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Abstract: The diurnal cycle of both air temperature and wind speed is characterized by considerable
differences, when comparing open site conditions to forests. In the course of this article, a new
two-hourly, open-source dataset, covering a high spatial and temporal variability, is presented and
analyzed. It contains air temperature measurements (128 station pairs (open/forest); six winter
seasons; six study sites), wind speed measurements (64 station pairs; three winter seasons, four study
sites) and related metadata in central Europe. Daily cycles of air temperature and wind speed, as well
as further dependencies of the effective Leaf Area Index (effective LAI), the exposure in the context
of forest effects, and the distance to the forest edge, are illustrated in this paper. The forest effects
on air temperature can be seen particularly with increasing canopy density, in southern exposures,
and in the late winter season, while wind speed depends on multiple factors such as effective LAI
or the distance to the forest edge. New transfer functions, developed using linear and non-linear
regression analysis, in a leave-one-out cross-validation, improve certain efficiency criteria (NSME; r2;
RMSE; MAE) compared to existing transfer functions. The dataset enables multiple purposes and
capabilities due to its diversity and sample size.

Keywords: winter forest meteorology; microclimate observations; air temperature; wind speed;
transfer functions; modeling; open dataset

1. Introduction

The climate in the boundary layer and, thus, the micrometeorological variables are
strongly dependent on the nature of the environment, which enables understanding air
temperature and wind speed profiles by considering their surrounding area [1].

As a rule, in the boundary layer, air temperature in the open field decreases with
altitude during the day and increases with altitude at night (nocturnal inversion). The
reason behind this phenomenon is the ground’s heat absorption during the day, which
depends on the albedo value and radiation, and its emission at night through long-wave
radiation [1] and downhill katabatic wind. In the forest, this diurnal cycle of air temperature
differs from open site conditions. The maximum air temperature during the day is lower
due to radiation shading by the canopy [2]. Below the tree canopy, the temperature profile
is consequently characterized by a lower amplitude [1].

Regarding wind speed, forests generate higher turbulence compared to other surfaces,
due to their roughness [1]. Thus, the impact of the canopy on microclimate below is
particularly high in regards to wind speed. The active surface of the energy balance in the
open field influences the micrometeorology in the boundary layer. Forests increase the
active surface in terms of vertical distance from the forest ground to the canopy section with
highest leaf density. Above the trees, wind speed increases logarithmically and from the
top of the trees to the active surface it decreases sharply [1]. Slightly below, the wind speed
is most attenuated by the large aerodynamic resistance. Beneath the canopy, a mini-jet

Atmosphere 2021, 12, 710. https://doi.org/10.3390/atmos12060710 https://www.mdpi.com/journal/atmosphere

https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-1448-9535
https://orcid.org/0000-0001-7542-2820
https://doi.org/10.3390/atmos12060710
https://doi.org/10.3390/atmos12060710
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/atmos12060710
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos12060710?type=check_update&version=3


Atmosphere 2021, 12, 710 2 of 23

arises (i.e., a shallow layer with a local maximum of wind speed) and on ground the wind
speed becomes zero [1]. This slightly greater airflow below the canopy causes the air to be
mixed and the air temperature gradient between the ground and the canopy is low [3]. The
size of clearings [4] and wind speed [5] play a role in the question whether wind can form
in gaps in the forest or whether the forest cover is considered closed. Wind speed in the
open field is, thus, typically greater than in the forest, but above the forest, the turbulence
in the atmosphere extends to higher layers [1]. Wind speed depends largely on the type
of forest, but slope orientation, topography, and the stability of the air layers also have
an influence [3]. In general, it can be said that because of the increased active surface, the
daily maximum air temperature and wind speed are lower in the forest than in the open
field [6–8].

Understanding climatic effects between forested and open areas is important to, for
example, accurately simulate snow processes or eco-hydrological mechanisms in forested
environments. Snow models require micrometeorological values from the forest for cal-
culating hydrological processes such as snowmelt or snow distribution [9,10]. Typically,
meteorological measurements are collected at open field sites [11] and not within forests.

This article can make a contribution to comprehending the interactions between open
field and forest sites, regarding winter micrometeorology. Forest characteristics can, for ex-
ample, be described by its leaf area index (LAI) [12]. Such a parameter enables calculations
of climatic differences between forest and open field with transfer functions that use forest
parameters and meteorological variables. Examples in snow hydrology, among others, are
“SNOWMODEL” [13], “AMUNDSEN” [14], “ESCIMO” [15], and “WaSiM” [11]. Recent
publications have increasingly focused on the influence of the canopy on wind speed and
radiation, and consequently air temperature, and assign an important role to these factors
for snow distribution and snowmelt [9,10]. Due to variations in snow accumulation in
forests and canopies, extensive datasets are crucial for empirical model development [16].
The temporal resolution of meteorological data also plays an important role for snowpack
models. According to [17], significant underestimations of snow water equivalent (SWE)
and melt rate occur at time steps larger than one hour because the precipitation phase is
poorly represented. Larger time steps might cause an increase in errors between observa-
tion and simulation. It is also confirmed that in areas with a lot of snow, three-hourly time
intervals can be sufficient for good model results [18].

This publication presents a comprehensive dataset of two-hourly measurements
of air temperature and wind speed at forest stations and neighboring stations in the
open field, collected during different winter seasons and study sites in central Europe.
In addition, characteristics of the study areas and forest parameters are compiled. The
dataset’s visualization presented here, as well as the development of new transfer functions,
might be an inspiration for its usage. Especially its advantages of sample size and spatial
diversity can offer benefits in the development of new models or testing hypotheses.

2. Materials and Methods
2.1. Study Sites and Observation Network

The research areas used for data collection are located in southern Germany (Black
Forest and Bavarian Alps) and the Austrian Alps (Brixenbachtal) (see Figure 1).

Black Forest: The Black Forest is a typical midlatitude medium elevation mountain
range in the southwest of Germany. Three study catchments, Kinzig (KIN), Breg (BRE), and
Brugga (BRU), were equipped with observation stations. The mountain range has eleva-
tions ranging from approximately 400–1493 m a.s.l. Average winter season air temperatures
range from 4.1 ◦C in the lower parts to −2.1 ◦C in the highest elevations. Mean annual
precipitation ranges from approximately 900 mm in the lower parts to about 1950 mm in the
higher regions. More than half of precipitation falls during the winter months. Prevailing
main wind direction in the area is westerly. On average, only 3% of the study catchment
areas are covered by human settlements while 27% are open areas, used for grazing and
haymaking. The remaining 70% of the area is covered by forest. The forests in the Black
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Forest are about 80% coniferous (spruce, fir, pine) and 20% deciduous (beech, birch, oak).
The most common needle leaf species is the European spruce (Picea abies), while the most
common deciduous tree species is beech (Fagus sylvatica).
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Figure 1. Overview of the study areas. Figure created with QGIS 3.16.1. DEM data based on viewfinderpanoramas.org.

