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Abstract: Forecasting concentration levels is important for planning atmospheric protection strategies.
In this paper, we focus on the daily average surface ozone (O3) concentration with a short-time
resolution (one day ahead) in the Grand Casablanca Region of Morocco. The database includes
previous day O3 concentrations measured at Jahid station and various meteorological explanatory
variables for 3 years (2013 to 2015). Taking into account the multicollinearity problem in the data,
adapted statistical models based on parametric (SPLS and Lasso) and nonparametric (CART, Bagging,
and RF) models were built and compared using the coefficient of determination and the root mean
square error. We conclude that the parametric models predict better than nonparametric ones. Finally,
from the explanatory variables stored by the SPLS and Lasso parametric models, we deduce that a
very simple linear regression with five variables remains the most appropriate for the available data
at Jahid station (R2 = 0.86 and RMSE = 9.60). This resulting model, with few explanatory variables
to prevent missing data, has good predictive quality and is easily implementable. It is the first to be
built to predict ozone pollution in the Grand Casablanca region of Morocco.

Keywords: air pollution; tropospheric ozone; meteorological variables; Morocco; forecast; statistical
models

1. Introduction

Over the past decades, several studies have been developed, clearly showing the
impact of air pollution on human health [1,2], the environment, the natural resources, and
the sustainable development of many regions [3]. Morocco is one of the countries with
an arid or semi-arid climate, especially those on the southern shore of the Mediterranean,
are exposed to air pollution. The barren soils and the high temperature give rise to
high O3 emissions due not only to automobile traffic and industrialization but also to
significant soil contributions, linked to the aridity of the climate and the proximity of the
desert [4]. Therefore, Morocco is not far from this deterioration of ecological conditions,
particularly in large areas where 13.4% of Moroccan population and most the human
activities are accumulated (Industries, vehicles, etc.) such as the Grand Casablanca Region
(GCR) [5]. O3 is a secondary trace gas in the atmosphere, and it is not directly emitted from
a natural or anthropogenic source but rather formed by a complex set of chemical reactions
involving nitrogen oxides (NOx), carbon monoxide (CO), methane (CH4), and volatile
organic compounds (VOC) in the presence of the sun [3]. Surface O3 concentrations are
also influenced by meteorological conditions that have a significant role in the transport of
concentrations of this pollutant such as temperature, pressure, humidity, wind direction,
sunshine duration, etc. [4,6,7]. O3 threatens human health and environment [3,8]. In fact,
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epidemiological studies have shown that current ambient exposures are associated with
reduced basic pulmonary function, exacerbation of asthma, and premature mortality [1,9].
To avoid this problem, the prediction of O3 concentrations remains a crucial and necessary
step in controlling pollution and in mitigating its adverse effects. However, the series of
chemical reactions before the emission of ozone into the troposphere during the formation
process complicates its forecast [10,11].

In the absence of a statistical forecast model to predict daily ozone from one day to the
next for the most critical air pollutants in GCR, the current study is considered the first of its
kind in Morocco. The statistical approach is based on historical data in order to predict the
future behavior of O3 associated in large part with meteorological conditions [12]. During
the last decade, many researchers have studied the problem of forecasting tropospheric
ozone using multivariate statistical methods.These methods can be classified into two
main categories: parametric and nonparametric methods [13–15]. Recent studies, such
as [16–21], have compared the performance of these forecasting methods in selecting the
most appropriate one. The results have shown that Multiple Linear Regression (MLR),
regression tree, and Random Forests give good results. However, these methods are still
associated with disadvantages that make interpretation more difficult such as the following:
(i) the MLR retains a large number of predictors, which often present multicollinearity
problems solved in our last paper by comparing nine alternative regression models [22],
and (ii) the construction process of the regression tree and random forests methods remains
complex [23]. In addition, these methods require more time during their development and
are not recommended when the data history is limited with missing data (case of GCR).

In this regard, the paper at hand proposes a new model that can be easily implemented
and provides predictions of O3 concentrations with a reduced number of explanatory
variables that retain good predictive qualities. This model is based on a reduced data
history of 3 years (2013, 2014, and 2015) containing missing data. The final model was built
and validated by the following process: (i) development of the model in the data from 2013
and 2014 by introducing observed meteorological variables and (ii) validation of the model
using data from 2015 by injecting predicted meteorological variables. The results obtained
are very satisfactory in terms of the predictive capacity compared to the other models in
the present study.

The article at hand is organized as the follow: Section 2 is devoted to the study’s
area, the description and analysis of the data, the brief description of the parametric and
nonparametric statistical models compared, and the model evaluation. Section 3 sheds
light on the results obtained, and Section 4 provides a general discussion with perspectives.

