and anthropogenic pollutants [69] were the main aerosol type in the main body of UMLRB.
Among them, the dust aerosols were stable mostly observed in the high–elevation areas
(4–6 km) while anthropogenic pollutants tended to movable [67]. The anthropogenic pollu-
tants could be elevated to the troposphere over the UMLRB and take part in the radiation
effects and chemical reactions in the layer of troposphere [69]. In the end, the thermal
structure of atmosphere and radiative budget were changed and then the precipitation
was affected to some extent. To sum up, that was why ULRB I overestimated precipitation
events in the wet season (maximum FB of 0.43).

4.3. Factors Affecting the Elevation Dependence of IMERG in Dry and Wet Season

Elevation dependence can be divided into elevation dependence of amplitude
and elevation dependence of occurrence in dry and wet season. Using the results in
Sections 3.3.2 and 3.3.3, we had the following discussion. For elevation dependence of
precipitation amplitude in both seasons, the order of significance in high–elevation areas
(>4000 m) was MLRB (wet) > MLRB (dry) > ULRB (dry) ≈ ULRB (wet) while that for
the whole UMLRB was MLRB (dry) > ULRB (dry) ≈ ULRB (wet) > MLRB (wet). For
the elevation dependence on precipitation occurrence in both seasons, that of the Alpine
Canyon Area (MLRB) in the wet season was the most significant in high–elevation areas
(>4000 m), with the overall order of significance being MLRB (wet) > ULRB (wet) ≈ ULRB
(dry) > MLRB (dry) and that for the whole UMLRB being MLRB (dry) > ULRB (wet)
≈ ULRB (dry) > MLRB (wet). Elevation dependence was closely related to the spatial
performance of IMERG in both seasons. The elevation–dependence ranking of dry and wet
seasons in Sections 3.3.2 and 3.3.3 could verify the results given in Sections 3.2.1 and 3.3.2
by demonstrating that the more significant the elevation dependence, the worse the IMERG
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performance. Similarly, the elevation dependence of IMERG precipitation amplitude in
both seasons was very high in the Alpine Canyon Area (dry season), confirming that the
consistency of amplitude and occurrence was the lowest there.

The factors affecting the elevation dependence of IMERG in both seasons can be
summarized as two points: topography and wind–induced errors.

On the one hand, precipitation was controlled by complex topography, which made
the movement of water vapor molecules change with the change of wind direction, thus
affecting precipitation [43]. A sudden change in elevation may hinder the movement of the
air mass (topographic rain) [70], produced a large amount of precipitation on the windward
slope, or formed a microclimate on the leeward slope (the foehn effect). This complex
terrain reduced the reflection sensitivity of sensors of IMERG and seriously affected the
performance of them [24]. Many studies have come to the same conclusion in MLRB.
Li et al. showed that the valley in the MLRB was located on the back of the windward
slope with lower topography and less precipitation, which led to the foehn effect and the
formation of dry and hot valleys in these areas [71]. Lin et al. showed the valleys in MLRB
had less precipitation because the direction of the water vapor was changed by the wind
and water vapor was blocked by multiple longitudinal mountains [55].

On the other hand, some studies confirmed that although the precipitation of rain
gauge was checked to eliminate the heterogeneity and missing values, the quality of
precipitation records in the high elevation (> 3000 m) was still influenced by wind–induced
errors [72–74], which limited the applicability of IMERG in the high–elevation areas of
ULRB I. Specifically, rain gauge tended to underestimate precipitation of high–elevation
areas due to wind–induced errors, which may cause a slight positive deviation to the
IMERG. This problem was consistent with the results of earlier studies on IMERG in
high–elevation areas of Pakistan [16,75].