Nationalpark Berchtesgaden (NPB): This study area is located in the Berchtesgaden
Alps of southeastern Germany and is part of the Berchtesgaden National Park. The National
Park comprises an area of 210 km2. The region is characterized by an extreme topography
with mountain ranges covering an altitude from 603 to 2713 m a.s.l. Due to its status as a
biosphere reserve, land use primarily depends on environmental protection policies and is
only marginally influenced by economic activities. The main ecosystem types found in the
catchment are forest (47.7%), rock and rubble fields (25.3%), grass covered communities
(13,7%), mountain pine and green alder shrubs (7.2%) as well as lakes (1.7%). The main soil
types in the region are Syrosem (35.5%), Cambisol (30.1%), and Podsol (26.7%).

Dreisäulerbach (DSB): This study catchment is located in the Ammergauer Alps of
southern Germany. The Ammergauer Alps can be considered a typical subalpine mountain
range. The catchment ranges from 940 m a.s.l. to over 1700 m a.s.l. and covers an area of
about 2.6 km2. The bedrock within the catchment is mainly made up of Cenoman-Turon
and local limestone (Wettersteinkalk). In the higher regions, considerable areas are covered
with slope weathered rock. The soil layer catchment consists mainly of cambisol and
rendzina. Other soil types only occur in minor proportions. The surface, especially in the
lower regions, is predominantly covered with coniferous forests. In the upper, steeper,
regions of the catchment, significant patches of grassland can be found. The mean annual
precipitation is about 1757 mm. The monthly average temperature varies from −1.5 ◦C in
January to 16.1 ◦C in July.

Brixenbachtal (BRX): The Brixenbach valley is a small subalpine catchment situated
in the Kitzbühel Alps in Northern Tyrol, Austria. The size of the Brixenbach catchment is
9.3 km2, with a mean elevation of 1370 m a.s.l. The highest point (Gampenkogel) has an
elevation of 1956 m a.s.l. and the discharge gauge of the Hydrographic Service of Tyrol
(installed in 2004) at the catchment outlet is at 818 m a.s.l. The mean annual precipitation
sum at the precipitation gauge at Nachtsöllberg (990 m a.s.l.), close to the catchment outlet,
is about 1400 mm, and the mean duration of snow cover amounts to 132 days (1990–2010,
Hydrographic Service of Tyrol). The bedrock belongs to the Paleozoic Greywacke zone
and is, thus, dominated by porphyroids and shales (slightly metamorphic sand-, siltand
claystones), partly overlain by Mesozoic dolomites. Mostly shallow cambisols, podsols,
partly gleysols and—in the dolomite areas—rendzinas have developed on the Quarternary
sediment coverage (moraines, talus deposits, colluvium). The catchment area is mainly
covered by oligotrophic cattle pastures (44%) and forests (35%). Rock faces and talus slopes
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cover 14% of the catchment, and only small areas are used as hay meadows for settlements,
ski-slopes, and forest road. The forests are dominated by conifers, with spruce (Picea abies)
being the predominant tree species. Larch trees (Larix), firs (Abies), mountain pines (Pinus
mugo), Swiss stone pines (P. cembra), grey and green alders (Alnus incana, A. viridis) occur
in smaller proportions.

Networks consisting of different numbers of microclimatic measurement stations were
established during different winter seasons in the study areas (see Table 1). The snow mon-
itoring station (SnoMoS) is a standalone measurement system able to measure snow depth,
air temperature, relative humidity, incoming shortwave radiation, surface temperature,
barometric pressure, and wind speed/precipitation. A comprehensive description of the
SnoMoS can be found in [19]. A stratified sampling design was used to cover a wide range
of elevations and exposures within the study areas. To specifically investigate the influence
of the vegetation cover, pairs of SnoMoS were generally installed in close proximity to each
other, with one being located underneath the canopy while the other was situated on an
adjacent open field site. In this study, only measurements of air temperature and wind
speed are presented, since those are the variables with the most measurements available
in total.

Table 1. Number of measurement stations separated by study area, year, and micrometeorological quantity.

Study Area 2012 2013 2014 2015 2016 2017

Brugga (BRU) -
-

TEMP (5)
-

TEMP (14)
-

TEMP (5)
WIND (5)

-
-

-
-

Breg (BRE) TEMP (7)
-

TEMP (9)
-

TEMP (8)
-

-
-

-
-

-
-

Kinzig (KIN) TEMP (9)
-

TEMP (10)
-

-
-

-
-

-
-

-
-

Dreisäulerbach (DSB) -
-

-
-

-
-

-
-

TEMP (7)
WIND (7)

TEMP (3)
WIND (3)

Brixenbachtal (BRX) -
-

-
-

-
-

TEMP (3)
WIND (3)

-
-

-
-

Nationalpark
Berchtesgaden (NPB)

-
-

-
-

-
-

TEMP (8)
WIND (7)

TEMP (26)
WIND (25)

TEMP (14)
WIND (14)

2.2. Dataset

The presented dataset consists of time series of two-hourly measurements of air tem-
perature and wind speed. The data was initially collected to study the spatio-temporal
variability of micrometeorological variables describing the energy balance of the snow-
pack [19]. The micrometeorological data is listed in station pairs of neighboring stations.
Metadata for each location and station pair, respectively, are also part of the dataset. The
available parameters are summarized below in Table 2. The entire dataset is available for
free and accessible (see Data availability section).

According to the two-hour intervals, there are 12 measurements per day. The air
temperature (given in ◦C) and wind speed data (given in ms−1) are structured in the same
way and as follows: The time stamp (Date), the measurement in the open (Air_Temp_Open,
Wind_Open), and the measurement in the forest (Air_Temp_Forest, Wind_Forest). The
dataset consists of 128 station pairs with air temperature measurements and 64 station
pairs with wind speed measurements (the total number of values amounts to 173 682 and
115 211, respectively). Near surface air temperature and wind speed are measured at 2 m
above surface.

