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Abstract: The main aim of this paper is to propose a statistical indicator for wind shear prediction 

from Light Detection and Ranging (LIDAR) observational data. Accurate warning signal of wind 

shear is particularly important for aviation safety. The main challenges are that wind shear may 

result from a sustained change of the headwind and the possible velocity of wind shear may have a 

wide range. Traditionally, aviation models based on terrain-induced setting are used to detect wind 

shear phenomena. Different from traditional methods, we study a statistical indicator which is used 

to measure the variation of headwinds from multiple headwind profiles. Because the indicator value 

is nonnegative, a decision rule based on one-side normal distribution is employed to distinguish 

wind shear cases and non-wind shear cases. Experimental results based on real data sets obtained 

at Hong Kong International Airport runway are presented to demonstrate that the proposed indi-

cator is quite effective. The prediction performance of the proposed method is better than that by 

the supervised learning methods (LDA, KNN, SVM, and logistic regression). This model would also 

provide more accurate warnings of wind shear for pilots and improve the performance of Wind 

shear and Turbulence Warning System. 

Keywords: machine learning methods; light detection and ranging data; prediction models; wind 

shear detection 

 

1. Introduction 

Wind shear is a kind of microscale meteorological phenomenon which refers to a 

sustained change in the wind direction and/or speed, resulting in a change in the head-

wind or tailwind encountered by an aircraft, see, for instance, [1,2]. Accurate wind shear 

detection is crucial for aviation safety in approach and landing. Typically, a sustained 

change of the headwind or tailwind of 15 knots (7.72 m/s) or more for more than a few 

seconds is significant wind shear. A significant wind shear occurring at low levels on ap-

proach and departure zones at airport might result in the difficulty in control for aircrafts. 

This losing of altitude could become very dangerous during an aircraft’s landing and 

takeoff phases. Pilots require timely and appropriate corrective actions to ensure the 

safety of aircrafts when they encounter wind shear. 

There were models and hardware launched at various airports to detect wind shear. 

Boilley and Mahfouf [3] studied a wind shear event using both observational and numer-

ical data and demonstrated that a numerical model (Meso-NH) could be used to detect 

wind shear over the Nice airport. Weipert et al. [4] researched on low-level wind shear 

detection systems consisting of an Xband polarimetric scanning radar and an infrared 

scanning LIDAR (Light Detection and Ranging) to detect wind shear at the German inter-
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national airports of Frankfurt and Munich. Since 2017, Airport Low-level Wind Infor-

mation (ALWIN) system was operated at Tokyo International Airport (Haneda) and 

Narita International Airport to detect low-level wind shear, see [5]. 

Research on the low-level wind shear algorithm has begun using anemometers since 

1970s and Doppler radars since 1980s. They are dedicated to some special weather phe-

nomena such as gust front and microbursts/mesocyclones. The detailed information of 

Low-Level Windshear Alert System can be found in [6]. It is still used at some airports 

such as those in the United States and Taiwan, to deal with wind shear issues. The siting 

of the anemometers at critical locations is important for the success of the algorithm in 

capturing low level wind shear due to microburst. Currently, it is also effective in the 

detection and warning of low-level wind shear in rainy weather. However, there are lim-

itations of the use of anemometer-based algorithms and Doppler weather radars in cap-

turing wind shear due to dry microburst. 

A method to capture low level wind shear in clear air situations is the use of wind 

profilers, such as the system used at Juneau, United States [7]. It is claimed to be capable 

of capturing wind shear due to terrain effects. However, wind profiler data consists of 10-

min averages and its wind alerts may not be fast enough (i.e., not so frequently updated) 

to detect rapidly changing wind shear due to terrain effects, which may occur in a time 

interval of a few minutes or even within one minute. The detection of wind shear due to 

dry microburst and terrain effect points to the use of new remote sensing instrumentation 

for wind shear detection, namely, the Doppler weather LIDAR system. Recent advances 

in LIDAR techniques have spurred the development of several methods (see for instance 

[8–12]), for predicting wind shear from the LIDAR data. Some researchers have developed 

methods by using Doppler weather LIDAR to detect microburst wind shear, see [11]. In 

contrast, much fewer methods have been developed on the detection of terrain-induced 

wind shear by using Doppler weather LIDAR. 