2. Materials and Methods
2.1. Study Area and Data Collection

Morocco is an African country located in the extreme northwest of the continent.
It is located in the southern part of the Mediterranean basin and is considered among
the most vulnerable countries to climate variability and trans-boundary air pollution [24].
The Grand Casablanca (Figure 1) is the studied region (33◦34′42.44′′ North, 7◦36′23.89′′West),
is located in the central-western part of the Kingdom of Morocco on the Atlantic Ocean
coast, and covers an area of 1117 km2. The Grand Casablanca Region (GCR) has experi-
enced rapid expansion and increased population growth. It concentrates nearly 13.4% of
the total population of the country. Its population is estimated at 4,270,750 residents in
2014 according to World Population Review web-page [5]. In addition, GCR is also one of
the most important regions in Africa because it is seen as a hub of economic and business
activity. The climate is Mediterranean with a strong oceanic tendency. Temperature can
rise up to 40 ◦C. During the day, the region suffers from mixed episodes (alternating ocean
winds, offshore breezes, and synoptic flow) resulting from anticyclonic type conditions that
translate into a northeasterly flow [5]. In general, air pollution by the O3 pollutant depends
on several meteorological parameters and the modeling of this phenomenon requires a
complete study of the available database. The data over the study area were provided
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by the General Directorate of Meteorology (GDM) as a result of a scientific cooperation
agreement between the GDM and the Poly-disciplinary Faculty of Larache, where this work
was conducted. The historical records of these data cover a 3-year period: from 1 January
2013 to 31 December 2015 corresponding to (i) observed meteorological data measured by
the meteorological station; (ii) next day’s forecast meteorological data corresponding to
the outputs from the numerical meteorological forecast model called “Albachir”, which is
based on the community model ALADIN (Limited Area Dynamic Adaptation International
Development) [24]; and (iii) O3 concentrations measured at the Jahid station located in
the center of Casablanca City (Figure 1) and having the most important historical record
compared to other stations within the region. All statistical analyses were performed using
the free software R (http://www.r-project.org (accessed on 1 April 2021)).

Figure 1. Map of GCR. The measurement station is a urban station (Jahid) located in the center of
Casablanca. Source: Global Administrative Areas (GADM).

2.2. Modelling Approach

The statistical approach adopted in this study is focused on the comparison of two
types of forecasting models most frequently used in the literature: parametric (Appendix A)
and nonparametric models (Appendix B). In the parametric models, two parsimonious al-
ternative methods to the Multiple Linear Regression (MLR), Sparse Principal Least Squares
(SPLS) [25], and Least Absolute Shrinkage and Selection Operator (Lasso) regression [26,27]
methods were selected, which conserve a limited number of the most significant variables
using penalties on the norm of the variable weights for SPLS and on the L1 norm of the
coefficient vector for Lasso. A more detailed description of the two methods can be found
in Appendix A.

At the level of nonparametric models, three methods often used in ozone forecasting
have been studied: (i) Classification and Binary Regression Tree (CART) [28], which
provides a binary regression tree facilitating the identification of the most important
variables; (ii) Bootstrap Aggregating (Bagging) [29], which is a random method that allows a
user to average the predictions of several independent models by reducing the variance and
the prediction error under the boostrapping principle; and (iii) Random Forests (RF) [30],
which is an improvement in Bagging that allows a user to aggregate regression trees by
inserting a random selection of a limited number of variables among all of the studied
predictors variables. The details of these methods are given in Appendix B. Several
statistical studies combining previous day’s ozone and meteorological factors to predict
daily O3 concentrations have been published. Various studies in different countries have
used a modeling approach based on the following models:

http://www.r-project.org


Atmosphere 2021, 12, 666 4 of 19

• parametric linear models (Multiple Linear Model and its alternative models): Brazil [31],
Canada [32], China [33], Croatia [34], Greece [35], Italy [36], Portugal [14], Spain [37],
Malaysia [38], the United States [39], Mexico [21], etc.

• nonparametric models (CART Tree, Bagging, and Random Forests): the United
States [40], France [41], Spain [42], China [17], Sweden [43], etc.

In this context, a comparison between these different models was performed in a first
step and used the best models obtained in the construction of a new model in a second
step. This final regression model was qualified by a reduced number of predictor variables
and was easily implementable. It is the first model for daily ozone forecasting in Morocco,
more precisely in the GCR.

2.3. Model Evaluation

The evaluation of the fit and performance of the models were performed in two
phases necessary to interpret and compare the results of the models, called cross-validation
technique. The evaluation of the fit and performance of the models was conducted in
two main steps following the cross-validation technique [12,26]. The first phase concerns
the internal validation performed on the training data sets, and the second one is called
external validation performed on the test data. This is a simple technique that considers
the first data set as a training sample (67% of the total data) and the second sample as test
or validation data (33% of the total data including observed and predicted meteorological
data). The test data set is not used to develop the model but only to evaluate it. Since
the present study is based on a 3 year records, the spirit of threefold cross validation has
been chosen [44]. The sample is divided into three subsets of one year and for each fold.
After that, the models were estimated on all subsets except one (see Figure 2). The left out
subset is used to test the model and to determine the most accurate O3 prediction model in
terms of predictive capability.

Figure 2. Scheme of the three cases tested using the spirit of k-fold cross validation technique.

After comparing the obtained results from the models tested for each case of study
according to the examined three years (2013–2015), the third case according to the real
chronological order was chosen (Figure 2). Indeed, this period is marked by a stability in
the results of the studied models, thus ensuring a better forecast. Tables A1 and A2 give
the results obtained in case 1 and case 2, respectively.

During the adjustment (internal validation) and validation (external validation) of
the different models on training and test data, the comparison of their performance was
evaluated with the main types of statistical criteria and calculated at each step by equations
for R2 and RMSE.