Elevation, slope, and exposure of the locations were derived from digital elevation
models. Effective LAI and canopy openness was derived from hemispherical images. The
distances were measured in the field or derived from georeferenced aerial images.
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Table 2. Parameters of the metadata with the respective unit and a short explanation.

Parameter Unit Description

Pair_ID (-) Identification of the station pair
Location (-) Local description

Elevation_Open (m a.s.l. ) Elevation open field
Elevation_Forest (m a.s.l. ) Elevation forest

Exposure_Open (◦) Exposure open field counterclockwise
(0◦/360◦ = north; 90◦ = west, etc.)

Exposure_Forest (◦) Exposure forest counterclockwise
(0◦/360◦ = north; 90◦ = west, etc.)

Slope_Open (◦) Slope open field
Slope_Forest (◦) Slope forest
Effective_LAI (m2m−2) Effective leave area per ground area

Canopy_Openness (%) Openness of the canopy

Distance_Forest_Edge (m) Distance of the forest station to the closed
forest edge

Distance_Open_Station (m) Distance between the paired stations

The used observation stations SnoMoS are additionally equipped with a photo diode
that can be used to measure incoming global radiation. During days with high radiation
inputs, distinct peaks of air temperature during noon were observed in the raw data of the
measurements at the open field stations, which can be explained by radiative heating. A
strong linear correlation between measured air temperature peaks and incoming radiation
was observed and consequently used to correct the air temperature measurements for the
solar heating bias at the open field stations. Due to the shading of forest trees such a bias
was not observed at the forest stations and, thus, no correction of those measurements
was conducted.

The measurements were recorded during six winter seasons. For each station pair,
the available time period is shown in Appendix A for air temperature (Figure A1) and in
Appendix A for wind speed (Figure A2), respectively.

The effective leaf area index (LAI) is the most important factor of the metadata because
it summarizes the distribution of leaves, which has great influence on biological and
physical processes in the forest and, thus, on micrometeorology [12]. The existing transfer
functions apply the effective LAI [15], referring to the definition according to [12], which
determines that tree trunks, branches, and leaves are included, but not aggregating effects,
which describe that leaves are not randomly distributed and cover each other. The LAI
value mentioned in this article and contained in the dataset adheres to this definition.

Figure 2 visualizes the range of terrain characteristics (i.e., slope and altitude) covered
by the dataset. The 128 air temperature station pairs are comprised of 59 stations in the
open field and 73 stations in the forest with different metadata. The 64 wind station
pairs are comprised of 27 stations in the open field and 34 stations in the forest with
different metadata.

2.3. Data Analysis

The dataset is used to elaborate forest effects and processes on winter air temperature
and wind speed. In particular, their daily cycles as well as the interrelations between
the metadata and the meteorological variables are considered. The dumping effects by
the forest are explored with the effective LAI (air temperature) and the distance to the
forest edge (wind speed). Furthermore, the impact of exposure on daily air temperature
ranges are under examination. Finally, the dataset is used for evaluation of existing transfer
functions and the development of new transfer functions.
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Figure 2. Spatial distribution of stations in the open field and in the forest: (a) Distribution of air temperature stations
regarding elevation, exposure, and slope split in open and forest stations; (b) Distribution of wind speed stations regarding
elevation, exposure, and slope split in open and forest stations.

2.4. Existing Transfer Functions

Empirical transfer functions for air temperature and wind speed are already available
in the literature [11,13–15,20–23] and used in climate and snow models.

Refs. [11,13–15] follow the empirical approach of Obled [23] for calculating the air
temperature in the forest based on the air temperature in the open field. The equation:

Tf = To − Fc{To − [Rc(To − Tmean) + Tmean − δT]} (1)

expresses that the air temperature in the forest Tf [K] can be calculated equal to the top-of-
canopy air temperature To [K] with an attenuation of the diurnal profile due to shading
and nighttime thermal radiation emitted by the canopy. Rc is a dimensionless scaling
parameter (=0.8), Tmean [K] is the mean daily air temperature in the open field and δT [K] is
a temperature offset based on Tmean [20], as can be seen in Equation (2):

δT =
(Tmean − 273.16)

3
. (2)

The results of this formula were compared with meteorological values from Col de
Porte (1420 m a.s.l.) in the French Alps and found to be good [20]. The condition −2 K
≤ δT ≤ +2 K applies. Fc (-) is a function, which expresses the canopy density depending
on the effective leaf area index LAI∗ (m2m−2) with values between 0 and 1 and can be
calculated by

Fc = a + b× ln(LAI∗), (3)

where a equals 0.55 (-) and b equals 0.29 (-) following [24].
Three different approaches are mentioned for the calculation of wind speed. The

variable W f (ms−1) stands for wind speed in the forest and the variable Wo (ms−1) stands
for wind speed in the open field. Hardy et al. [25] set up the equation:

W f = max[(Wo × 0.042)− 0.04, 0], (4)

after a three-day measurement of wind speeds 2 m above the surface and above the canopy
of a Banks pine forest. This formula is based on observations.
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Link and Marks [26] have adopted a simple estimate by assuming the wind speed in
the forest with 20% of the wind speed from the open field in Equation (5):

W f =
1
5
×Wo. (5)

Liston and Elder [13], Strasser et al. [14], Marke et al. [15], and Förster et al. [11] follow
a common approach, which is based on Cionco [22] and supplemented by Essery et al. [21].
It says that wind speed at the reference height in the forest can be calculated using the
following equation:

W f = Wo × e−0.4× fi . (6)

The required canopy flux index fi is determined using the Equation (7):

fi = β× LAI∗, (7)

where β is a dimensionless scaling factor with the value 0.9, through which the effective leaf
area index LAI∗ (m2m−2) is adjusted to be compatible with Cionco [13]. Marke et al. [15]
follows this approach too, but has expressed it as follows:

W f = Wo × e−α×( 1−z
h ), (8)

h (m) is the canopy height and z (m) is the canopy reference level. The canopy flow index α
(-) is calculated using LAI∗ (m2m−2) and the scaling factor β = 0.9 (-):

α = LAI∗ × β. (9)

In addition, there are numerical and iterative approaches that iteratively calculate
meteorological variables based on energy balances for each step and achieve good re-
sults [27,28]. However, there are also models that assume the values of the open field to be
the values in the forest, if they are not available (e.g., SNTHERM) [25].

