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Abstract: Air quality monitoring and assessment are essential issues for sustainable environmental
protection. The monitoring process is composed of data collection, evaluation, and decision-making.
Several important pollutants, such as SO2, CO, PM10, O3, NOx, H2S, location, and many others, have
important effects on air quality. Air quality should be recorded and measured based on the total effect
of pollutants that are collectively prescribed by a numerical value. In Canada, the Air Quality Health
Index (AQHI) is used which is one numerical value based on the total effect of some concentrations.
Therefore, evolution is required to consider the complex, ill-defined air pollutants, hence several
naive and noble approaches are used to study AQHI. In this study, three approaches such as hybrid
data-driven ANN, nonlinear autoregressive with external (exogenous) input (NARX) with a neural
network, and adaptive neuro-fuzzy inference (ANFIS) approaches are used for estimating the air
quality in an urban area (Jeddah city—industrial zone) for public health concerns. Over three years,
1771 data were collected for pollutants from 1 June 2016 until 30 September 2019. In this study, the
Levenberg-Marquardt (LM) approach was employed as an optimization method for ANNs to solve
the nonlinear least-squares problems. The NARX employed has a two-layer feed-forward ANN.
On the other hand, the back-propagation multi-layer perceptron (BPMLP) algorithm was used with
the steepest descent approach to reduce the root mean square error (RMSE). The RMSEs were 4.42,
0.0578, and 5.64 for ANN, NARX, and ANFIS, respectively. Essentially, all RMSEs are very small.
The outcomes of approaches were evaluated by fuzzy quality charts and compared statistically with
the US-EPA air quality standards. Due to the effectiveness and robustness of artificial intelligent
techniques, the public’s early warning will be possible for avoiding the harmful effects of pollution
inside the urban areas, which may reduce respiratory and cardiovascular mortalities. Consequently,
the stability of air quality models was correlated with the absolute air quality index. The findings
showed notable performance of NARX with a neural network, ANN, and ANFIS-based AQHI model
for high dimensional data assessment.

Keywords: air pollution; AQHI; NARX; ANFIS; big data; environmental factors; machine learning

1. Introduction

One of the most critical factors that significantly affect climate change and human
health is air pollution. Many countries have been using different systems for monitoring
air pollution. Thus, this area of research is of interest and very active. Several naive
modeling approaches have been presented in the literature are hybrid approaches [1,2], a
linear unbiased estimator [3], autoregressive integrated moving average (ARIMA) [4,5] bias
adjustment [6], and principal component regression approach. Similarly, non-parametric
regression [7], artificial intelligence (AI) techniques, machine learning [8], neuro-fuzzy
inference systems, and autoregression feedforward ANN with genetic algorithm [9] are
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noble air quality modeling and control approaches. Similarly, simulation and data mining
are well-known modeling tools and techniques for predicting and assessing air quality.
In this context, Aggarwal et al. [10] and Bai et al. [11] have concentrated on the models
used to predict the abnormality exploration in air quality. Deep learning applications (as a
subset of machine learning) have recently shown considerable potential for investigating
further aspects of the ecological dimensions [12–14]. A recent study by Sayeed et al. [15]
proposed an artificial intelligence (AI) model using deep convolutional ANNs to predict
24 h ozone concentration in Texas for comparing the results of different periods in the
year 2017. Munawar et al. [16] presented a case study of Lahore city of Pakistan for the
prediction of an Air Quality Index (AQI) using a hybrid approach of neuro-fuzzy inference
systems. Rahman et al. [17] investigated the soft computing applications of air quality
modeling by reviewing and discussing the neuro-fuzzy systems, fuzzy logic, deep learning,
conventional and evolutionary ANNs, and many hybrid models. Hvidtfeldt et al. [18],
Ansari and Ehrampoush [19], and Liu et al. [20] expressed the exposure to pollutants
causes different diseases such as respiratory diseases, asthma, type 2 diabetes, cancer,
and allergies. Alimissis et al. [21], Cabaneros et al. [22], and Taylan [23] searched the air
quality models playing crucial roles to evaluate the air quality problems in the atmosphere.
These models can show the health conditions in the cities using domain knowledge and
applying reliable and noble forecasting approaches. The advantages of these models are
that they can provide early warning in case they are effectively utilized and can reduce
the number of manual measurements of data acquisition substantially. As a modeling
approach, ANNs provide effective, flexible, and less assumption-dependent outcomes.
They have adaptive properties and can be integrated with other modeling approaches
to assess and control environmental systems. The integration of ANNs and fuzzy logic
models called neuro-fuzzy modeling approaches have obtained extensive attention in
air quality modeling due to their adaptiveness and well-generalized performance. The
different potentials of ANNs have been employed for modeling the various air pollutants,
including NOx and SOx, COx, O3 [24], PM10 [25], daily precipitation and temperature using
neuro-fuzzy networks [26], and PM2.5 [27] in different places all over the world. In this
context, Grivas and Chaloulakou [28] used evolutionary computational algorithms such as
ANNs in air quality modeling; similarly, they used genetic-algorithm-tuned ANN hybrid
models for the hourly PM10 concentrations in Greece. In the time series problems, NARX
with a neural network approach can be used to predict the future values of a time series
‘y(t)’ using the past values of that time series and past values of a second time series ‘x(t)’.

Similarly, as an evolutionary approach, fuzzy modeling can be used to deal with the
vagueness and uncertainties of real-world problems using fuzzy ‘If-Then’ rules. A rule set is
designed to control the possible relations between the input and output factors by a fuzzifi-
cation process. Fuzzy modeling is a robust tool to solve complex engineering problems
that are difficult to solve by traditional algebraic models. These modeling approaches en-
capsulate the vagueness of linguistic parameters and terms of qualitative factors. Jorquera
et al. [29] demonstrated the usefulness of fuzzy logic modeling in predicting the maximum
daily O3 concentration levels. The adapted neuro-fuzzy and fuzzy logic approaches have
been used to model concentrations of O3 and PM10. Ghoneim et al. [30] and Zhou et al. [31]
employed deep learning and deep multi-output long short-term memory ANNs models
for determining the air pollutants’ concentration. Rybarczyk et al. [8] claimed that only
a few review articles are available to discuss the soft computing techniques in air quality
modeling [32–34] where it was found that these ANNs or/and deep learning techniques
are mostly limited applications. The articles covering the whole spectrum of the available
soft computing techniques can rarely be found.