• The coefficient of determination denoted R2. This statistic (Equation (1)) provides a
measure of the proportion of the variance in the response variable that is predictable
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from the explanatory variables. It gives some information about the goodness of fit of
a model. It is ranges from 0 to 1: the closer its value is to 1 the better the model is.

R2 = 1− ∑ntrain
i=1 (ŷi − yi)

2

∑ntrain
i=1 (yi − ȳ)2 (1)

where ntrain is the size of training sample, yi is the y value for i observation, ȳ is the
mean y value, and ŷi is the prediction of i observation obtained using the MLR model
(Appendix A).

• The Root Mean Squared Error (RMSE) is the standard deviation of the residuals (pre-
diction errors). This is computed according to the following expression (Equation (2)):

RMSE =

√
1

ntrain

ntrain

∑
i=1

(yi − ŷi)
2 (2)

The smallest value of this criterion corresponds to the best goodness of fit of the model.
To assess the predictive capacity of the models, we use the RMSE criterion calculated
from the observed data of summer 2015 named RMSEPobs (Equation (3)):

RMSEPobs =

√√√√ 1
nobstest

nobstest

∑
i=1

(yi − ŷi)
2 (3)

where nobstest is the size of the observed the validation set (obstest).
Obviously, the best predictive model corresponds to the smallest RMSEPobs.
In the same way, the RMSEP of prevision based on the real forecasted meteorological
data set on 2015 named RMSEPprev is defined as follows (Equation (4)):

RMSEPprev =

√√√√ 1
nprevtest

nprevtest

∑
i=1

(yi − ŷi)
2 (4)

where nprevtest is the size of the sample size of the forecasted data (prevtest).

3. Results

In this section, the results obtained with two studied categories of models are pre-
sented: parametric (SPLS and Lasso) and nonparametric ones (CART, Bagging, and RF).
The purpose of this study is to propose the simplest statistical model for predicting daily
O3 from day i to day (i + 1) taking into account the least number of variables to prevent
the problem of missing values.

3.1. Data Preparation

We dispose of 23 quantitative explanatory variables for the observed and forecasted
meteorological data set including sunshine duration, temperature, relative humidity, wind
speed, wind direction, pressure, etc. as well as the pollution data (ozone concentrations
on the days i and i − 1). Table 1 below provides the variable’s abbreviation and units
of measurement.



Atmosphere 2021, 12, 666 6 of 19

Table 1. Variable abbreviations and units of measurement.

Abbreviation Variable Unit

TMPMAX Maximal temperature ◦C
TMPMIN Minimal temperature ◦C
TMPMOY Average temperature ◦C
RRQUOT Total precipitation Mm
DRINSQ Sunshine duration Heure

HUMREL06h Relative humidity at 6 h %
HUMREL12h Relative humidity at 12 h %
HUMREL18h Relative humidity at 18 h %
PRESTN06h Pressure at the station level at 6 h HPA
PRESTN12h Pressure at the station level at 12 h HPA
PRESTN18h Pressure at the station level at 18 h HPA

FFVM06h Wind force at 6 h m/s
FFVM12h Wind force at 12 h m/s
FFVM18h Wind force at 18 h m/s
DDVM06h Wind direction at 6 h Degree
DDVM12h Wind direction at 12 h Degree
DDVM18h Wind direction at 18 h Degree

Vx06 Horizontal wind at 6 h m/s
Vx12 Horizontal wind at 12 h m/s
Vx18 Horizontal wind at 18 h m/s
Vy06 Vertical wind at 6 h m/s
Vy12 Vertical wind at 12 h m/s
Vy18 Vertical wind at 18 h m/s

O3veilleJahid O3 concentrations of previous day µg/m3

O3Jahid Ozone concentrations µg/m3

Historical data related to the three years 2013, 2014, and 2015 were measured in the
GCR. Since the aim of our work is to forecast daily O3, which is a pollutant qualified as
a secondary species and significantly behaves differently depending on the time of the
year (summer or winter), the present study was limited to the summer period (April–
September) for which ozone concentrations are the highest [7]. Three summer periods
were considered (2013, 2014, and 2015), i.e., 549 days. Table 2 presents a description of
the observed meteorological and air pollution factors according the different statistical
indicators (minimum, maximum, mean, and standard deviation) and the multicollinearity
factor (VIF). The VIF indicator allows us to analyze the relationship between the predictor
variables by using MLR model. The multicollinearity problem is identified as soon as
VIF < 5 [45]).

Indeed , the concentration of O3 during these years is between 10 and 130 µg/m3,
the maximum temperature (TMPMAX) varies between 16.2 and 37.50 ◦C, the duration
of sunshine (DRINSQ) during the day is between 0 and 13.30 h, the recorded precipita-
tion (RRQUOT) varies between 0 and 19.30 mm during the day, atmospheric pressure
(PRESTN) during the day at the station is between 998 and 1017 hpa, relative humidity
(HUMREL) varies between 0 and 100%, wind speed (FFVM) is null in the morning and
up to 7 m/s in the evening, the most dominant wind direction (DDVMDEG) during the
day generally comes from the southwest, and horizontal and vertical wind speeds (Vx
and Vy, respectively) are generally low. As the data studied in this paper contain many
correlated variables (VIF > 5), nine alternative parametric methods were compared to
multiple linear regression (MLR, PCR regression, PLS, SPLS, Continuum Regression, Ridge
regression, Lasso, and Biaised Power regression) to resolve the multicollinearity prob-
lem [22]. We conclude that the Lasso and SPLS models give the best results. For this reason,
we compare them in this paper with the nonparametric methods in order to select the most
appropriate one.
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Table 2. Statistics of measured variables at GCR from 01 April to 30 September in 2013 and 2014.