2.5. Developement of New Transfer Functions

For the development of new transfer functions, the differences and correlations be-
tween forest and open field are considered via literature and the observed data. In the
event of recurring diurnal profiles, functions are extended to include factors that map these
oscillations. Other factors that the functions contain are evaluated via simple and multiple
linear regression analysis or non-linear regression. Care is taken to use as few parameters
as possible in order to achieve good results for datasets with less information.

The linear least squares method is a common practice for regression analysis in
geosciences [29], where the straight line between all pairs of values is determined with the
observed and the calculated value, which produces the least sum of squared deviations
to the values. The idea behind this is to create a linear combination of parameters that
relate the values to each other. For more dynamical cases, the more complex, iterative
non-linear least squares method is used, where initial values for the parameters sought
must be estimated in advance [30]. Especially for wind speed, the non-linear method offers
an approach for dampening large outliers.

2.5.1. Air Temperature

The air temperature in the forest is mostly within the daily range of the air temperature
in the open field, thus, its profile is dampened. The transfer function according to Obled [23]
(Equations (1) and (2)) and two new approaches are applied.

Approach T1 starts with a linear regression, which estimates the forest minimum and
maximum daily air temperature depending on the open daily minimum and maximum air
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temperature via the variables A and B. This regression results in following two equations
for estimating the forest minimum and maximum based on every open field value:

Tf ,min,est(t) = Amin × To(t) + Bmin, (10)

Tf ,max,est(t) = Amax × To(t) + Bmax. (11)

The maximum value is calculated under the assumption that the current air temper-
ature [K] at time t is the daily maximum value, while the minimum value is calculated
under the assumption that the current air temperature is the daily minimum value. The
range between Tf ,min,est(t) and Tf ,max,est(t), thus, gives the scope of the attenuation by de-
termining the estimated air temperature between those values. The function for calculating
the air temperature in the forest for every time step Tf (t) [K]

Tf (t) =

(
To(t)− To,daily,min

To,daily,max − To,daily,min

)
×
(

Tf ,max,est(t)− Tf ,min,est(t)
)
× Fc + Tf ,min,est(t), (12)

reduces this estimation by the distance of the value in the open field at time t from the daily
minimum value. Due to the dumping effect of the forest on the air temperature, Tf ,min,est(t)
must be higher than To(t), respectively, Tf ,min,est(t) must be lower than To(t). For this
reason, the difference between Tf ,max,est(t) and Tf ,min,est(t) is negative and Tf ,min,est(t) (the
last part of Equation (12)) is reduced. By multiplying with the factor Fc (Equation (3)),
the dampening of the air temperature is made dependent on the leaf area index. With an
increasing LAI∗, the factor Fc decreases and the forest’s dampening impact in this transfer
function increases as well. To,daily,min (K) stands for the daily minimum air temperature
and To,daily,max (K) stands for the daily maximum air temperature in the open field.

The second approach T2

Tf (t) = A× Fc ×
((

To(t)− To,daily,min

To,daily,max − To,daily,min

)
− 0.5

)2

×
(

To(t)− To,daily,mean

)
+ To,daily,mean, (13)

follows the idea that a quadratic equation at the beginning of the function determines the
upward and downward deviation from the daily mean. The first part of the function works
like a parabola, which operates with the comparison of the current air temperature and the
respective daily mean. Low and high air temperatures, in the range of daily distribution,
result in large numbers and for air temperatures close to the related daily mean, this part
of the equation decreases towards zero. This factor is additionally made dependent on a
scaling factor A (-) and the factor Fc (-). The second bracket of Equation (13) calculates the
deviation of the daily mean and the air temperature in the open field at time t. Subsequently,
this deviation is offset against the daily mean in the open field To,daily,mean (K). The air
temperature in the forest, thus, tends towards the mean value in the open field, whereby
the amount of attenuation depends on the daily maximum and minimum values.

2.5.2. Wind Speed

The wind speed in the forest depends significantly on the wind speed above the forest
and the structure of the trees. In the present dataset, however, the wind speed values in the
open field do not come from above the canopy, which is why the assumption of a logarith-
mic wind profile does not necessarily work within the used measurement set-up (ground
stations at open and forested sites). For this reason, approaches are pursued that assume
linear proportions between the wind speed in the open field and the forest. The trans-
fer functions according to Cionco [22] (Equation (6)) and Hardy et al. [25] (Equation (4))
are applied.

In addition, two further developments are considered. The first approach W1

W f (t) = max
(

Wo(t)
A × Fc−Wo,mean, 0

)
(14)
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takes up the function according to Hardy et al. [25]. W f (t) (ms−1) and Wo(t) (ms−1)
describe again wind speed in the forest and in the open field. Wo,mean (ms−1) stands for the
average wind speed at the open station. In order to better represent higher wind speeds,
the wind speed is quadratically adjusted with the dimensionless exponent A. In addition,
the factor Fc (-) is intended to represent the different densities of the foliage. Finally, this
value is set in relation to the mean value at the respective station in the open field. The idea
behind this is to receive a more specific function for the respective station pairs.

The second approach for wind speed W2

W f (t) = max
(
(Wo(t)× Fc)

A −Wo,mean, 0
)

(15)

is a further development of Equation (4). The underlying idea is including the factor Fc (-)
in the quadratic function to increase the forest effects due to exponent A (-).

2.6. Leave-One-Out Cross-Validation & Efficiency Criteria

The new transfer function approaches are applied to the entire dataset by means of a
cross-validation procedure and compared with the existing functions in order to proof and
compare efficiency. More precisely, a repeated leave-one-out cross-validation (LOOCV)
procedure is used because the dataset is limited [31]. In this procedure, parameter tuning
is applied, utilizing a subset of the entire collection of values, in order to test the accuracy
of the function—even for conditions not covered in the training dataset. Therefore, the
predictive quality of the functions can be determined on new datasets [31]. The present
dataset has many individual station pairs, which represent completed time series for
different winter seasons. Here, each station pair becomes the test set once, while all other
station pairs form the training set. Since not every measured value is omitted once, but
always an entire pair of stations, this method is more like a k-fold cross-validation [32],
with the difference that the omitted pairs of stations have different numbers of values.
For the respective training set, the parameters of the respective function are calculated
using mathematical methods. The function is then applied to the neglected station pairs
and the efficiency criteria (see Sect. Appendix B) are determined and presented by violin
plots in the results section. This aims to quantify their accuracy and to make the suitability
of the transfer functions comparable. In addition to the boxplots, the violin plots show
the probability density. Here, the width of the violins is normalized, so all violins have
the same width at the position with the most values, and its respective scale. Therefore,
the violins are not comparable among each other regarding width. Conclusions from the
violin plots can be drawn by considering the density distribution for each violin. The
coefficient of determination r2, the Nash-Sutcliffe-Model Efficiency NSME, the Root Mean
Square Error RMSE and the Mean Average Error MAE are used for the evaluation. The
reason for multiple efficiency criteria lies in the different approaches as well as the fact that
no criterion should be considered alone [33,34]. Chai and Draxler [35] emphasizes that
multiple criteria are often necessary to assess model performance. All efficiency criteria,
with their interpretations, are described in detail in the attached Appendix B.