Wind shear at Hong Kong International Airport (HKIA) is terrain induced. HKIA lies 

to the north of the mountainous Lantau Island with highest peaks above 900 m and valleys 

as low as 300 m, see Figure 1. Sometimes, the flow of air across this hilly terrain could be 

disrupted to form mountain waves, gap outflow, etc., over the flight paths of HKIA, in-

ducing wind shear. Most of the wind shear episodes at HKIA are related to airflow dis-

turbances by the complex terrain near HKIA, see [1]. In addition, forecasters [8,9] in Hong 

Kong Observatory can issue warnings for imminent wind shear based on the broad pre-

vailing meteorological conditions and the real time data from the Wind shear and Turbu-

lence Warning System [2]. Currently, this warning system can generate “up-to-the-mi-

nute” alerts after wind shear is measured. The LIDAR alarm rate is about 0.76, see the 

results reported in [1]. In 2016, a high-resolution numerical aviation model was employed 

to forecast the terrain-induced wind shear at HKIA, see [12]. In 2018, a synthesized scheme 

based on the combination of improved signal smoothing and wind shear detection was 

proposed to detect wind shear. The scheme could capture 80.6% of wind shear according 

to pilot reports from HKIA, see [10]. The performance of this warning system should be 

further improved to issue timely warmings of wind shear for pilots. Therefore, further 

research is ongoing to explore the use of LIDAR data in detection of wind shear at HKIA. 

Modern data mining techniques can be applied to various datasets used in many me-

teorological applications for prediction purposes. The main aim of this paper is to propose 

an indicator for wind shear prediction from Light Detection and Ranging (LIDAR) obser-

vational data. In the literature, the research on machine learning methods for wind shear 

detection with LIDAR data has received some attention. In 2012, a chaotic oscillatory-

based neural network with a new learning algorithm was proposed to identify the wind 

shear occurrence, see [13]. Li et al. [14] designed a new method that employs a neural 

network as the position amendment module and exponential smoothing as the fluctuation 

compensation module. This method was applied to HKIA Doppler LIDAR data and a 

reasonable wind shear forecasting precision was obtained, see for example [15]. 
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Figure 1. Map of Hong Kong International Airport and Lantau Island (height contours: 100 m) [1], 

with the location of the LIDAR (red square). Runway corridors are shown as pink arrows with the 

names marked alongside. 

Different from the above traditional hardware-based and aviation methods, we pro-

pose in this paper to use supervised learning methods for wind shear detection. We will 

present a statistical indicator which is used to measure the variation of headwinds from 

multiple headwind profiles. The indicator is based on the maximum spread of measured 

velocities along the range of the measurement beam with respect to different azimuth 

ranges. Because the indicator value is a nonnegative number, we employ a decision rule 

based on one-side normal distribution to distinguish a wind shear case and a non-wind 

shear case. Experimental results based on real data sets on two different periods obtained 

at Hong Kong International Airport runway are presented to demonstrate the proposed 

indicator is quite effective. In particular, the prediction accuracies of the proposed model 

are 98.0% for training data collected at 2015 and 92.0% for testing data collected at 2018, 

which are better than the other methods like LDA, KNN, SVM and logistic regression. 

The outline of this paper is given as follows. In Section 2, we study the LIDAR obser-

vational data from HKIA. In Section 3, we present the proposed method. In Section 4, 

results are presented to demonstrate the effectiveness of the proposed method for wind 

shear prediction. Finally, some concluding remarks are given in Section 5. 

2. LIDAR Observational Data 

To measure the variable wind profile to be encountered by the aircraft at HKIA, Hong 

Kong Observatory developed Glide Path Scan (GPScan) strategy for the LIDAR [2]. A di-

agram of a glide path scan is given in Figure 2. For arrival corridors, three-degree glide 

paths originating from the touchdown points of the runways are considered. The laser 

beam of the LIDAR is used to slide along the glide paths and measure the winds. The 

azimuth and elevation motions of the LIDAR scanner must be configured so that the laser 

beam can slide smoothly. The radial wind measurements along a glide path are consid-

ered together to construct a headwind profile. During the scanning process, the wind ve-

locities are measured at the locations represented by slant ranges (or range gates), azimuth 

angles, and elevation angles in three-dimensional space. 