The state of air pollution is frequently expressed by the Air Quality Index (AQI).
The AQI is extensively used for air quality assessment and management [35]. The USA
Environmental Protection Agency and local authorities use the AQI to provide air quality
information of a location and its impact on health [36]. High AQI values mean increased
pollution and high exposition of living things to health problems [37]. Sulfur dioxide
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(SO2 µg/m3), carbon monoxide (CO mg/m3), particular matters (PM10 µg/m3), ozone
(O3, µg/m3), and nitrogen oxide NO µg/m3), and hydrogen sulfur H2S (µg/m3) are
considered pollutants in the urban area. The AQI categories and their standard quality
intervals are given in Table 1. These categories of AQI have been identified by fuzzy
linguistic terms and their numerical intervals for air quality assessment.

Table 1. Air Quality Index (AQI) categories [35].

AQI Categories Quality Levels of Health Concern

0–50 Good
51–100 Moderate

101–150 Unhealthy for sensitive groups
151–200 Unhealthy
201–300 Very unhealthy

>301 Hazardous

In this study, initially, statistical inferencing approaches were used to examine the
underlying relationship between the pollutants and their impacts on the air quality index.
Equation (1) is a way to present the relationship between an air pollutant concentration
and AQI. The pollutant concentration in this equation was defined as a ratio of the rele-
vant standard.

Air quality index =
Ci

Si
500 (1)

where ci and si show the pollutant concentration and standard pollutant level, respectively.
In recent years, several studies were carried out to develop air quality prediction models
for launching ambient air quality standards. Numerous guidelines have been presented to
set the level of air quality bounds on the emissions of pollutants [37]. On the other hand,
determining and developing AQI limits using big data is a very recent work. Attention
was mainly given to soft computing techniques to obtain and evaluate the big data [38]
regarding the air quality models. Due to the size and complexity of big data in air quality
systems, the essentials for soft computing approaches have extensively increased, partic-
ularly with the growing interests in the systems of early warning alerts and preventive
actions for pollutants’ when high concentrations of pollutants are observed [23]. Recently,
several attempts have been conducted to investigate air quality using machine-learning
and neuro-fuzzy (ANFIS) approaches and big data analytics [10,11,15,39–43].

The characteristics of modeling approaches require different types of data sets. For
instance, ANNs and fuzzy systems are bidirectional and need numerical and linguistic
data, which are broadly discussed [44]. Similarly, fuzzy systems can organize, handle,
and use vague, imprecise, and uncertain information to construct balance among different
and inconsistent observations, and to use subjective and qualitative information to model
complex problems [45]. As seen in Table 1, linguistic terms are employed for air quality
assessment together with numerical values. The numerical data shows the upper and
lower limit of pollutants that the observations have taken. Taylan et al. [46] used numerical
data to train machine learning approaches and developed adaptive fuzzy models using
symbolic qualitative and numerical data. Neuro-fuzzy systems integrate neural networks
and fuzzy systems for developing models that have learning capabilities obtained through
training processes. The goal of hybrid integration with big data is to form a more intelligent
system for predicting and controlling air quality. However, applying a hybrid neuro-fuzzy
system is very rare in air quality prediction and control systems. These hybrid approaches
can predict air quality, evaluate the findings, and provide online information. In case of
unhealthy or hazardous conditions, local authorities can take immediate actions more
intelligently. In this study, the modeling method considers six major air pollutants as input
parameters; SO2, CO, PM10, O3, NO, H2S, and the output parameter is the AQI. For each
parameter, 1771 data were obtained, 1065 data (60%) were used for training, 353 data (20%)
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were used for testing, and the remaining 353 data (20%) were employed for the validation
of the model.

The steps of the modeling approach are presented in detail in Section 2. The article is
organized as follows: Section 2.1 describes the significant air pollution sources and their
impacts on the air quality index. Section 2.2 gives the application of ANFIS in air quality
modeling. The details of ANFIS modeling were presented in Section 2.3. Section 3 explains
the machine learning approach for air quality estimation. Section 3.2 presents the non-
linear autoregressive with external (exogenous) input (NARX) and neural networks. The
results and discussions are given in Section 4. Finally, the research ends with conclusions
and references.

2. Materials and Methods
2.1. Major Sources of Air Pollution and Their Impacts on Air Quality

Several factors affect air pollution, such as dust storms, particulate matter, greenhouse
gases, other gas emissions, urban growth, and transportation. The impacts of sulfur dioxide,
nitrogen dioxide, and ozone cause declines in crop yields and affects human health [45].
Alternatively, ozone is caused by complex chemical reactions in the atmosphere [47]. The
highest level of pollution occurs where pollutant concentrations are the greatest. The level
of pollution allowed is given in Table 2, where air quality standards in Saudi Arabia, Gulf
countries, and the US-EPA [37] are presented.

Table 2. Air quality standards in Saudi Arabia, Gulf countries, and the US-EPA.

Air Pollutant
Air Quality Standards

KSA Gulf Countries US-EPA Standards

Sulfur dioxide (SO2)
730 µg/m3 (1 h)

365 µg/m3 (24 h)
85 µg/m3 (1 year)

441 µg/m3 (1 h)
217 µg/m3 (24 h)
65 µg/m3 (1 year)

80 µg/m3 (annual arithmetic mean)
365 µg/m3 (24 h average)

Nitrogen oxides NO2
660 µg/m3 (1 h)

100 µg/m3 (1 year)
660 µg/m3 (1 h)

100 µg/m3 (1 year) 100 µg/m3 (annual arithmetic mean)

Ozone (O3) 295 µg/m3 (1 h) 235 µg/m3 (1 h)
157 µg/m3 (8 h)

235 µg/m3 (1 h average)
157 µg/m3 (8 h average)

Carbon monoxide (CO) 40,000 µg/m3 (1 h)
10,000 µg/m3 (8 h)

40,000 µg/m3 (1 h)
10,000 µg/m3 (8 h)

10 µg/m3 (8 h average)
40 µg/m3 (1 h average)

Hydrogen sulfide (H2S) 200 µg/m3 (1 h)
40 µg/m3 (24 h)

200 µg/m3 (1 h)
40 µg/m3 (24 h)