Variable Min Max Mean St. Dev VIF

TMPMAX 16.2 37.5 24.5 3.09 4104.12
TMPMIN 8.20 23.50 18.35 3.02 3888.51
TMPMOY 12.40 29.90 21.45 2.88 14,178.12
RRQUOT 0.00 19.30 0.39 1.98 1.78
DRINSQ 0.00 13.30 9.72 2.79 1.66

HUMREL06h 50.00 100.0 87.42 8.00 2.03
HUMREL12h 34.00 95.00 68.32 8.78 2.15
HUMREL18h 28.00 97.00 75.66 9.66 2.13
PRESTN06h 9997.7 1017.3 1008.2 2.97 16.07
PRESTN12h 997.7 1016.5 1008.9 2.91 46.49
PRESTN18h 999 1016 1008 2.88 18.12

FFVM06h 0.00 4.00 1.55 0.80 1.58
FFVM12h 0.00 6.00 3.58 0.98 3.17
FFVM18h 0.00 7.00 3.46 1.04 2.79

DDVM06degre 0.00 360.0 176.4 117.87 1.64
DDVM12hDEG 0.00 360.0 227.3 141.63 2.65
DDVM18hDEG 0.00 360.0 189.2 152.21 2.77

Vx06 −2.95 3.46 −0.05 1.06 2.71
Vx12 −5.91 3.94 −0.59 1.98 4.48
Vx18 −5.91 4.50 −0.10 1.84 5.21
Vy06 −4.00 4.00 0.08 1.38 1.86
Vy12 −3.06 6.00 2.75 1.39 4.25
Vy18 −5.36 6.00 2.79 1.36 4.50

O3veilleJahid 10.00 130.0 52.83 25.66 1.08

The data studied above required a preliminary treatment for the imputation of missing
data by the k-nearest neighbor’s method [46] and the agreement between the different
meteorological parameters. Multidimensional study on a complete database using a
standardized (scaled and centered data) Principal Component Analysis (PCA) [47] was
conducted. The objective is thus to identify strong correlations between the different
predictors to avoid multicollinearity problems [22]. The correlation circle of variables
allows us to visualize the different correlations that exist between the meteorological
variables and the O3Jahid variable. Therefore, about 40% of the variation is explained by the
first two eigenvalues together (Figure 3).

Figure 3. Correlation circle variables (1−2) factorial plane) according to the contributions of variables
to PCs: O3Jahid (dashed blue) considered as a supplementary variable.
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We distinguished strong correlations between wind (Vx and Vy) and pressure (PRESTN06,
PRESTN12, and PRESTN18) parameters on one side and temperature (TMPMAX, TMPMIN,
and TMPMOY) on the other. In this respect, using multiple regression model with all of
the variables studied is therefore unstable. Indeed, the best adapted model only considers
the most significant independent predictors.

3.2. Internal Validation: Goodness of Fit

The goodness of fit of the compared models on the training data (2013 to 2014 pe-
riod) is assessed by maximizing (R2) criteria and by minimizing the RMSE measure. We
graphically represent the values of the R2 (Figure 4A) and RMSE (Figure 4B) obtained by
adjusting the five models over the training period.

Figure 4. Comparison of models (A): R2 during summer period of 2013 and 2014; (B): RMSE.

Regarding the goodness of fit of the parametric models, the values of R2 obtained by
SPLS and Lasso correspond to a good fit (0.857 and 0.828, respectively). In the nonpara-
metric models, the CART model shows a good fit of the data (R2 = 0.831), followed by the
Bagging model, which gives results similar to the Lasso model. The non-fixed variables
retained by the RF model among the initial twenty-four variables provide an explanatory
contribution of 79%, which is still not as good compared to the other models. In addition to
the R2 criterion, other performance indices give more precision in terms of the fit quality of
models such as the RMSE error (Figure 4B) to select the best adjusted model. At first view,
the Bagging nonparametric model outperforms the other models by obtaining the lowest
RMSE value (9.342). The other models are very similar in terms of fit data, recording an
RMSE error that varies between 9.5 and 9.6, with the exception of the RF model, which has
a slightly higher error (9.91). As for the parametric models, SPLS and Lasso register a good
fitting in terms of R2 and RMSE criteria. However, if the objective is to obtain the best
predictive model, the RMSE alone is not sufficient to decide on the best forecast model. We
therefore use the RMSEP, calculated on the validation period (2015) during the external
validation step, to evaluate the predictive quality of each model.
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3.3. External Validation: Performance Evaluation

Model performance is evaluated in this phase with the RMSEP and calculated from
the 2015’s test period, which was not used to adjust the models (Figure 2). Two criteria
are calculated:

• RMSEPobs, by testing the models on observed meteorological data.
• RMSEPprev, by testing the models on the forecasted meteorological data.