4.4. Effect of Altitude on Precipitation in UMLRB

Section 3.3.1 showed that precipitation throughout the year tended to decrease with in-
creasing elevation. One explanation could be southerly or southwesterly currents carrying
abundant warm and humid air from the Bay of Bengal northward to the Alpine Canyon
Area, such that the north–south alpine valleys parallel to the UMLRB formed parallel flow
over the three rivers (Jinsha River, Lancang River and Nu River) [38,48]. Water vapor inflow
would thus become narrower and velocity would increase, leading to an increase in water
vapor flux per unit area and thus precipitation at low elevations. However, the air currents
would weaken gradually with elevation, making precipitation low at high elevations.

As elevation rose, precipitation detection became limited due to the influence of
complex topography, potentially leading to under– or over–simulation by LR, so LOWERG
was used for further comparison and discussion. Figure A2 from Appendix A showed the
relationship between rain gauge precipitation and elevation based on LOWERG. Although
the results of the two models (LR and LOWERG) were similar, precipitation and elevation
had nonlinear relationships with certain fluctuations. For example, for the whole year
(Figure A2a,d), precipitation in the Plateau Area decreased with increasing elevation, but
this occurred slowly at first and then quickened; 400–500 mm was the most common
precipitation range. Precipitation in the Alpine Canyon Area was lowest at ~4000 m above
sea level, then began to increase again, and reaching ~650 mm at higher elevation. The
influence of LOWERG on the relationship between precipitation and elevation in the Alpine
Canyon Area was very significant in wet seasons (Figure A2b,e), while that in dry seasons
(Figure A2c,f) was not obvious because of a slight nonlinear relationship in the Plateau
Area. Overall, LOWERG could compensate for limitations caused by complex terrain and
express precipitation trends in high–elevation areas.

4.5. Limitations

We focused assessed only the effects of climate and topography on IMERG perfor-
mance, but future research should consider the impact of human activities (such as land
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use changes, landscape pattern changes and so on). In addition, the complex topographical
conditions in the study area may introduce inevitable errors in precipitation data based
on insufficient station density and spatial distribution. Satellite interpolation algorithms
could be improved to help manage this, and infrared and microwave methods could be
combined to better estimate precipitation in future. The ability of IMERG to capture dif-
ferent precipitation types under different climatic and topographic conditions needs to be
further explored to reduce uncertainty in its precipitation estimations.

5. Conclusions

In this study, we divided the UMLRB into climatic and topographic zones by relevant
features to assess the performance of GPM (three versions of IMERG) in this region from
three aspects (amplitude consistency of precipitation, occurrence consistency of precipita-
tion and elevation dependence); this is the first study to evaluate the spatial performance
of IMERG under complex climatic and topographic conditions. We hope that our results
can help compensate for the sparse distribution of observation stations in this region and
provide a reference for IMERG hydroclimatic research, water–resource planning, and pre-
cipitation retrieval algorithm improvement under complex climate and terrain conditions
while providing useful context for similar research in other mountainous areas. The main
conclusions are as follows:

1. The factors affecting the amplitude consistency of precipitation of IMERG in both
seasons can be summarized as two points: monsoon and solid precipitation (e.g.,
snow). The climate difference brought spatial heterogeneity to the precipitation in
dry and wet seasons. The Alpine Climate Region (ULRB) was little affected by the
monsoon while the Climate Transition Zone (MLRB) was greatly affected by the
monsoon. IMERG performed well in dry seasons than in wet seasons in ULRB, while
the MLRB was opposite. The ability for IMERG to detect precipitation accurately
of wet seasons in ULRB was limited due to the abnormal wind field and radiation,
which led to the difference of precipitation amplitude between IMERG and rain gauge.
Although IMERG’s ability to retrieve solid precipitation areas was improved, it tended
to underestimate precipitation during the dry season in ULRB II and MLRB I due to
the presence of snow. IMERG E and IMERG L tended to underestimate precipitation
while IMERG F often overestimated precipitation.