3. Results
3.1. Data Analysis
3.1.1. Air Temperature

The mean daily cycle of air temperature can be seen in Figure 3. Through the violins,
the shift of the air temperature is reconstructed. The violins are split to compare the
probability density of open (left) and forest (right) data by their shifts. Because of the
normalized width of density, the shape of the violins only provides information about
the data distribution and not about the number of values. The plots show that the air
temperature in the forest is slightly higher than for open fields between 22:00 and 08:00
o’clock. During the day, open field air temperatures clearly exceed forest air temperatures.
This observation is also found in the boxes (showing 50% of the sample size) and the
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whisker (representing 1.5 times of the box border values). The yellow line symbolizes the
mean air temperatures in the open field at each time step and the red line represents the
mean air temperatures in the forest. The course is drawn by a spline line, so values between
two time steps are interpolated. The mean dampening due to forest effects results in lower
average air temperatures between 08:00 and 16:00 o’clock and higher air temperatures from
18:00 to 06:00 o’clock.
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Figure 3. Diurnal air temperature course in comparison for open field stations and forest stations.

In Table 3, mean differences are provided. The largest differences between the mean
values in the open field and in the forest appear at 04:00 o’clock in the morning with
−0.576 K and at noon with +1.977 K, respectively.

Table 3. Differences between the mean air temperature values of all stations in the open field and in the forest.

0 h 2 h 4 h 6 h 8 h 10 h 12 h 14 h 16 h 18 h 20 h 22 h

−0.552 K −0.562 K −0.576 K −0.495 K 0.201 K 1.438 K 1.977 K 1.503 K 0.36 K −0.37 K −0.52 K −0.541 K

The reduction of the daily air temperature range in terms of amplitude represents
the relation between the daily mean air temperature ranges in the forest and the open
field. For instance, if the range in the forest during a day is 1 K and in the open field
10 K, the reduction amounts to 90%. This proportion is contrasted in Figure 4 to the
respective effective LAI of the forest site in the vicinity. The full range of effective LAI
values is divided into four classes, which image ranges of equal size. The boxes have an
upward shift with increasing effective LAI. The first and the last class of effective LAI
values though have less stations to represent them, but the sample size of the smallest class
is still 14,796 measurements.
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Figure 4. Reduction of the daily range for air temperature due to the forest’s density.

Another impact of forest cover on air temperature is visualized in Figure 5 by compar-
ing the average of the daily air temperature difference at 04:00 and 12:00 o’clock of each
station pair. These differences are visualized in polar plots, in order to shed light on the
influence of exposure and elevation, respectively. Due to the different sample sizes of the
station pairs, every month is considered individually, hence, the evolvement of the forest
effect on surface climate can be seen throughout the winter season. It can be seen that a
southern exposure causes a higher difference in the open field, while this is not clearly
seen in the forest. It is also striking that the differences in the open field increase sharply in
February and March, while only slight increases can be seen in the forest.
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Figure 5. Average air temperature differences between 12 (top) and 4 o’clock (bottom) for consecutive months in the winter
season. The orientation shows the exposure, the distance to the center denotes the elevation, and the color reflects the mean
air temperature differences.

3.1.2. Wind Speed

The relationship between the reduction of wind speed and the distance of the forest
station to the forest edge is visualized in Figure 6. The distances are divided into four
classes, each representing a section of 10 m, excepting the fourth box, because its stations
are subject to a large spread of distances to the forest edge with a minimum of 35 m and
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a maximum of 80 m, wherefore it represents all distances above 30 m. To quantify the
forest effect on wind speed, a reduction value is introduced as a percentage, similar to
air temperature. Within the first three boxes, the reduction of wind speed decreases with
increasing distance, while the fourth box does not follow the scheme. In the first box, it is
striking that the median is lower than in the other three boxes, which expresses that more
than 50% of their values are reduced with 100%.
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Figure 6. Dependance of wind speed reduction due to distance to the forest edge.

The average daily course of the wind speed can be seen in Figure 7. The particularity
is that only days with an air temperature range of more than 10 K are considered. The
idea behind is to focus on days with short-wave radiation triggering positive momentum
flux and, hence, a higher degree of aerodynamic coupling, which entails diurnal features.
The violins represent the density functions of wind speed measurements, according to the
explanations of Figure 3 for the air temperature. In the violins at 12:00 and 14:00 o’clock,
an increased wind speed can be seen. It is more obvious in the open field, but a slight
increase is also observed in the forest. The box in the forest is only visible from 12:00 until
16:00 o’clock, so at other timesteps at least 75% of the data is windless. Even the whiskers
are only displayed for the open stations. Like in the diurnal air temperature profile, the
dampening of wind speeds due to the forest is noticeable, as visualized with the red and
yellow lines representing mean values.

3.2. Transfer Functions
3.2.1. Air Temperature

An improvement of the four efficiency criteria due to the new transfer functions can
be seen in Figure 8. Here, the violins are not split in open and forest and the differences
in density for the efficiency criteria of the varied transfer functions are shown (different
colors). The boxes, the medians, the whiskers, and the shape of the violin reflect better
results for T1 and T2 than the function according to Obled [23]. Only T2 has an outlier
in terms of NSME. Regarding NSME, the upper whisker and the upper edge of the box
show similar characteristics for both new approaches, while the median and the lower
edge of the box and the lower whisker are higher with the approach T2. In addition, the
violin is more dampened, which suggests that the function works well for a larger span of
station pairs and the lower edge of the box and the whisker is better with T2. The peak
values of approach T1 at the coefficient of determination, RMSE and MAE indicate that this
function works very well for some stations. Besides that, the widest points in the violins of
the existing transfer function (red) are further away to the ideal values of each efficiency
criteria than for both new approaches.
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Figure 7. Diurnal wind speed course in comparison for open field stations and forest stations. Only
days with temporal differences above 10 K are considered.
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Atmosphere 2021, 12, 710 14 of 23

The mean values of the efficiency criteria in Table 4 show that approach T2 achieves
the best value in all criteria alone or amongst others.