Since the aircraft on approach closely follows the three-degree glide slope in the final 

three nautical miles prior to touchdown on the runway, we only analyze the LIDAR of 

three-degree elevation angle. On the other hand, the glide path area in HKIA is measured 

by around 250-degree azimuth angle. Here we focus on the azimuth angles in between 

220 degrees and 280 degrees. The slant ranges of the LIDAR data are from 350 to 10,000 

m. However, the LIDAR data points with slant ranges over 4500 m are neglected since 
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there are many missing Doppler velocities. In this paper, we focus on the LIDAR data at 

three-degree elevation angle, the azimuth angles in between 220 and 280 degrees, and the 

slant ranges in between 350 and 4500 m. At HKIA, the LIDAR scanner takes about four 

seconds to obtain velocities at 1560 locations which refer to the combination of 39 azimuth 

angles and 40 slant ranges in the above setting. 

In Table 1, we show an example of the collected LIDAR data on 2 March 2015. The 

LIDAR cannot return actual locations in elevation angles, azimuth angles and slant ranges 

of measured velocities, and it only provides their minimum and maximum values. In Ta-

ble 1, the differences between the maximum and minimum values in azimuth angles are 

about one-degree. However, the differences between the maximum and minimum values 

in slant ranges are from 10 to 105 m. 

 

Figure 2. Diagram illustrating a LIDAR glide path scan along the 3-degree glide path for the west-

ern approach towards the north runway. 

Table 1. An example of the collected LIDAR data at HKIA. 

Time  
Velocity  

(Knots) 

Elevation Angle  

(Degrees) 

Azimuth Angle  

(Degrees) 

Slant Range  

(Meters) 

2 March 2015 15:13:44 6.24 (3.00 3.00) (220.06 221.63) (464.49 569.49) 

2 March 2015 15:13:44 4.59 (3.00 3.00) (220.06 221.63) (569.49 674.49) 

: : : : : 

2 March 2015 15:13:44 1.85 (3.00 3.00) (220.06 221.63) (4454.49 4559.49) 

2 March 2015 15:13:44 7.12 (3.00 3.00) (221.66 223.25) (359.49 464.49) 

: : : : : 

2 March 2015 15:13:47 8.59 (3.00 3.00) (280.88 282.44) (4349.49 4454.49) 

2 March 2015 15:13:47 8.44 (3.00 3.00) (280.88 282.44) (4454.49 4559.49) 

3. The Detection Method 

In this section, we show developed data mining techniques for wind shear prediction 

from Light Detection and Ranging (LIDAR) observational data. We aimed to convert the 

raw LIDAR dataset into headwind profiles as wind shear results from a sustained change 

of the headwind. Since the exact location and range of wind shear are unknown, consid-

ering LIDAR in one azimuth range from 220 to 280 degrees for each episode is not enough. 

For the wind shear episodes that happen within a narrow range, such as from 245 to 255 

degrees, there would be a large noise by considering all LIDAR data ranging from 220 to 

280 degrees. Moreover, we may lose information about wind shear if we consider a nar-

row azimuth range for wind shear occurring in a wide azimuth range. Therefore, for each 
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episode, we consider seven different azimuth ranges where one headwind profile is con-

structed for each azimuth range. Then there are seven different headwind profiles for each 

episode. The seven azimuth ranges are included as follows: az1 = 220°–280°, az2 = 230°–

270°, az3 = 240°–260°, az4 = 245°–255°, az5 = 248°–252°, az6 = 249°–250°, az7 = 250°–251°. More-

over, there are 40 measurements along the slant range. Each headwind profile is a vector 

of size 40. For convenience, we set xi,j to be the headwind profile for the j-th azimuth range 

at the i-th episode, where j = 1, 2, ..., 7 and i = 1, 2, ..., N. Here N is the size of the training 

dataset. 

To detect a wind shear case, we study two statistical indicators based on seven head-

wind profiles to measure the variation of headwind for each episode, which are given as 

follows: 

ki,1 = max { max(xi,j) - min(xi,j) } 

j=1,…,7 
(1) 

where max(xi,j) and min(xi,j) refer to the largest and smallest magnitudes of the values in 

xi,j with respect to the slant range in the headwind profile (i.e., all forty values in the vec-

tor); and 

ki,2 = max { var(xi,j) } 

j=1,…,7 

(2) 

where var(xi,j) refers to the variance of the forty values in xi,j. For ki,1, the maximum spread 

of measured velocities along the range of the measurement beam (slant range) with re-

spect to different azimuth ranges (azj) is used. For ki,2, the maximum variance of measured 

velocities along the range of the measurement beam (slant range) with respect to different 

azimuth ranges (azj) is used. Both indicators are considered to check a change in the wind 

direction and/or speed across multiple headwind profiles. 