2. Aerosol was regarded as the most important influencing factor of occurrence consis-
tency of precipitation in UMLRB. The increase in aerosol concentration changed the
size of the cloud droplets, the thermal structure of atmosphere and radiative budget,
so that the precipitation was affected to some extent. UMLRB was representative
of typical clean atmospheric conditions with low aerosol concentration but aerosol
concentration (dust and anthropogenic pollutants) was still increasing, which led to
overestimation of precipitation events in the wet season in some areas such as ULRB I.

3. Topography and wind–induced errors were the main factors affecting elevation
dependence of IMERG in both seasons in UMLRB. The complex topography brought
the foehn effect to the leeward slope of MLRB, which reduced the reflection sensitivity
of sensors of IMERG and enhanced the elevation dependence in wet seasons in MLRB.
At the same time, rain gauge tended to underestimate precipitation of high–elevation
areas due to wind–induced errors.

4. The LOWERG model accurately simulated the nonlinear relationship between precip-
itation and elevation in both seasons, compensating for IMERG’s lack of sufficient
precipitation detection ability in complex terrain, especially in high–elevation areas.

5. Under the same precipitation intensity, the amplitude consistency and the occurrence
consistency of both seasons increased with elevation, which worsened with increasing
precipitation intensity regardless of elevation. In the case of extreme precipitation
(>50 mm/d), the IMERG amplitude consistency in both seasons decreased sharply.
IMERG had the highest probability of correctly detecting precipitation events such as
light (0.1–1.0 mm/d) and moderate (1.0–20 mm/d) rain.
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GPM IMERG satellite precipitation estimation accurately represented the spatial het-
erogeneity of complex climate and topography in terms of precipitation and elevation
dependence in both dry and wet seasons, demonstrating its great potential for wide appli-
cation to hydroclimatic research in areas such as the LRB in future. In particular, in regions
where observation stations are unevenly distributed or insufficiently numerous, IMERG
could effectively replace observed precipitation data. Our results provide a scientific refer-
ence for similar mountain areas around the world and for the further improvement of the
IMERG precipitation retrieval algorithm and the expansion of data application methods.

Author Contributions: Conceptualization, C.L. and G.F.; methodology, C.L. and G.F.; software, C.L.;
validation, G.F.; formal analysis, C.L.; investigation, C.L.; data curation, C.L.; writing—original draft
preparation, C.L.; writing—review and editing, J.Y. and G.F.; visualization, M.Y.; supervision, J.Y. and
G.F.; project administration, G.F. and X.H.; funding acquisition, G.F. and X.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program of China
(2019YFE0105200); Fundamental Research Funds for the Central Universities (2019B11014); Water
Conservancy Science and Technology Program of Jiangsu (2019016).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Atmosphere 2021, 12, x FOR PEER REVIEW 25 of 30 
 

 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 
Figure A1. Relationship between rain gauging and IMERG data (IMERG E (black), IMERG L (red) 
and IMERG F (blue)) at average annual scale in (a) ULRB I, (b) ULRB II, (c) MLRB I and (d) MLRB 
II. One point represents one pixel. 

Figure A1. Relationship between rain gauging and IMERG data (IMERG E (black), IMERG L (red)
and IMERG F (blue)) at average annual scale in (a) ULRB I, (b) ULRB II, (c) MLRB I and (d) MLRB II.
One point represents one pixel.
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Figure A2. Relationship between rain gauge precipitation and elevation based on LOWESS for the 
whole year (top row), wet season (middle row), and dry season (bottom row) in the (a–c) ULRB and 
(d–f) MLRB. One point represents one pixel. 

Figure A2. Relationship between rain gauge precipitation and elevation based on LOWESS for the whole year (top row),
wet season (middle row), and dry season (bottom row) in the (a–c) ULRB and (d–f) MLRB. One point represents one pixel.
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Figure A3. Trend chart of changes in four indices (a) SSD, (b) PBias, (c) POD, and (d) FAR by precipitation intensity for 
different regions and seasons by elevation levels (1–8). 
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