200 µg/m3 (1 h)
40 µg/m3 (24 h)

Particulate matters (PM10) 340 µg/m3 (24 h)
80 µg/m3 (1 year)

340 µg/m3 (24 h)
80 µg/m3 (1 year)

50 µg/m3 (annual arithmetic mean)
150 µg/m3 (24 h average)

Ozone and sulfur dioxide are considered the leading causes of the low yield of crops
because of the acidification of soils, lakes, and streams. When the soils are acidified, acidity
and toxic aluminum move from catchments into lakes and the sea, making them highly
polluted. The nitrogen disordering can acidify the soil, fertilize sensitive natural plant
communities, and cause irregularity that can affect imbalance ecosystems. Figure 1a–d
illustrates sulfur dioxide (a), particulate matters (b), nitrogen oxide (c), and carbon monox-
ide (d) on air quality. This figure shows that an increase in sulfur dioxide, particularly
nitrogen oxide, raises the AQI, which means a high level of pollution and lower air quality.
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Figure 1. The impacts of pollutants, sulfur dioxide (a), particulate matters (b), nitrogen oxide (c), and
carbon monoxide (d) on air quality.

On the other hand, the effect of carbon monoxide is more complicated; this gas is
a toxic air pollutant, mainly produced from vehicle emissions, and has health effects
including weakness, vomiting, headaches, nausea, clouding of consciousness, coma, and,
unfortunately, at high concentrations and with long enough exposure, may cause death. It
also raises the AQI and reduces the air quality. However, this study aims to find out the
cumulative effect of pollutants on air quality.

Air pollutants encounter the human body mainly via the respiratory system. Ozone,
NO, and SO2, delicate particulate matter, and dust can affect the mucous membranes’
inflammation. These redden the eyes, inflame the pharynx and throat, affect lung functions,
and weaken the immune system, which eventually causes respiratory diseases. Several
symptoms may occur, such as headaches, giddiness, nausea, and pounding of the heart
as the signs of extreme exposure. The US-EPA [37] standards were considered for the
conversion of pollutants’ data into the indexes. As shown in Table 1, when the AQI is
between zero and 50, the level of health concern is good for society. Conversely, a higher
AQI means high-level pollution, which is risky for public health.

2.2. Application of ANFIS for Air Quality Modeling

An ANFIS model designed with suitable input-output parameters can depict a human
expert’s behaviors to control the air quality between the predefined parameters. The model
can use environmental data, produce suitable outcomes of AQI and inform authorities.
An adaptive network is connected by links, where each node executes a function on
incoming signals from sensory information of pollutants to produce output and specifies
the direction of signal flow between the nodes [48]. In a typical network, nodes present
mathematic functions modifiable by specified parameters. These parameters can impact
the performance of the network and its functions. However, in this work, the mathematical
functions are replaced with fuzzy rules. As shown in Figure 2, membership functions can
take the place of mathematical equations and carry out their duties, which is making this
approach unique and noble for air quality modeling. The complete fuzzy rules set given
below, is the backbone of the expert system. Figure 2 shows the architecture of the ANFIS
model for the prediction of the air quality index. An ANFIS model consisting of fuzzy
if-then rules (Rs) is a fundamental tool for assessing air quality. The input parameters are
Xi = {x1: Sulfur dioxide (SO2), x2: Carbon monoxide (CO), x3: Hydrogen sulfide (H2S), x4:
Ozone (O3), x5: Nitrogen oxide (NOx), and x6: Particulate matters (PM10)}. The output
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parameter is the air quality Index (yi; AQI). The rules are the backbone of the ANFIS
model, consisting of Gaussian MFs (µs) to depict the fuzzy linguistic terms (ϕs) and are
presented in the rule set given below.

Figure 2. The adaptive neuro-fuzzy inference (ANFIS) model architecture for air quality prediction.

It is essential to mention that there are often uncontrollable and unavoidable causes of
variations in air quality. Identifying variations require dealing with air quality characteris-
tics using linguistic terms. Collecting numerical data about the air pollutants is essential,
but this will not be as meaningful as linguistic terms used to identify the air quality parame-
ters. Because crisp numbers cannot identify some parameters, fuzzy linguistic terms might
be more suitable to deal with these parameters. For instance, air quality is a linguistic
variable whose values might be linguistic terms such as ‘good, healthy, unhealthy, very un-
healthy, hazardous, etc.’ Due to the imprecision and vagueness in these quality measures, a
trend was initiated to integrate the randomness and fuzziness for assessing environmental
quality problems. In Figure 3a,c, the air quality index is plotted in three-dimensional (3D)
graphs versus carbon monoxide and sulfur dioxide. Similarly, it was plotted against ozone
and nitrogen oxide for Jeddah, respectively. Figure 3b,d shows that the nonlinear relation
appears clearly between the input parameters and the air quality index. The 3D plots are
very obliging for observing the full view of the air quality index’s output surface based
on the whole span of the input parameters. The 2D and 3D plots of air quality index and
regressors such as ozone, sulfur dioxide, carbon monoxide, and nitrogen oxide showed
that the system was nonlinear and recommended the evolution of an intelligent approach
to predict and control the air quality in a city.

The analysis of 3D surfaces shows that many local maximum and minimum points
appear in the responses of the given parameters. Therefore, this reveals that the rise (or
maximum points) in the pollutant concentration will increase the AQI and cause many
negative effects. On the other hand, the local and global minimum points show where
the AQI is low, and the air quality is good and healthy. Hence, a highly nonlinear relation
appears between the pollutants and air quality index.
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Figure 3. The impacts of pollutants on the air quality index. (a–d) The impacts of pollutants on the air quality index.