Table 4. Comparison of mean efficiency criteria for air temperature transfer functions.

Transfer Function NSME (-) r2 (-) RMSE (K) MAE (K)

Obled (1971) 0.85 0.88 1.70 1.25
T1 0.89 0.91 1.43 1.00
T2 0.90 0.92 1.36 1.00

The approach T2 yields the following function for the dataset used with air tempera-
ture values in degrees:

Tf (t) = 3.511× Fc ×
((

To(t)− To,daily,min

To,daily,max − To,daily,min

)
− 0.5

)2

×
(

To(t)− To,daily,mean

)
+ To,daily,mean. (16)

3.2.2. Wind Speed

Similar to air temperature, a clear decision which transfer function is best proves
difficult, as no approach sticks out. The approaches are finally evaluated on the basis of
their meteorological usefulness and applicability.

Figure 9 compares the violin plots for each wind speed transfer function, regarding the
efficiency criteria according to the violin plots for air temperature. With the NSME, it can be
seen that the approach of Hardy et al. [25] gives less very poor results than the approach of
Cionco [22]. The approaches W1 and W2 give better results than the existing functions for
a large proportion of the stations (position of highest density), but there are some stations
where negative NSME values occur. The new approaches show no improvements for the
RMSE compared to Cionco [22]. For the RMSE and the MAE, the new approaches and the
function according to Hardy et al. [25] provide the best results. The violins clearly show
that the majority of the values are very low, compared to Cionco.
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The mean values in Table 5 show an improvement of the efficiency criteria NSME and
RMSE by the new approaches, but the mean NSME is found to be poor in general. The
coefficient of determination and the MAE can also be achieved by the existing functions.
However, taking all efficiency criteria into account, the new functions reach similar or
better results for the criterions except W2 for the coefficient of determination.

Table 5. Comparison of mean efficiency criteria for wind speed transfer functions.

Transfer Function NSME (-) r2 (-) RMSE (ms−1) MAE (ms−1)

Cionco (1978) −1.57 0.39 0.57 0.29
Hardy et al. (1997) −0.04 0.37 0.51 0.19

W1 0.01 0.39 0.44 0.19
W2 −0.01 0.38 0.45 0.19

Based on Equation (14), the approach W1 yields the following function for the
present dataset:

W f (t) = max
(

Wo(t)
0.737 × Fc −Wo,mean, 0

)
. (17)

4. Discussion

The presented dataset enables a detailed investigation of relevant processes affecting
the differences measured at forested and open locations. The diurnal air temperature
profile (see Figure 3) clearly confirms the common knowledge for temporal dampening in
the forest. The temperature reduction due to the effective LAI (see Figure 4) also shows
a clear trend. The first and the last LAI classes (effective LAI less than 1.25 m2m−2 and
effective LAI more than 2.25 m2m−2) contain 12 respectively 18 out of 128 station pairs,
which occurs because the class boundaries have been set with an equal size for all classes
and most LAI values are in between. Nevertheless, the sample size of 14 796 for the smallest
class is still relatively high. When comparing the differences between the air temperatures
at 04:00 and 12:00 o’clock, throughout the season (see Figure 5), it has to be mentioned
that in March, data are partly limited due to instrument failure (limited energy support).
The trend for higher daily air temperature ranges at the southern exposure, which occurs
due to higher short-wave radiation, can be clearly seen. Furthermore, it is evident that in
February and March the exposure of open stations seems to be less important compared to
December and January. The reason for this could be the higher position of the sun during
the day. The elevation does not seem to have an influence on the temperature difference,
which makes sense, because no absolute air temperature values are shown in the plot.

Looking at the relation between wind speed reduction and the distance of the forest
station to the forest edge (see Figure 6), the first three distance classes reflect a clearly
increasing reduction of wind speed due to higher distances to the forest edge. The last class,
with distances above 30 m, does not confirm a further decrease in wind speed. Several
reasons could be held responsible for this observation: The stations have a wide range of
distances with 35–80 m to the forest edge, where it can be questioned whether it is useful
to organize them in the same class. However, increasing the number of classes would
lead to classes containing only one single station and consequently to a loss of statistical
significance. Another point is that eight out of these 12 stations have elevations greater
than or equal to 1200 m a.s.l., which is fairly high compared to the remaining station pairs.
At higher elevations, forest density tends to be generally lower. Therefore, the exposure to
wind speed is potentially higher, suggesting that the reduction of wind speed is lower at
those locations.

The diurnal course of wind speed (see Figure 7) allows some assumptions about the
importance of short-wave radiation with regard to wind speed. The violins and boxes
clearly suggest an offset for open stations between 10:00 and 16:00 o’clock, so the deviation
could be related to radiation (wind effects due to surface warming etc.). The remaining
wind speeds in the open stations, with a mean of around 0.5 ms−1, and in the forest stations,
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with a mean of about 0.2 ms−1, determine the average wind speeds that occur without
radiation. The upper limit of the box of the forest stations is often 0, which confirms that
calm situations in the forest are prevalent, or the measuring instruments have a certain
minimum resistance until they record values.

When looking at the existing transfer functions, it is noticeable that, compared to
the complexity of the interactions of a forest canopy with the atmosphere, very simple
approaches are chosen for the description of the meteorological variables in the forest. The
transfer functions are mostly only dependent on the effective LAI, which is often converted
to a factor Fc, because this includes a logarithmic reduction. It is a great advantage that
the transfer functions are kept relatively simple and depend on few parameters. The
applicability to a large number of datasets is, thus, greater. However, the transfer functions
are developed on the basis of a few datasets, which is why their validity might depend on
the climatic conditions of the site for which fitting the functions has been conducted.

The methodological core of the development of new transfer functions lies in cross-
validation. Here, the extensive dataset offers further advantages, because validation is
possible at individual stations and yet a huge set of values (128 stations with 173,682 mea-
surements for air temperature and 64 stations with 115,211 measurements for wind speed)
are included for the development of the functions. The omitted samples differ in the
number of meteorological values, which must be considered when evaluating the func-
tions against the efficiency criteria. The mathematical comparability between the pairs of
stations is, therefore, not given in a strict sense, but the advantage remains that completely
independent stations can be used for the validation of models and, thus, its validity is
strengthened.