Testing the models on observed meteorological data indicates that Lasso and SPLS,
respectively, surpass the other methods and remain very similar in terms of predictive
capacity. In general, the results obtained from the RMSEPobs range from 11.5 to 14 (Table 3).

The most considered results are those of models testing on real forecasted meteorolog-
ical data. In terms of predictive capacity, it appears that, among the nonparametric models
studied, Bagging gives the lowest value of the RMSEPprev (12.65) followed by its particular
case the RF model (12.85) and then the Lasso parametric model (13.00) (Table 3).

However, for operational purposes, it is preferable to identify a simpler model (with
few predictive variables) to avoid the problem of a missing forecast rather than a more
complex model with a slightly lower RMSEP. For this reason, (Figure 5) presents the
number of predictive variables retained by each model.

Figure 5. Comparison of model performance according to number of parameters.

This suggests that Lasso and SPLS retain the advantage of a small number of selected
predictive variables (12 and 7, respectively) using the parsimonious principle (reducing the
number of predictive variables by applying a penalty that leads to fixing the regression co-
efficients of the non-selected variables to 0). However, the comparison of the performances
of each obtained model using the principle of the threefold cross validation technique
(Appendix A and Table A2) reveals that the SPLS and Lasso models appear unstable and
more sensitive to the modification of the training and test periods of the data. In this regard,
the next section proposes a new simpler multiple regression model with fewer predictor
variables ensuring a good prediction quality.
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3.4. Selected Forecast Model

The principle of this forecast model is to build a step-by-step regression model from
the explanatory variables stored by the SPLS and Lasso parametric models. We thus
reduce all explanatory variables of a regression from the first obtained results in Section 3.3.
The objective is to obtain a forecasting model that is easier to implement and to interpret
in order to obtain short-term forecasts. The regression model that is more important
and significantly predictors and high predictive capacity was selected.The scheme below
presents the construction process of the selected forecast model (Figure 6).

Figure 6. Building process of the final forecast model.

Following the adjustment of the new model on the training data set (2013–2014)
(internal validation) and its test for the year 2015 (external validation), the results obtained
from the different evaluation criteria by comparing them with other models (Section 3.3)
are summarized in Table 3.

Table 3. A Comparison of the final model with other models according to RMSE, R2, RMSEP, and
Nb Varibales criteria.

Models/Criteria R2 RMSE RMSEPobs RMSEPprev Nb Variables

SPLS 0.857 9.576 11.89 13.61 7
Lasso 0.828 9.555 11.58 13.02 12
CART 0.852 9.523 14.16 13.83 24

Bagging 0.831 9.342 12.87 12.65 24
RF 0.771 9.914 13.36 12.85 24

Selected model 0.856 9.60 11.78 12.55 5

The selected parametric model for forecast O3 daily concentrations retains five sig-
nificant variables: the sunshine duration (DRINSQ), the pressure at 6 h (PRESTN06),
the horizontal wind at 6 h (Vx06), the vertical wind at 6 h (Vy06), and the O3 concentrations
from the previous day (O3veilleJahid). The model equation is written as Equation (5):

O3Jahid = 52.73 + 1.41 ∗ DRINSQ− 1.17 ∗ PRESTN06 − 1.33 ∗Vx06 + 1.34 ∗Vy06 + 23.51 ∗O3veilleJahid. (5)

The results of the statistical tests necessary for the diagnosis and validation of the re-
gression model are statistically significant at the 5% significant level. Table A3 summarizes
the test’s result.

The regression coefficients obtained from the selected model (Equation (5)) make it
possible to explain the impact of the different factors retained on O3 emissions. Indeed,
O3 concentration is influenced positively by sunshine duration (+1.41), horizontal wind
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direction at 6 h (+1.34), and the previous day’s O3 (+23.51) and negatively by pressure at
6 h (−1.17) and vertical wind direction at 6 h (−1.33). These results are similar to those
obtained in studies conducted by [3,21,48].

Table 3 compares the results obtained by the selected reduced regression model with
those of the five parametric and non parametric models studied in Section 2.2. This com-
parison is evaluated using the performance indices of the model’s adjustment quality
on learning data (R2 and RMSE) and prediction quality on test data (2015) (RMSEPobs
and RMSEPprev). In terms of adjustment, the selected model provides successful results
(R2 = 0.86) with an RMSE of 9.60 which remains slightly high compared to the SPLS, Lasso,
and CART models. In terms of the quality of prediction on observed test data, the final
model is very close to that of the Lasso model with (RMSEPobs = 11.78) but remains more
accurate than the other models. The validation of the selected model on meteorological
forecast data (the summer period of 2015) indicates that it outperforms parametric and
nonparametric models in terms of forecasting capacity with the lowest prediction error
(RMSEPprev = 12.55). Furthermore, the reduced number of regressors used in the final
model (Nb variables = 5) has an important advantage compared to other models, namely,
(i) easy prediction of O3 concentrations and (ii) easy interpretation of the prediction model
by avoiding data unavailability.

On this subject, the following graph presents a comparison between the observed
O3 concentration (red color) and the forecasted O3 concentration (green color) using the
selected model with five predictors.