2.3. ANFIS Based Reasoning for Air Quality Prediction

The ANFIS model was established from six rules and the linguistic statements for air
quality modeling and prediction. Fuzzy rules are used to map input parameters to the
output. A fuzzy rule is constituted from the assertion and the conclusion parts, including
linguistic variables and their term sets. Clustering analysis was carried out, and the
optimal number of clusters was found to be six with a 99.9480% similarity level and 0.00104
distance level between the clusters. Therefore, the number of rules was considered equal
to the number of clusters; each rule represents the characteristic of data in the cluster for
identifying the AQI. Due to the nonlinearity (see in Figures 1 and 3), Gaussian membership
functions (MFs) (see in Figures 4 and 5) were employed for the fuzzy input sets and delta
functions for the output spaces. In this study, the center average defuzzification and
product premise approach were employed for obtaining the outcomes of AQI, as given in
Equation (2).

f
( x

θ

)
=

∑R
i=1 bi ∏n

j=1 exp

[
− 1

2

(
xj−ci

j

σi
j

)2
]

∑R
i=1 ∏n

j=1 exp

[
− 1

2

(
xj−ci

j

σi
j

)2
] =

∑R
i=1 bi .µi(x)

∑R
i=1 µi(x)

(2)

µi(x) =
n

∏
j=1

exp

−1
2

(
xj − ci

j

σi
j

)2
where R represents the number of rules in the rule base, ‘n’ denotes the number of inputs
per data tuple. θ is represented in a vector form that contains the MF parameters for the
rule base, ‘ci’ is the MF center, and ‘σi’ is the width of MFs (µi(x)) in the rule base, the
Gaussian MFs were used for the rules’ premises, and the delta function is used for the
conclusion part. The coefficient bi represents the point in the output space at which the
output MF for the ith rule is a delta function and denotes the point in the jth input universe
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of discourse, where the MF for the ith rule achieves a maximum. It is essential to mention
that the relative width; of the jth input MF for the ith rule is always larger than zero. Fuzzy
reasoning is the crucial factor in the modeling of fuzzy set theory. For the prediction of air
quality, the input membership functions, fact base, the ruleset, and the inference engine are
presented in Figure 4. These fuzzy rules and the reasoning process and defuzzification are
considered as the pillar of the fuzzy inference system to obtain the outcomes of the fuzzy
model. Figure 4 shows the fuzzy reasoning procedure of the Sugeno fuzzy model [23] for
predicting the air quality in Jeddah.

Figure 4. Fuzzy reasoning procedure for predicting air quality.

If air pollution is considered as a space-defining by fuzzy set U, Xis is the fuzzy
input parameters in this space and Yi is the fuzzy output parameter, then, the input
parameters of this work are; Xis = {x1: Sulfur dioxide (SO2), x2: Carbon monoxide (CO),
x3: Hydrogen sulfide (H2S), x4: Ozone (O3), x5: Nitrogen oxide (NOx), and x6: Particulate
matters (PM10)}, and the output parameter is the air quality Index (yi; AQI) which can
be used for neuro-fuzzy modeling. The fuzzy linguistic term set employed for this study
is ϕs = {good, moderate, unhealthy, very unhealthy, and hazardous}. A fuzzy model
is structured by the collection of fuzzy If-Then rules. The upper and lower limits of all
input parameters and output are presented in Figure 4. This figure also shows the fuzzy
reasoning procedure. For instance, the upper and lower bounds of sulfur dioxide (SO2)
are between 0–14 µg/m3, ozone’s (O3) is between 29–119 µg/m3, and particulate matters
(PM10) is between 11–113 µg/m3, and so on. The membership functions µi(x); i = 1, 2,
. . . , n, are always parametric functions used in the fuzzy model. Figure 5a–d depicts the
MFs and their term sets for sulfur dioxide (a), ozone (b), nitrogen oxide (c), and carbon
monoxide in Jeddah, respectively.

Rule 1: IF (SO2) is low and (CO) is low and (H2S) is low and (O3) is low and (NO) is low
and (PM10) is low THEN The air quality is good.
Rule 2: IF (SO2) is low and (CO) is normal and (H2S) is normal and (O3) is low and (NO) is
normal and (PM10) is normal THEN The air quality is good.
Rule 3: IF (SO2) is high and (CO) is normal and (H2S) is normal and (O3) is low and (NO)
is normal and (PM10) is very high THEN The air quality is normal.
Rule 4: IF (SO2) is low and (CO) is high and (H2S) is high and (O3) is very low and (NO) is
high and (PM10) is very low THEN The air quality is unhealthy.
Rule 5: IF (SO2) is normal and (CO) is high and (H2S) is high and (O3) is very high and
(NO) is high and (PM10) is high THEN The air quality is unhealthy.
Rule 6: IF (SO2) is very low and (CO) is very high and (H2S) is very high and (O3) is high
and (NO) is very high and (PM10) is low THEN air quality is hazardous.
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Figure 5. Depicts the MFs and their term sets for sulfur dioxide (a), ozone (b), nitrogen oxide (c), and carbon (d).

Appropriate separation of fuzzy input and output data spaces and a correct choice
of MFs are essential to obtain a useful ANFIS model for the AQI. The MFs and the fuzzy
term sets of all variables are determined based on the domain knowledge of the system
parameters considered. The Gaussian MFs are identified by two parameters (c, σ), where ‘c’
denotes the MFs’ center, and ‘σ’ represents the MFs’ width. Figure 5c shows the Gaussian
MFs for ‘nitrogen oxide’ and fuzzy term set ‘very high’ representing the MFs. Some other
fuzzy variables and their MFs are presented in Figure 5. For example, the MF of ‘nitrogen
oxide’ for the fuzzy term ‘very high’ is mathematically presented as given in Equation (3).

gaussian(x, c, σ) = e−1/2( x−c
σ )

2
(3)

µA(Nitrogenoxide) = µNormal =

{
0 f or x

〈
5 and x〉75

e−1/2( x−45
70 )

2
f or 5 ≤ x ≤ 75

A big data set was used for the training, testing, and validation of the ANFIS model
developed which can cover the nonlinear functional dependency between the input and
output parameters. The root-mean-square error (RMSE) approach was employed for the
error determination, in which ‘oi’ and ‘pi’ are the observed and predicted values of error,
respectively, for the AQI. Equation (4) gives the mean square error of the ANFIS model
developed for this study.

RMSE =

√√√√ 1
N

N

∑
i=1

(pi − oi)
2 (4)

Figure 6 shows the relative error of training and testing data determined for the ANFIS
model developed.
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Figure 6. The training and checking error were determined for the ANFIS model.