When applying the transfer functions from the literature, the strengths and weaknesses
of these become apparent. The incompleteness of the data is one reason for outliers in the
efficiency criteria. In addition, when evaluating the RMSE and the MAE, the range of the
respective meteorological variable must be taken into account. In case of air temperature, it
can be seen that the measured values are accurate and of high quality because the efficiency
criteria achieve good values (see Figure 8 and Table 4). One reason could be that the
air temperature is not subject to such large fluctuations over the distance between the
measuring stations as, for example, wind speed. The dampening of the daily fluctuations
was found to be the most challenging part because of different dampening effects during
day and night. The problem of the existing transfer function is that the daily maximum
and minimum values are poorly represented. To overcome this deficiency, a parabolic
function is tested. With air temperature values at the upper or lower edge of the daily
range, the temperature in the forest is dampened depending on the difference between the
air temperature and the daily mean value in the open field. This dampening approach is a
more effective way of representing the daily minimum and maximum air temperatures
in the forest. Moreover, it makes sense to use the daily mean value in the field as starting
value for constructing the corresponding diurnal course in the forest to keep the structure
of the equation simple, because the mean values in the forest and outside are very close to
each other with 0.84 ◦C and 0.99 ◦C. Additionally, daily mean values in the forest can be
estimated via a previous linear regression for a more accurate starting value, but it means
more computation steps and slightly higher complexity. Particularly in very cold months,
the mean air temperature in the forest is even greater compared to the open field, why
further refinements of details could result in better simulations in deep winter.

A further linear regression creates a strong dependence to the dataset, wherefore
the scaling factor A can be seen as critical already. It has to be mentioned that regarding
different datasets, it is possible that equation T1 yields better results. Nevertheless, the
function offers an improvement when compared of the original approach.

For wind speed, it is noticeable that for the existing transfer functions, the simplest
approach works best (see Figure 9 and Table 5). A reason for this might be that wind
speeds observed in the open field are determined by the logarithmic wind profile above a
surface, which differs to the wind profile above the forest, due to differences in roughness
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induced coupling to the atmosphere. Thus, we are dealing with two different wind speed
profiles when transferring wind speed from the open field to the forest and complex
algorithms exceed their comparability. For this reason, it proves to be more reliable that
only a proportion of the wind speed in the open field is assumed for the forest. The results
of the efficiency criteria for the new transfer functions show NSME values around zero,
suggesting that the mean value of the observations works just as well as the presented new
transfer functions. From our selection of transfer functions, it is noticeable that it is hardly
possible to say clearly which function performs best, which is why the approach according
to Hardy et al. [25] with an exponent is chosen because it, thereby, works significantly
better at high wind speeds.

When developing new transfer functions, one goal is that they are applicable and
transferable to as many datasets as possible. Both the dataset and the methodology are
crucial to derive new functions. The dataset introduced in our study has advantages and
disadvantages. On the one hand, it is very extensive and reflects a wide range of study
areas. On the other hand, its subject to measurement uncertainties. Due to the low-cost
station approach used in the measurement campaigns, a lower accuracy is accepted here,
since the focus of this study is put on spatial variability rather than on collecting high
accuracy data for selected single sites. This way, the amount of data collected can be
increased in principle at low costs to even increase the variability in the dataset. Compared
to related datasets, which formed the basis for the named existing transfer functions, the
dataset reflects a high spatial and temporal variability, because six different study sites are
considered and data from up to six years are available.

In relation to the meteorological data, on average about 10% of the values are missing
due to temporal instrument or measurement failure. The recording periods of the different
stations also differ. These factors can lead to more values being available for some periods
in a winter season than for others, suggesting that a higher weight is given to some seasons
in the process of deriving the functions. In addition, the meteorological data in the field are
not collected above the canopy, but at nearby open areas, resulting in a certain horizontal
distance for each pair of stations. In some cases, measuring stations from the open field are
assigned to several stations in the forest in order to increase the number of available station
pairs for analysis. This can help to take the diversity of different locations into account, but
it can also lead to less significance while developing new transfer functions. In general, the
characteristics of the dataset are still viewed helpful, because the extensive range of values
means that functions in general and fitting the functions to the dataset relies on station
pairs in different environments.

5. Conclusions

The influence of a forest canopy on near-ground air layer micrometeorology is based
on interactions between the trees and the atmosphere as well as shading effects. The air
temperature profile in the canopy is dampened, which means that temperature amplitudes
occurring in the open field are less pronounced in the forest. High air temperatures are
attenuated because there is less radiation in the forest. Low air temperature amplitudes
are attenuated by the long-wave radiation emission by the trees and reduced aerodynamic
coupling. Wind speed is significantly reduced in the canopy. The canopy density and the
tree density of the forest are important characteristics here.

Factors such as exposure and density of the forest in relation to air temperature and
distance to the forest edge in relation to wind speed are considered, also supported by
statistical measures such as correlation. During deep winter (December and January), the
dampening of air temperature is more visible in southern exposures, while the dependence
of the exposure on this effect decreases during February. In spring (March), the dampening
can be observed most strongly, and it occurs noticeably at all exposures. Furthermore,
the daily air temperature range in the forest decreases with increasing effective LAI. A
dependence of the wind reduction on the distance to the forest edge is found, although
stations located at the higher altitudes in the study areas with large distances to the forest
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do not confirm this observation. Finally, increased wind speed is observed on days with air
temperature differences above 10 K most likely due to heating effects at the surface, which
even translates to the forest with smaller amplitude.

Existing transfer functions for the calculation of micrometeorological data in forests
are based on the same approaches, which is why the presented extensive dataset is not
only helpful to study micrometeorological processes, it also represents unique data for
the development of new model approaches or hypothesis testing. In the development
of new transfer functions, linear and non-linear regression analyses are applied based
on the method of least squares. The validation of the models is performed with a leave-
one-out cross-validation. A disadvantage is a demanding computational effort, because
the validation procedure has to be carried out 128 times for 128 pairs of stations for air
temperature. Furthermore, the dataset cannot be stratified into comparable sections as in
a standard cross-validation with training sets of equal sizes. However, this could even
be viewed as an advantage, since a cross-study area validation is performed in this way,
supporting the idea of transferability.

The air temperature is determined via a quadratic function, which makes the diurnal
features in the forest more dependent on the values in the open field. In this way, the
already good efficiency criteria are further improved. The wind speed is calculated with a
further development of the function according to Hardy et al. [25]. An exponent and the
factor Fc are used for the reduction in the forest.