Figure 7 shows that O3 concentration’s predictions obtained on forecasted meteo-
rological data in 2015 using the selected model are very close to those observed for the
same period. This clearly shows the success of the selected regression model in terms of
the accuracy of O3 forecasts for one-step-ahead (i to i + 1 day) in the GCR. This finally
chosen model also provides the best performance on indicators related to forecast quality,
such as R2, RMSE, and RMSEP when compared to the results obtained by Lei [18], which
compared the MLR and CART models to forecast O3 concentrations in Macao.

Figure 7. Comparison between observed and forecasted O3 concentrations.

4. Discussion

In this study, two statistical approaches were compared to predicting daily ozone in
the GCR: (i) parametric models and (ii) nonparametric models. The majority of studies
performed to forecast daily ozone have used both parametric and nonparametric statistical
models in some way to find a significant relationship between meteorological factors,
persistence, and O3 concentrations [3]. The work conducted in this paper is the first of its
kind in Morocco, and the results obtained by similar work performed in other countries
were discussed and compared. This comparison remains a complex task that must be
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carried out with precaution because each country has its own characteristics. In addition,
the geographical position, the climate, the history of the data used, and the methodology
adopted play very important roles in the development of the forecasting model.

Descriptive statistical analysis of the data; parametric models of the SPLS and Lasso
models; and nonparametric models of the CART, Bagging, and RF models were designed
to evaluate the best performing model in terms of forecast quality. Several statistical
indicators of evaluation were computed, namely R2, RMSE, and RMSEP (Section 2.3).
In terms of the fitting quality, the results of the coefficient of determination R2 obtained by
SPLS and Lasso, alternative models to MLR, were satisfactory (R2 = 0.82, R2 = 0.86) and
close to those obtained by the work conducted by [49] (0.6 to 0.90) at different measuring
stations, [20] (0.6 to 0.9), [19] (0.60 to 0.80), [50] (0.84). However, Lasso and SPLS appear to
be sensitive at the training period level, as they do not maintain their predictive capacity
by changing the training period and the test period (Figure 2). Indeed, this instability of
the parametric models at the selection level of the complete set of variables is mainly due
to the problem of multicollinearity (cf. [22]).

In terms of the nonparametric models, the results obtained for the CART and RF
models (0.85 and 0.77, respectively) are similar to those obtained by the author [50] (0.86)
who compared the MLR model to the CART model as well as [43] (0.78), who compared
MLR and RF. In terms of predictive quality, the studied models have been evaluated
by the “RMSEPprev” indicator, which is calculated by using forecasted meteorological
data for the validation year (2015). The Bagging and RF models showed good predictive
capacity (12.65 and 12.85, respectively) compared to CART (13.83), Lasso (13.02), and SPLS
(13.61). These results are still very satisfactory compared to the study conducted in Macao
by [18] (RMSE = 24.35), obtained using the CART model. However, Bagging and RF have
the disadvantage of being considered “black box” models with many variables that can
produce missing forecasts in practice. Indeed, this type of model has complications related
to the optimization of the time allocated to the calculation of the parameters necessary
for their adjustment as well as to the efficiency of their implementation. As the purpose
of the present study is to implement the first short-term ozone prediction model in the
GCR, it is difficult to implement a model retaining 24 predictors such as Bagging and RF
(24 variables) to routinely predict O3 concentrations.

Following a profound evaluation of the performance of the parametric and nonpara-
metric models, the final chosen model is based on multivariate regression model using a
stepwise method on independent variables retained in Lasso and SPLS models. The final
model (Section 3.4) that considers only five of the most significant predictors such as
(DRINSQ, PRESTN06, Vx06, Vy06, and O3veilleJahid) was selected. In fact, these meteoro-
logical factors are coherent with the results obtained in the literature [3,7,21]. This final
selected model has the best predictive ability (RMSEP = 12.55) compared to the other mod-
els. These results are consistent with the findings of [33], who found that the MLR model is
better in terms of prediction than RF. In the same context, ref. [51] also found that MLR
outperforms the machine learning models in predicting daily ozone in India. In addition
to its predictive quality in terms of accuracy, robustness, and efficiency, the final model
provides significant improvements such as (i) being more stability, (ii) having a lower
number of predictor variables, (iii) being resistant to missing data and multicollinearity
problems, (iv) facilitating implementation and interpretation, and (v) being able to adapt
to changing situations (new measurement stations and inclusion of additional data sets).
Indeed, the final selected model provides a suitable platform for forecasting, showing a
good performance (Figure 7) for a first forecasting model in the GCR.

For future research aiming to improve results in terms of forecasting quality, new data
will be added to ensure the stability of the selected model and to extend the forecasting over
all cities equipped with measuring stations in Morocco. The model obtained in this study
is the most appropriate for predicting the usual O3 concentrations. The question that arises
here would be to determine if this model could predict pollution peaks as well. For this
purpose, it is interesting to focus on the predictive quality of extreme values and threshold
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exceedances of ozone. The aim is thus to create an alert system in case of exceedance of the
limits. Another important work will be to study the other atmospheric pollutants such as
PM10, NO2, and SO2 in Morocco.
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Appendix A. Parametric Models

Appendix A.1. Multiple Linear Regression Model (MLR Model)