In this paper, we propose to determine a threshold value of the indicator to identify 

a wind shear case or a non-wind shear case. In other words, if ki,1 (or ki,2) is larger than the 

threshold value, then a wind shear case is identified, otherwise a non-wind shear case is 

identified. In Figure 3, we report the histograms of ki,1 and ki,2 for a data set in March 2015 

at Hong Kong International Airport. The detailed information of the data set will be de-

scribed and used in Section 4. The values of ki,1 and ki,2 for wind shear cases and non-wind 

shear cases are shown in the histograms. We see from the figure that wind shear and non-

wind shear cases cannot be distinguished clearly though ki,2 is one measure of the variation 

of wind velocity. However, there is a clear boundary to separate wind shear cases and 

non-wind shear cases in the histogram of ki,1. In the following discussion, we consider how 

to determine a decision boundary of ki,1 for wind shear and non-wind shear cases. 

 

Figure 3. Histograms of ki,1 and ki,2 for wind shear and non-wind shear cases in March 2015. (left) 

ki,1 for wind shear and non-wind shear cases; (right) ki,2 for wind shear and non-wind shear cases. 

According to (1), we know that the value of ki,1 is nonnegative. Moreover, we use the 

same data set in Figure 3 to show a QQ Plot in Figure 4. We find that the values of ki,1 for 

wind shear and non-wind shear cases are skewed and the measurements are not normal 
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distributed. Because of these two issues, we may not set a boundary point using classical 

quadratic discriminant analysis which assumes that the measurements from each class are 

normally distributed (see for instance [16]). 

 

(a) 

 

(b) 

Figure 4. QQ Plot of ki,1 for wind shear and null wind shear cases in March 2015. (a) ki,1 for wind 

shear; (b) ki,1 for non-wind shear cases. 

In this paper, we fit one-sided normal distributions with truncation of the lower tail 

for ki,1 of wind shear cases and non-wind shear cases. Then we calculate the means and 

standard deviations of the truncated normal distributions for wind shear cases and non-

wind shear cases. The means of the truncated normal distributions for non-wind shear 

cases and wind shear cases are denoted as mnon and mwind, respectively. The standard devi-

ations of the truncated normal distributions for non-wind shear cases and wind shear 

cases are denoted as snon and swind, respectively. A decision boundary, denoted as z, is 

simply selected such that the number of standard deviations from the mean of non-wind 

shear cases and that from the mean of wind shear cases, are equal, i.e., 
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(z − mnon)/snon = (mwind − z)/swind (3) 

Here the main idea is to find a threshold value for the change in the wind direction 

and/or speed (the unit is knot) that can distinguish wind shear cases and non-wind shear 

cases. In (3), the normalization is done within wind shear cases and non-wind shear cases. 

The threshold value is measured in terms of z-score in the standard normal distribution 

after normalization. In the next section, we validate the proposed method in our case 

study by using HKIA data sets. 

4. Prediction Results and Discussion 

The training and testing LIDAR datasets were collected for validation of our pro-

posed method in Section 3. Both training and testing datasets were for the glide path at a 

specific time. Training data was collected from the LIDAR data in 2015, whereas testing 

data was collected from the LIDAR data in 2018. Pilot reports serve as ground truth for 

the occurrence of wind shear. Wind shear training data was collected according to the 

timestamps of wind shears from pilot reports in 2015. For each timestamp of wind shear 

reported, the recent timestamp from the LIDAR data was matched and their related head-

wind profiles were collected. Non-wind shear training data sets were collected on 2 March 

2015 where there was no wind shear. Moreover, on 2 March 2015, there was no cross-

mountain airflow in HKIA though the easterly winds were fresh (it was around 5 knots). 

Similarly, wind shear testing data was collected according to the timestamps of wind 

shears from pilot reports in 2018. Non-wind shear testing data was collected on the days 

in March 2018 when there was no wind shear under the suggestion from Hong Kong Ob-

servatory. In total, there are fifty training wind shear cases and thirty-nine testing wind 

shear cases. There are also fifty training non-wind shear cases and thirty-nine testing non-

wind shear cases. For each case, the LIDAR scanner takes about four seconds to obtain 

velocities at 1560 locations (see Section 2). 