As seen in Figure 6, the relative errors were tolerable and the model checking perfor-
mance was good. On the other hand, the average training error was found at 4.42, and the
RMSE for the training data set was calculated at 5.64. Essentially, both the RMSEs were very
small for the training and testing of the ANFIS model. Therefore, the developed ANFIS
identified the essential components of the underlying dynamics. In the backpropagation
learning algorithm, ‘η’ and ‘µ’ are used for ‘speeding up’ or ‘slowing down’ the error
convergence established in the range of ‘0’ and ‘1’. The performance of the ANFIS model is
presented in Table 3. In case these errors exceeded the statistical standards (the ‘d’ value),
the network was retrained with the increased number of epochs with a repeating process.
The magnitudes of ‘d’ were not the measure of correlation but rather the error’s predicted
model outcomes. It takes values between 0 and 1; the perfect agreement between the
observed and predicted values is when ‘d’ is ‘1’, however ‘0’ means absolute disagreement.
The value of ‘d’ can be calculated as given in Equation (5) follows:

d = 1− ∑N
i=1(pi − oi)

2

∑N
i=1[|pi − o|+ |oi − o|]2

(5)

where o represents the observed data average, and ‘p’ is the predicted data.

Table 3. The parameters for determining the strength of the ANFIS model.

Epoch Number of Fuzzy Rules
of ANFIS Model

Statistics
‘d’ RMSE

Mean Square Error after
Model Stabilization (%)

3000

3 0. 527 12.634 0.531

5 0.351 6.768 0.469

6 0.285 1.528 0.244

11 0.491 7.936 0.328

15 0.648 8.604 0.375

17 0.692 10.486 0.479

20 0.592 11.943 0.527

21 0.727 15.631 0.684

25 0.731 17.859 0.725

3. Machine Learning Approach for Air Quality Estimation

ANNs are computing systems capable of deep learning and are made up of sev-
eral highly interconnected elements for information processing. In this work, a back-
propagation multilayer perceptron (BPMLP) algorithm was employed for estimating the
air quality (yi) level in Jeddah city. The BPMLP algorithm can perform certain nonlinear



Atmosphere 2021, 12, 713 11 of 24

mapping that can be described by the terms for a given set of input parameters as sulfur
dioxide (SO2), carbon monoxide (CO), hydrogen sulfide (H2S), ozone (O3), nitrogen oxide
(NOx), and particulate matters (PM10). The big data set was divided into suitable partitions
for the training process, after fifteen iterations of training as appearing in Figure 7, and
considering the distribution and allocation of weights, the minimum error was obtained by
the mean square error approach.

Figure 7. The training, testing, and validation of ANN (a,b) and nonlinear autoregressive with external (exogenous) input
(NARX) (c) models.

The problem of nonlinear relation minimization was solved by the Levenberg-Marquardt
(LM) algorithm. The algorithm of steepest descent is known as the error backpropagation
(EBP) algorithm and is considered one of the most crucial parts in the implementation of
training the machine learning algorithm. However, this algorithm’s disadvantage is the slow
convergence, which can be significantly enhanced by applying the Gauss-Newton algorithm.
In evaluating the error surface’s curvature, it is customary to use the second-order deriva-
tives of the error function. The Gauss-Newton algorithm can be employed for obtaining the
suitable step sizes for each direction and rapidly reach convergence. As seen in Figure 7a, the
error function seems to have a quadratic surface. In the initial iteration, the learning is weak
(see Figure 7a), and the error rate is high. After some iterations (see Figure 7b), the algorithm
could converge quickly and directly. Hence, the learning level is now high, and the error
rate is low. The LM algorithm integrates two minimization methods: The steepest descent
method and the Gauss-Newton algorithm, for fitting the error curve. However, combining
these two algorithms reduces the variance by simultaneously updating the parameters in
the steepest descent direction [49]. On the other hand, Figure 7c shows that any overfitting
has occurred for the NARX with a neural network, and the training and validation errors
decreased until the highlighted epoch. This approach showed an amazing performance over
the others.
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3.1. Levenberg–Marquardt (LM) Algorithm

As the Jacobian matrix JTJ is an invertible matrix and can be used for multilayer
network training, it is expressed in the standard back propagation algorithm, and the
terms in the Jacobian matrix are calculated using the LM algorithm to present the other
approximation of the Hessian matrix (H) as presented in Equation (6).

H ≈ JT J + δI (6)

where δ is an always positive combination coefficient, and ‘I’ is the identity matrix in
Equation (6), in which the elements of the Hessian matrix are greater than zero and is
always invertible. The Hessian matrix appearing in Equation (6) is updated and presented
in Equation (7).

wk+1 = wk −
(

JT
k Jk + δI

)−1
Jkek (7)

As the LM algorithm integrates the steepest descent and the Gauss-Newton algo-
rithms, it switches between the two algorithms during the training process and gains both
advantages. Where wk denotes the weight vector for node k, and ek is the training error of
the machine learning algorithm. ‘Jk’ is the Jacobian matrix, while ‘JT’ is the transpose of
m × n Jacobian matrix [49]. Selecting a very small (nearly zero) combination coefficient δ,
Equation (7) is updated and the Gauss-Newton algorithm is employed to implement the
LM algorithm for the training of data obtained from the set of input parameters includ-
ing x1: sulfur dioxide (SO2), x2: carbon monoxide (CO), x3: hydrogen sulfide (H2S), x4:
ozone (O3), x5: nitrogen oxide (NOx), and x6: particulate matters (PM10), and the output
parameters if ‘AQI.’

As seen in Figure 8, with ANNs, two problems must be solved: the calculation of
the Jacobian matrix, and the organization of the training process. Considering the neuron
‘n’ with ni inputs in the first layer, all its independent parameters are connected to the
network’s input layer. Equation (8) was employed to calculate the air quality index given
in the neuron ‘n’ as the output of the ANN.

yn = fn(netn) (8)

where fn is the activation function of neuron n and the net value ‘netn’ is the sum of
weighted input nodes of neuron n which can be presented by Equation (9).

netn =
ni

∑
i=1

wn,iyn,i + wn,o (9)

where, yn,i is the ith input node of neuron n, weighted by wn,i and wn,o. When the training of
the data set is completed, a high value of correlation coefficient decently describes that the
data are highly correlated with the fit. It also shows that these parameters are significantly
correlated, meaning that a change in one parameter will affect the other parameters. The
histogram in Figure 9a depicts the difference between the data values and the curve fit for
ANN. The error histogram for the training, validation, and testing process of NARX with a
neural network is presented in Figure 9b. These figures show that the curve-fit errors are
normally distributed.
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Figure 8. The architecture of the Artificial Neural Network used for Air Quality Index Estimation.