Transfer functions are very useful, since data in the forest are often not available due
to a lack of observations stations. Especially snow modelling of subalpine (forested) areas
requires meteorological variables in the forest, since the energy balance and, thus, the snow
melt significantly differs under forest canopies compared to open sites. The water balance
in the forest is also altered by interception, sublimation, drifting, and differences in snow
cover. This, together with changing climatic conditions, directly affects the accumulation
and melting process and, thus, the height and duration of the snow cover in the forest. The
spatial and temporal variability of the presented data offers multiple possibilities for future
research. Furthermore, validation of models is possible due to the spatial representativeness.
The added benefit of the new transfer functions could be confirmed by their application to
model snow interception (e.g., [10]).
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Appendix A

The figures presented here describe the data availability for the winter season and for
each station pair. A value is determined as available, if both, the open field value and the
forest value are recorded. Time steps with only one or zero measurements are classified as
not available. The frequency for every month can be seen for air temperature in Figure A1
and for wind speed in Figure A2.
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Figure A1. Availability of air temperature values for each station pair.
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Figure A2. Availability of wind speed values for each station pair.

Appendix B

Efficiency Criteria

For the evaluation of the transfer functions, criteria are used to quantify their accuracy
and to make the suitability and accuracy of the functions comparable. The coefficient
of determination r2, the Nash–Sutcliffe Model Efficiency NSME, the Root Mean Square
Error RMSE, and the Mean Average Error MAE are used for the evaluation. The reason
for multiple efficiency criteria is due to different approaches and one criterion should,
therefore, not be considered alone [33,34]. Ref. [35] emphasizes that multiple criteria are
often necessary to assess model performance.

The coefficient of determination r2 is described by the square of the correlation co-
efficient r (according to Bravais–Pearson). The correlation coefficient r reflects the ratio
between the covariance and the multiplied sum of the squared deviations of the observed
and simulated values [36]. The covariance is calculated between the observed values and
the simulation values. Subsequently, the variances of the respective series of values are
formed, the root taken in each case and then multiplied. The ratio of these two calculations
gives the correlation coefficient. This coefficient can be used to make a statement about the
extent to which the regression lines agree (i.e., the match in terms of phase), or how good
the degree of linear correlation is. The correlation coefficient can, therefore, be positive or
negative and has a range from −1 to 1. The closer the value is to 0, the worse the linear
correlation. The square of the correlation coefficient is the coefficient of determination r2.
The O stands for observed values and the P for simulated values in the equation:

r2 =
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and the result is between 0 and 1. This indicates how many observed values can be
explained by the simulated values. If r2 is equal to 1, the distribution of the simulation is
equal to the distribution of the observation. Accordingly, the closer r2 is to 1, the better the
distribution of the simulation. It is important to mention that this is only the agreement
of the distribution, because the variance looks at the sums of the squared deviations
and, therefore, does not consider any systematic bias. This occurs when a model takes
extreme events into account, thereby ignoring the true relationship between the data, but
still reflects a high coefficient of determination [33]. r2 can, therefore, be very high even
though the model is not very good (e.g., it is subject to a systematic bias), or a very good
model does not necessarily stand out with a very high r2 [33], because the coefficient of
determination does not react to systematic proportional deviations between the model and
the observation [37]. For the reason that r2 only looks at correlation, this criterion cannot
be considered alone and other effectiveness criteria must be used [36].

The Nash–Sutcliffe Model Efficiency is calculated via the ratio of the sum of the
squared deviation between the simulated and observed values and the sum of the squared
deviation of the observed values [36]. This value is then subtracted from the factor 1, as
shown in the equation:

NSME = 1− ∑n
i=1(Oi − Pi)

2

∑n
i=1
(
Oi −O

)2 . (A2)

If the NSME is equal to 1, the simulated values fit the observed ones perfectly. The
NSME is an interesting criterion because it reflects, based on the sign, whether the model
performs better or worse than the mean of all observed values [33]. If the value is 0, the
model is as good as the mean of the observations. A negative sign means it is worse and a
positive sign means it is better than the mean. The NSME ranges to −∞, where the larger
the negative value, the worse the model. When there is a large dynamic in the timeseries,
higher values for the NSME occur because the denominator becomes small. Modelling
values near the mean produces, therefore, a worse NSME than modelling values, which
oscillate around the mean. Hence, dynamic timeseries cause better results in NSME. This
is a disadvantage of the calculation, because squaring the distances overestimates very
high values and neglects small values [33,36]. The NSME is, therefore, a better criterion for
the goodness of fit than the coefficient of determination, since it is sensitive to the match of
both phase and amplitude of observed and modelled data. However, more weight is given
to extreme values through squaring [37].

The Root Mean Square Error (RMSE) is additionally used for the evaluation because
it considers the difference between the observed and the simulated value. The mean square
error is the sum of the square of the differences between the simulation and observation
values averaged by the number of values [36]. The RMSE, thus, gives an estimate of the
actual closeness of the values to each other, wherefore the size of the value range of the
timeseries should be taken into account in the assessment. The closer the RMSE is to 0, the
better the model. The larger the value, the worse the transfer function. The equation for
the RMSE is

RMSE =

√√√√ n

∑
i=1

(Pi −Oi)
2

n
. (A3)

According to [33], an overall consideration of transfer functions using efficiency
criteria should include at least one criterion that involves phase, such as the NSME, and an
absolute error measure, such as the RMSE. The RMSE is also used in a large proportion of
the literature examining environmental effects [38].

By squaring, the RMSE gives more weight to values that are far from the mean, which
is why outliers are particularly significant. For the evaluation of the model, the mean error
is also interesting to assess how well the model fits in general without weighting individual
values. The Mean Average Error (MAE) is, therefore, also considered. This value, like the
RMSE, considers average errors in the unit of the meteorological variables used [38]. The
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MAE is calculated on the average of the individual deviations between the simulated and
the observed value with

MAE =
∑n

i=1|Pi −Oi|
n

. (A4)

According to [38], the RMSE does not provide a clear comparability of mean errors
because this value is based on the sum of squared errors, the distribution of the magnitudes
of the errors and the root of n. The MAE provides a clear criterion to describe and compare
the mean error and there is no functional relationship between the MAE and the RMSE.
The RMSE could only be an indicator for large error-magnitude variance. However, [35]
contradicts [38] by stating, not taking the RMSE into account would be negative because
the RMSE is more sensitive to model errors and data fits.
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