In the comparison, we test supervised principal component analysis [17] that mini-

mizes Bayes error for data classification. By applying to headwind profiles of episodes in 

2015, supervised Principal Component Analysis (PCA) selects the three features [r1, r2, r3] 

that greatly separate a wind shear case and a non-wind shear case. Moreover, linear dis-

criminant analysis (LDA), k-nearest neighbor (kNN), linear support vector machine 

(SVM), and logistic regression (see [16]) are used to classify wind shear cases and non-

wind shear cases. LDA assumes that the covariance matrices of wind shear class and non-

wind shear class are the same, and determines a linear combination of features (i.e., (r1), 

(r1, r2), or (r1, r2, r3) in our experiment) and a threshold. A wind shear case (a non-wind 

shear case) can be determined if the inner product between the linear combination weights 

and the input features of a testing example is larger than (less than or equal to) the thresh-

old value. SVM maps input features (i.e., (r1), (r1, r2), or (r1, r2, r3) in our experiment) of 

wind shear examples and non-wind shear examples to points and maximizes the width 

of the gap between the wind shear cases and non-wind shear cases. The gap can be repre-

sented by the maximum-margin hyperplane. The class of a testing case based on its input 

features can be determined if the corresponding point lies on the one side of the hyper-

plane. Logistic regression assumes a linear relationship between the response variables (a 

wind shear case or a non-wind shear case) and the log-odds of the event of wind shear 

case. After the regression coefficients are estimated from input features of wind shear 

cases and non-wind shear cases, the logistic regression can be used to model the probabil-

ity of a headwind profile existing such as a wind shear or a non-wind shear case based on 

input features (r1), (r1, r2), or (r1, r2, r3). kNN is a non-parametric classification method with 

the headwind profile being assigned to the wind shear case or non-wind shear case most 

common among its k nearest neighbors. 

The proposed detection method in Section 3 is to compute a threshold about the 

change in the wind direction and/or speed in the boundary of two one-sided normal dis-

tributions with truncation of the lower tails for wind shear cases and non-wind shear 
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cases. The proposed method assumes that the distributions of wind shear cases and non-

wind shear cases are one-sided normal which is different from LDA. Moreover, we do not 

employ a linear combination of weights in LDA, a hyperplane in SVM and a linear rela-

tionship in logistic regression. Instead of using neighbors in kNN, we consider the distri-

butions of wind shear examples and non-wind shear examples in the proposed method. 

The proposed method is different from the above compared classification methods. 

4.1. Results for 2015 

By applying to headwind profiles of episodes in 2015, supervised PCA selects the 

three features [r1, r2, r3] that greatly separate a wind shear case and a non-wind shear case. 

Then we apply the features selected by supervised PCA to wind shear cases and non-wind 

shear cases for classification. The three selected features are tested with LDA, kNN, SVM, 

and logistic regression. Here a fivefold cross validation procedure is applied to each su-

pervised learning method. In fivefold cross-validation, the wind shear cases (or non-wind 

shear cases) are randomly partitioned into five equal sized subsamples. Each subsample 

contains 10 windshear cases and 10 non-wind shear cases. Of the five subsamples, a single 

subsample is retained as the validation data for testing the model, and the remaining four 

subsamples are used as training data. The cross-validation process is then repeated five 

times, with each of the five subsamples used exactly once as the validation data. The five 

results can then be averaged to produce cross-validation accuracy results. In Tables 2–4, 

we show the cross-validation results based on three different combinations of supervised 

PCA features ((r1), (r1, r2), (r1, r2, r3)), see Supplementary Materials. 

For logistic regression based on (r1, r2) or (r1, r2, r3), there are more than one group of 

parameters estimated not significant at the 0.05 level of significance. Therefore, logistic 

regression models are not significant in Tables 3 and 4. Tables 2–4 show that four classifi-

cation algorithms based on supervised PCA features could predict wind shear and non-

wind shear with a cross-validation accuracy up to 0.930. 

Table 2. Cross-validation results of wind shear cases and non-wind shear cases in March 2015 under four classification 

methods with supervised PCA with (r1). 