Figure 9. Depicts the curve fit for the training, validation, and testing process of ANN (a), and NARX with neural
network (b).

In this study, the redundant data were not used in the training process, as the ANN
algorithm does not work well with redundant data. A multilayered perceptron (BPMLP)
network with six inputs, eight processing units in the hidden layer, and one output param-
eter was considered for the training process. As seen in Figure 8, the back-propagation
algorithms were used for training the network with LM tools’ employment, which min-
imizes the divergence between the input and the output parameters. The outcomes pre-
dicted by the BPMLP algorithm were converted to air quality numerals that are recorded
in Table 4. During the training process, it was found that the solution had improved, as
the δ was decreased, the LM method approached the Gauss-Newton method, and the
solution usually accelerated to the local minimum [49]. Sum square error (SSE) method
was employed to assess the training process. The SSE for all training patterns and network
outputs was computed using Equation (10). The error rate is reasonable because redundant
data and noisy data were excluded during the training, testing, and validation process. For
training, 60% of data was used, 20% was used for testing, and 20% of data was used for
validation. Excluding the outliers (the redundant data), the average absolute error was
found at 0.07147%, and the sum of the squared errors was found at 0.0251%.

E(x, w) =
1
2

p

∑
p=1

M

∑
m=1

e2
p,m (10)

where, as seen in Equation (10), w denotes the weight vector, and ep,m refers to the training
error of the machine learning algorithm.
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Table 4. AQI outputs of ANNs, ANFIS, and NARX models for certain parameters.

Sulfur
Dioxide

(SO2,
µg/m3)

Carbon
Monox-
ide (CO,
µg/m3)

Hydrogen
Sulfur,
(H2S
µg/m3)

Ozone
(O3,

µg/m3)

Nitrogen
Oxide
(NO,

µg/m3)

Particular
Matters
(PM10,
µg/m3)

AQI,
Observed

AQI,
ANNs
Out-

comes

AQI,
ANFIS

Out-
comes

AQI-
NARX

Outcomes

12 4.4 339 75 4 60 198.70 197.7773 198.21 198.52
7 0.12 249 55 9 51 176.52 175.2971 176.733 176.61
4 0.12 164 57 9 49 155.87 154.7877 154.24 155.53
10 0.19 184 43 19 46 157.74 156.3981 157.49 157.64
11 0.29 338 49 20 53 159.03 158.9712 158.42 159.05
24 3.47 810 31 13 52 182.12 189.4121 184.78 182.54
31 0.64 887 29 24 47 145.91 144.7926 144.19 145.73
58 0.71 1020 35 16 67 98.58 99.06586 98.49 98.54
39 2.44 1198 37 15 49 73.96 73.71264 73.69 73.87
16 5.91 586 49 13 39 71.06 70.60034 70.90 71.12
9 4.37 88 43 23 40 71.24 70.76935 71.50 71.45
15 4.78 125 44 25 45 61.39 60.17372 60.25 61.14
19 5.25 216 38 27 59 97.16 97.38304 97.76 97.63
26 1.48 253 29 30 80 78.76 78.64256 78.28 78.67
19 3.99 314 52 17 37 77.64 77.6342 77.37 77.94
8 2.45 10 52 18 240 82.43 82.58674 83.03 82.51
10 7.71 19 43 19 109 91.02 91.56989 91.156 91.10
30 5.73 97 31 20 45 106.61 106.7636 106.63 106.65
24 3.47 810 31 13 52 108.50 108.7315 108.89 108.46
93 5.06 55 37 23 46 110.13 110.4067 110.33 110.31
67 2.07 88 39 17 54 127.85 127.4214 127.36 127.94
31 0.64 88 29 24 47 138. 68 137.7212 160.27 139.76
96 0.66 100 44 27 84 150.95 149.6483 149.34 151.27
29 4.31 106 34 13 69 156.02 154.6345 155.13 153.96

When using pattern p, as it is defined in Equation (11), m represents the index of
outputs, from 1 to M, where M is the number of outputs.

ep,m = dp,m − op,m (11)

‘d’ determines the desired output vector for air quality index (AQI), the actual output
vector for AQI is represented by ‘o’. Considering the nodes and the links between the output
node yj of a hidden neuron j and network output om, a complex nonlinear relationship
exists between the network parameters that can be defined simply by om and f j, where om is
the mth actual output of the network representing the air quality. Figure 10a–d depicts the
targets of output for training (a), validation (b), testing (c) and all process (d) of correlation
coefficient (R). The value of R is close to 1 for training, and 0.91227 for validation of data.
Similarly, the value of R for testing is 0.97948 and 0.98103 for validation. The training
process was initiated as shown in Figure 7a, and the final training was carried out after
several training steps and illustrated in Figure 7b. The training, testing, and validation
were converged at the three epochs with the validation performance of 92.3206. Thus,
the result is acceptable since the final mean-square error and the absolute mean square
errors are small, after several training steps, the error rates fell to 0.611236% and 0.080739%,
respectively. It is also clear that the set errors of the training and testing have similar
characteristics. For instance, no significant over-fitting has been obtained by iteration
number thirteen, where the highest performance of the validation has occurred.
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Figure 10. Depicts the targets of output for training (a), validation (b), testing (c) and all process
(d) of correlation coefficient (R).

Figure 11a and b show the histogram of error distribution and the residual is shown
in c for initial and final training stages of the machine learning approach, respectively.

Figure 11. (a) and (b) show the histogram of error distribution and (c) shows the residual for initial
and final training stages of the machine learning approach.
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3.2. Nonlinear Autoregressive with External (Exogenous) Input (NARX)

In the time-series problems, it is desired to predict future values of a time-series ‘y(t)’
from past values of that time series and past values of a second time-series ‘x(t)’. This
prediction approach is labeled NARX, and can be presented as given in Equation (12):

y(t) = f (y(t − 1), . . . , y(t − n), x(t − 1), . . . , (t − n)) (12)

The standard NARX network was employed in this study which has a two-layer
feedforward ANN, with a sigmoid transfer function in the hidden layer and a linear
transfer function in the output layer. ‘y(t)’, the output of the NARX network, is fed back
to the input of the network, because ‘y(t)’ is a function of y(t − 1), y(t − 2), . . . , y(t − n).
where ‘t’ is the time, and ‘n’ is the amount of data. NARX can be employed to predict future
values of air quality, chemical processes, manufacturing systems, robotics, and aerospace
vehicles based on several variables. It can also be used for system identification, in which
models are developed to represent the dynamic behavior of systems. The outputs of the
training, validation, and testing process of ANNs are presented in Figure 12a. Figure 12b
plots the root mean square error (RMSE) of the training, validation, and testing process
of ANNs.