In order to describe the parametric models studied in this paper, it is essential
to provide the matrix notation of the multiple linear regression model (MLR model)
Equation (A1):

y = Xβ + e, (A1)

where y is a (n× 1) vector (centred dependant variable), X is a (n× p) matrix (matrix of
standardized predictors), β is a (p× 1) vector of unknow regression coefficients, and e is a
(n× 1) vector of random errors. The distribution of e is assumed to be normal with mean
equal to 0 and a variance covariance matrix equal to σ2I, where I is the identity matrix [35].
Usually, the variables in X are centered by subtracting their means and scaled by dividing
by their standard deviations. In MLR model, the estimated regression coefficients are
defined by

β̂OLS =
(

XTX
)−1

XTy.
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In the case of this study, the expression of Equation (A1) becomes Equation (A2):

(03)i = β0 + β1(03)i−1 +
p

∑
j=2

β jmeteovarj
i + ei, (A2)

where (03)i is the concentration in O3 day i, (03)i−1 is the previous day’s O3 concentration
(i.e., persistence), and meteovarj

i is the value of meteorological variable j day i. For more
information about MLR model using in this case, you can refer to [22].

Appendix A.2. Sparse PLS Regression (SPLS)

The Sparse PLS method described in [25] is a direct adaptation of the classic PLS
regression method. It is a parsimonious approach that integrates a selection of variables
into the PLS by using penalties on the weight norm to make this selection. PLS regression
yields latent components T(m) such that T(m) = XW(m), where m is the number of latent
components wj; j = 1, ..., m. In SPLS regression, w the first weight vector as an optimal
solution to Equation (A3):

max
w∈Rn

(
wTMw

)
subject to wTw = 1 and ‖w‖1 ≤ η, (A3)

where M = XTyyTXT , ‖w‖1 = ∑m
j=1 |wj| is the L1-norm of vector w and η > 0 is a scalar

which controls the degree of sparsity.
The estimated regression coefficients of β̂SPLS are calculated by fixing the coefficients

of the non-selected variables to 0 and by obtaining the coefficients of the selected variables
with the “standard” PLS regression (see Equation (A4)).

(β̂SPLS)j =

{
(β̂PLS)j, if wj 6= 0; j = 1, ..., m

0, if else.
. (A4)

The interest of the SPLS is twofold: on the one hand, it reduces the number of
explanatory variables, which allows for an easier interpretation of the model, and on the
other hand, it avoids the problem of multicollinearity by using the PLS regression model.
Moreover, SPLS is computationally efficient with a tunable sparsity parameter to select the
important variables.

Appendix A.3. Lasso Regression

The Least Absolute Shrinkage and Selection Operator, or Lasso [26,27], is another
penalized regression where the L2 penalty of ridge regression is replaced by an L1 penalty.
This is a subtle change that has important consequences. Indeed, this constraint entails
that some of the regression coefficients are shrunk exactly to zero. This means that this
regression strategy operates a selection of variables since the unimportant variables are dis-
carded, with their regression coefficients being equal to zero. Formally, the lasso estimator
is given as a solution to the following optimization problem designed by Equation (A5):

β̂Lasso = argminβ∈Rn ,|β|1≤δ‖y− Xβ‖2, (A5)

where δ ≥ 0.
The parameter δ controls the degree of sparsity: the smaller this parameter, the larger

the number of discarded variables. Contrariwise, if δ is larger than δ0 =
∥∥∥β̂OLS

∥∥∥
1

, then

β̂Lasso = β̂OLS. Lasso regression has the double effect of shrinking the β j coefficients,
allowing us to decrease the variance of the regression coefficients as with Ridge regression
and, more importantly, to operate an automatic selection of the variables by cancelling out
some β j coefficients.
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Appendix B. Nonparametric Models

The nonparametric models used to predict tropospheric ozone in this study are
Regression Tree, Bagging, and Random Forests.

Appendix B.1. Classification and Regression Tree (CART)

Ref. [28] is a nonparametric supervised classification or regression method depending
on the nature of the variable to be explained (qualitative or quantitative). It is comple-
mentary to the above linear regression method in the regression version. It is a method
frequently used in air quality prediction [18,26]. This learning method is based on the
implementation of a decision tree as a prediction model. The construction of this tree uses
the data set for which the value of the target variable is known and then projects the results
to the test data. Since the data studied in our paper are quantitative, we are interested in
the regression CART tree.

Binary tree’s construction: CART is a binary recursive partitioning technique consist-
ing of splitting the data into two groups, resulting in a binary tree, in which the terminal
nodes represent distinct classes or categories of data. Cutting is carried out according to
simple rules on the explanatory variables, determining the optimal rule that allows us to
build two populations more differentiated in terms of values of the variable to be explained.
It builds a partition visualized using a binary tree [26]. A classic stopping rule is not to cut
out nodes that contain less than a certain number of observations. Terminal nodes, which
are no longer cut out, are called the sheets of the tree.

The objective of a decision tree is to divide the forecast space into K separate class such
as, C1, . . . , CK. In the case of the quantitative response variable y, regression tree model can
be written as the following Equation (A6):

yi =

n f

∑
k=1

1Ck (x1
i , ..., xp

i )βk + ei, (A6)

where n f is the unknown number of sheets of the tree underlying the method, Ck corre-
sponds to the different classes, and βk are the coefficients to be estimated by the average in
each class of the explained variable.

Pruning: After the first step of building the CART tree, the second step called “pruning”
consists in removing a posteriori branches of the tree considered unnecessary to find the
best tree-pruned for the maximum tree. The idea is that the maximum tree corresponds to
a parsimonious model with a very high variance and a low bias.