Figure 12. (a) shows the outputs of the training, validation, and testing process of NARX with a
neural network, while figure (b) plots the root mean square error (RMSE).

Figure 13 displays the error autocorrelation function. It describes how the prediction
errors are related in time. For the NARX with a neural network AQI prediction model,
there is one nonzero value of the autocorrelation function, and it occurred at zero lag. This
is the mean square error (MSE). In the case of AQI prediction, the correlations, except for
the one at zero lag, fall approximately within the 95% confidence limits around zero, so the
model seems to be adequate.

The training, testing, and validation of the ANFIS model were converged at the 60
epochs with the validation performance of 99.3206. The mean-square error and the absolute
residual rate are small in this approach; after training, they fall to 0.611236% and 0.080739%,
respectively. The errors of training and testing have similar characteristics. The low-level
errors obtained were due to mainly insignificancy of over-fitting observed and occurred by
iteration thirteen, where the best validation performance has been observed.
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Figure 13. The error autocorrelation function for AQI prediction.

The NARX with neural network showed much better performance for the same
data set of independent regressors’ used for the ANN and ANFIS models. Hence, the
prediction performance of NARX with the neural network approach is higher, as seen
in Figure 12a,b. The NARX model training, testing, and validation were converged at
the 16 epochs (see Figure 7c) with the validation performance of 99. In this approach, the
mean-square error and the absolute residual rate are smaller; after training, they were
determined 0.334% and 0.0475%, respectively.

4. Results and Discussion

NARX with a neural network, ANFIS, and machine learning are highly interrelated
soft computing systems for information processing approaches, and capable of deep
learning. They were employed for the big-data advancement of the environmental systems,
using the BPMLP, two-layer feedforward ANN algorithm and steepest descent approach
to reduce the mean square error of the big data set of training. The Levenberg-Marquardt
(LM) [49] approach was employed as an optimization method for ANNs, as a sub-technic of
machine learning approach to solve the pollutant parameters that have nonlinear relations.
The results obtained were evaluated by fuzzy quality charts and compared with the US-EPA
air quality standards statistically.

One of the most critical ecological issues is environmental pollution, including air,
water, land pollution, etc. Emissions of sulfur dioxide and other pollutants are gradually
rising as the number of industries grows [50]. Nitrogen oxides have been increasing in
many locations. The widest spread of air pollution in these areas is mainly formed by
the emissions created from domestic industrial plants and transportation sources. Daily
arithmetic averages of sulfur dioxide, carbon-monoxide, hydrogen sulfite, ground-level
ozone, nitrogen oxide, and particulate matter were collected from stations and used to
model the air quality index.

Data accumulated over the last three years offered us a big data set which was
substantial for training the model to obtain an ANFIS model. The AQI of each pollutant
was calculated by Equation (1) and an air quality index was obtained for the cumulative
effects of pollutants. Some gases are inert (like CO) and do not interact chemically with
others. However, we consider the relations statistically and mathematically. This data set
was then employed to train the NARX with a neural network, ANFIS, and ANN models
to predict pollutants’ air quality index. The degree level of inter-correlations between the
pollutants shows that atmospheric pollution depends on various parameters, the relation
of some pollutants with AQI is given in Figure 14.
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Figure 14. The association between O3, SO2, CO, and NOx with AQI.

Ozone [51] also has a negative correlation with AQI. There is a positive correlation
between O3, SO2, CO, NOx, and AQI. The associations between different air pollutants
slightly vary in other relevant research that could be interpreted due to variations of
different characteristics, such as location and unique meteorological factors. Table 5 shows
the correlation matrix and multicollinearity between the pollutant parameters and their
‘p’ values. As the ‘p’ values are less than 0.05, they are statistically significant.

Table 5. Correlation and multicollinearity between the parameters and p-values.

Environmental
Factors AQI Carbon

Monoxide
Hydrogen

Sulfite Ozone Nitrogen
Oxide

Particular
Matters

Sulfur dioxide 0.542
p-value 0.000

Carbon monoxide 0.142 0.145
p-value 0.000 0.000

Hydrogen Sulfur 0.999 0.544 0.143
p-value 0.000 0.000 0.000
Ozone −0.196 −0.288 −0.229 −0.21
p-value 0.000 0.000 0.000 0.000

Nitrogen oxide 0.137 0.205 0.131 0.140 −0.496
p-value 0.000 0.000 0.000 0.000 0.000

Particular matters 0.008 0.021 0.017 −0.034 −0.097 0.118
p-value 0.82 0.554 0.638 0.352 0.007 0.001

Sometimes, the forecast errors are computed in terms of percentages rather than
amounts. Hence, in this study, the mean absolute percentage error (MAPE) was computed
by finding the absolute error in each period, dividing this by the actual observed value for
that period, and averaging these absolute percentage errors. The MAPE is a percentage
and has no measurement units employed to calculate the accuracy of the same or different
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techniques on two entirely different series. Equation (13) shows the MAPE calculation, and
it is found at 2.3747% for the AQI in this study.

MAPE =
1
n

n

∑
t=1

∣∣Yt − Ŷt
∣∣

|Yt|
(13)

On the other hand, the mean percentage error (MPE) was used to compute finding the
error in each period. It is computed by finding the actual residual value for each period,
then dividing by the actual AQI values to obtain the % error, and at the end, averaging
these percentage errors. The MPE is calculated by Equation (14) and was found at 0.3423%
for this study, which is close to zero.

MPE =
1
n

n

∑
t=1

(
Yt − Ŷt

)
Yt

(14)

As a result, when a MAPE of 2.3747% is compared to the RMSE of 5.64, the MAPE can
be used to forecast the air quality data. A small MPE of 0.3423% reveals that the technique
is not biased, while the value is close to zero, the techniques do not consistently over/or
underestimate the AQI daily. The actual AQI observations versus the outcomes of ANN
and ANFIS modeling approaches are given in Figure 15. The results clearly show that the
outcomes of both models are close to the actual AQI values and the air quality is good and
moderate in Jeddah. There are some deviations during some periods and this might be
because of dust storms and particulate matters.