The CART method is adapted to the case of many explanatory variables of different
types, which allows explicit results to be given with simple decision rules that can be easily
interpreted and do not disturb extreme observations (e.g., cases of pollution peaks).

However, one of its inconveniences is that the CART method may not reach the optimal
model or it may also present instability in the trees obtained (a light perturbation). Indeed,
other methods or practices exist that can provide solutions to this type of problem; the main
random aggregation methods of forecasting are namely Bagging and Random Forests.

Appendix B.2. Bagging

Bootstrap Aggregation (or Bagging for short) is a random method firstly introduced by
Breiman in [29]. It applies the Bootstrap or Bootstrapping principle [52] to the aggregation
of predictors. It allows to average the forecasts of several independent models and to reduce
the variance as well as the forecast error. To briefly introduce the Bagging, we consider
f (x) a model function of x = {x1, ..., xp} ∈ Rp and z = {(x1, y1), ..., (xn, yn)} a sample of
distribution F. Considering B independent samples noted {zb}b=1,...,B, a model aggregation
forecast is defined below by Equation (A7) in the case where the variable to be explained
is quantitative:

f̂B(.) =
1
B

B

∑
b=1

f̂zb(.). (A7)
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The samples so obtained are obviously not independent, but the instability of the
trees can make the set completely efficient: each tree has a low bias while its mean is
of low variance. The parameters number of trees can be determined in practice by the
cross-validation technique [41].

The advantage of this method is the simplicity and facility of adaptation to the im-
plementation of the different modelling methods. However, bagging requires a longer
computation time to run the model and the model results are not viewed as a decision tree.

Appendix B.3. Random Forests (RF)

The RF method was presented in [30] and more recently for example in [53]. Its objec-
tive is to improve Bagging for binary trees (CART) by introducing “randomization”, which
makes it possible to develop the trees in the aggregation more independent by adding
chance in the choice of variables used in the model. As its name suggests, a RF consists of
aggregating trees of discrimination or regression.

We consider Ln the Learning data set, {ĥ(., θ1), ..., ĥ(., θB)} a collection of predictors
per tree, where (θ1, ..., θB) is a series of B independent and identically distributed random
variables. The predictor of random forests is obtained by aggregating this collection of trees.
A RF is therefore no more than an aggregation of trees dependent on random variables.
For example, bagging trees (building trees on bootstrap samples) defines a random forest.
A family of random forests is different from others, particularly in terms of the quality of
its performance on many data sets. The term” Random Forests” is derived from the fact
that individual predictors are, in this case, explicitly predictors per tree and from the fact
that each tree depends on an additional random variable (i.e., in addition to the learning
data set Ln). A random forest is a part of the family of group methods based on a decision
tree, which makes it possible to aggregate a collection of random trees. Every “tree” in the
“forest” is trained with a different learning data set. Each of these sets is a subsample of the
set of learning data, randomly selected using the Bagging method. The importance of each
variable for the forecast can therefore be estimated posteriori. It is possible to use variables
that do not have a statistical link with the response; their importance in the forecast is
reduced by the model [41].

The algorithm principle of the RF method is to add a random draw of m among the p
explanatory variables in the application of Bagging to binary decision trees. The number
of explanatory variables m can be calculated by default in the case of regression problems
using the formula m = p/3. In practice, the parameters number of trees built B and number
of variables m require optimization through the application of a cross-validation technique.
In general, the RF method avoids over-learning with better performance than decision
trees. The parameters are easy to calibrate but its training remains slower and difficult
to interpret.

Appendix C. Comparison Table of Parametric and Nonparametric Models

Appendix C.1. Training Period: (2014 –2015) (Case 1)

Table A1. Comparison table of parametric and nonparametric models according to the R2, RMSE,
RMSEPobs, RMSEPprev, and Nb Varibales criteria.

Models/Criteria R2 RMSE RMSEPobs RMSEPprev Nb Variables

SPLS 0.827 9.299 12.77 13.98 8
Lasso 0.801 9.233 12.77 13.63 14
CART 0.803 9.909 13.69 13.81 24

Bagging 0.802 8.704 13.44 14.04 24
RF 0.774 9.579 16.80 17.40 24
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Appendix C.2. Training Period: (2013–2015) (Case 2)

Table A2. Comparison table of parametric and nonparametric models according to the R2, RMSE,
RMSEPobs, RMSEPprev, and Nb Varibales criteria.

Models/Criteria R2 RMSE RMSEPobs RMSEPprev Nb Variables

SPLS 0.761 11.40 9.595 8.92 6
Lasso 0.751 10.94 9.151 7.63 13
CART 0.757 11.48 12.41 12.62 24

Bagging 0.734 10.30 10.39 10.19 24
RF 0.701 11.78 10.21 8.40 24

Appendix D

Table A3. Tests results for the final forecast model’s diagnostic check.

Test H0 p-Value

Normality (Shapiro–Wilk normality) Residuals normality 0.049
Homoscedasticity (Studentized Breusch–Pagan) Homoscedasticity 0.8361

Autocorrelation (D–W Autocorrelation ) ρ = 0 0.314
Linearity (Harvey–Collier ) Nonlinear relation 0.004
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