Figure 15. Air quality index observed vs. the outcomes of NARX, ANN, and ANFIS approaches.

The NARX with a neural network, ANNs, and ANFIS model aims to construct an
online and intelligent control strategy for air quality prediction. All methods produced
vigorous outcomes. Table 4 illustrates NARX, ANN, and ANFIS models’ outcomes for
certain pollutants versus observed air quality index. The average error was determined at
0.00335, 0.10858, and 0.10362 for NARX, ANFIS, and ANN models, respectively. On the
other hand, the optimal number of rules was found to be six for the data set available for
the ANFIS model. Moreover, the essential findings depicted that an additional number
of membership functions and rules did not improve the ANFIS model’s efficiency [52].
Therefore, as it is given in Figure 4, six rules appear adequate to establish a rule-based
ANFIS model for AQI prediction. Figure 5 depicts the fine-tuned MFs of pollutants; bell-
shaped Gaussian MFs were employed for determining the membership degrees. The reason
that the Gaussian MFs were employed is that the relations of parameters are nonlinear.



Atmosphere 2021, 12, 713 20 of 24

Figure 6 shows the distribution of relative errors determined for training and testing of the
ANFIS model developed for this study. The ANFIS model outcomes for certain degrees of
pollutants were given in Table 4, which provides the comparison of AQI obtained from the
ANFIS model, and the observed AQI obtained from the US-EPA standard [37]. In this article,
the back-propagation multilayer perceptron (BPMLP) algorithm was employed to perform
nonlinear mapping of parameters. The BPMLP algorithm used the Levenberg-Marquardt
(LM) approach as an optimization method for solving a nonlinear least-squares problem.
Figure 7a,b show the initial and final training process, respectively. Similarly, Figure 7c
shows the overfitting of the NARX with neural network for training and validation error.

The training process was successfully carried out because the mean-square error and
the absolute mean square errors were low and were 0.611236% and 0.080739%, respectively.
Similarly, Figure 10a–d shows the training correlation coefficient (R) (a), validation R (b) and
testing R (c); the R is 1 for training, validation, and testing. ANN has a similar capability
for the same data set of independent regressors’ used for the ANFIS model training
process. The low-level errors obtained were mainly because there was no significant over-
fitting observed during iteration thirteen, where the best validation performance had been
observed. Figure 11a,b show the histogram of error distribution and the residual (c) of
initial and final training stages of ANN, respectively. Convergence was observed between
the three parameters; hence the training process was ended.

Because of the lack of identification of the cumulative effect of quality parameters in
pollution issues, a novel trend has been inspired by combining randomness and fuzziness
in evaluating the environmental quality problem of air pollution in this work. Quality
assessment in fuzzy sets expresses that the quality level of air is measured by membership
degrees. The scatter plot of 100 principal component outcomes of AQI obtained for ANN,
ANFIS and NARX models are illustrated in Figure 16 a–c, respectively.

Figure 16. The fuzzy quality assessment of AQI by ANN (a), ANFIS (b) and NARX (c) models.

Figure 16a–c shows the fuzzy quality assessment of the AQI by ANN (a), ANFIS
(b), and NARX (c) models with numerical values, respectively. The fuzzy quality charts
with linguistic terms were employed along with the US environmental protection agency
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categories for air quality index (AQI) to evaluate the air quality in Jeddah. The ANFIS and
ANN are more reliable and practical approaches to observe the air quality online, which
add more flexibility than the crisp assessment of air quality offline. For an overall quality
assessment, when the AQI is between 0 and 50, it is defined as good air quality, if it is
between 51 to 100, the air quality is moderate. However, if it is above 100, the quality is
poor and unhealthy; the sensitive groups are affected. Higher AQI creates hazards (if it is
above 300), which affects people’s respiratory systems. EPA [37] standards for air quality
have been established to prevent several harmful effects of pollutants.

5. Conclusions

The prominent prediction techniques fall into two broad categories, namely, soft
computing and statistical techniques. ARIMA (also known Box-Jenkins) and the other
traditional techniques are commonly regarded as the most efficient forecasting technique
in social science and are utilized broadly for time series [53]. This study aims to envisage
air quality and its distribution using soft computing techniques, such as adaptive neuro-
fuzzy system (ANFIS), and NARX with neural network and ANNs as machine learning
approaches. The proposed methods in this work are practical, robust, and capable of
estimating pollutants’ cumulative effect inside the urban areas to reduce respiratory and
cardiovascular mortalities. The findings showed the remarkable performance of NARX,
ANFIS, and ANN-based air quality models for high-dimensional data assessment. As a
statistical approach, the usage limitation of ARIMA for forecasting time-series is crucial
with uncertainty as it does not undertake knowledge of any fundamental model or input
parameters as in soft computing methods [54]. The conventional techniques for the predic-
tion of time-series, such as ARIMA, SARIMA, and many others assume that the time-series
are generated from linear processes, therefore the outcomes may be inappropriate for
most nonlinear real-world problems [55]. On the contrary, soft computing techniques are
data-driven, self-adaptive intelligent approaches used for prediction with the ability to
make generalized observations from the results obtained from original data. Addition-
ally, machine learning approaches are universal approximators as an ANN can effectively
approximate a continuous function to the anticipated accuracy level [53]. Although the
literature depicts the different views on the relative superiority and performance of ANNs
and ARIMA approaches for prediction, further studies are needed for a unified coherent
view on these methodologies for better applications.

For the situation where the AQI values increase, people may encounter several symp-
toms of health concerns [37]. Air quality models’ outcomes were found meaningful for
warning the public earlier in case an unhealthy situation is encountered. Air pollution
management involves capacity building, monitoring ground-based networks and systems
for appropriate strategic and operational decision-making. Implementing these strategies
requires quality controlling and assurance, modeling approaches, and institutional capabil-
ities. Therefore, local and global environmental policymakers can consider the presented
methodologies and findings as a suitable, reliable, and useful technique in air quality
assessment and management. Consequently, the stability of air quality was correlated with
the absolute air quality index using soft computing techniques.
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