Classification Method Prediction 
Ground Truth 

Wind Shear 

Ground Truth 

Non-Wind Shear 

Cross-Validation 

Accuracy 

Linear SVM 
Wind shear 43.0 3.0 

0.900 
Non-wind shear 7.0 47.0 

LDA 
Wind shear 41.0 1.0 

0.900 
Non-wind shear 9.0 49.0 

Logistic Regression 
Wind shear 44.0 1.0 

0.930 
Non-wind shear 6.0 49.0 

kNN (k = 3) 
Wind shear 44.0 3.0 

0.910 
Non-wind shear 6.0 47.0 

Table 3. Cross-validation results of wind shear cases and non-wind shear cases in March 2015 under four classification 

methods with supervised PCA with (r1, r2). 

Classification Method Prediction 
Ground Truth 

Wind Shear 

Ground Truth Non-

Wind Shear 

Cross-Validation 

Accuracy 

Linear SVM 
Wind shear 42.0 3.0 

0.890 
Non-wind shear 8.0 47.0 

LDA 
Wind shear 41.0 0.0 

0.900 
Non-wind shear 9.0 50.0 

Logistic Regression 
Wind shear Logistic model is not significant to be 

reported. 
Nil 

Non-wind shear 
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kNN (k = 3) 
Wind shear 44.0 1.0 

0.930 
Non-wind shear 6.0 49.0 

Table 4. Cross-validation results of wind shear cases and non-wind shear cases in March 2015 under four classification 

methods with supervised PCA with (r1, r2, r3). 

Classification Method Prediction 
Ground Truth 

Wind Shear 

Ground Truth Non-

Wind Shear 

Cross-Validation 

Accuracy 

Linear SVM 
Wind shear 45.0 2.0 

0.930 
Non-wind shear 5.0 48.0 

LDA 
Wind shear 38.0 1.0 

0.870 
Non-wind shear 12.0 49.0 

Logistic Regression 
Wind shear Logistic model is not significant to be 

reported. 
Nil 

Non-wind shear 

kNN (k = 3) 
Wind shear 44.0 1.0 

0.930 
Non-wind shear 6.0 49.0 

In addition, we show the fivefold cross-validation results for linear SVM, LDA, kNN, 

and logistic regression based on the statistical indicators ki,1 and ki,2 in (1) and (2), see Sup-

plementary Materials. We test on two combinations of statistical indicators: (ki,1) and (ki,1, 

ki,2). The cross-validation results are summarized in Tables 5 and 6. We note from Tables 

5 and 6 that kNN performs best in terms of the cross-validation accuracy for wind shear 

cases in March 2015, which are 0.960 based on (ki,1) and 0.940 based on (ki,1, ki,2). For the 

general prediction of wind shear cases and non-wind shear cases in March 2015, kNN also 

reaches the most satisfactory cross-validation results which are 0.950 based on (ki,1) and 

0.940 based on (ki,1, ki,2). We observe in the four machine learning methods that the pro-

posed statistical indicator ki,1 is more effective than the supervised PCA features and the 

statistical indicator ki,2 in terms of cross-validation accuracy for wind shear cases and non-

wind shear cases. 

Table 5. Cross-validation results of wind shear cases and non-wind shear cases in March 2015 under four classification 

methods with supervised PCA with (ki,1). 

Classification Method Prediction 
Ground Truth 

Wind Shear 

Ground Truth Non-

Wind Shear 

Cross-Validation 

Accuracy 

Linear SVM 
Wind shear 45.0 3.0 

0.920 
Non-wind shear 5.0 47.0 

LDA 
Wind shear 42.0 1.0 

0.910 
Non-wind shear 8.0 49.0 

Logistic Regression 
Wind shear 47.0 3.0 

0.940 
Non-wind shear 3.0 47.0 

kNN (k = 3) 
Wind shear 48.0 3.0 

0.950 
Non-wind shear 2.0 47.0 

Table 6. Cross-validation results of wind shear cases and non-wind shear cases in March 2015 under four classification 

methods with supervised PCA with (ki,1, ki,2). 

Classification Method Prediction 
Ground Truth Wind 

Shear 

Ground Truth Non-

Wind Shear 

Cross-Validation 

Accuracy 

Linear SVM 
Wind shear 43.0 3.0 

0.900 
Non-wind shear 7.0 47.0 

LDA 
Wind shear 42.0 2.0 

0.900 
Non-wind shear 8.0 48.0 

Logistic Regression Wind shear 45.0 3.0 0.920 
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Non-wind shear 5.0 47.0 

kNN (k = 3) 
Wind shear 47.0 3.0 

0.940 
Non-wind shear 3.0 47.0 

On the other hand, we apply the proposed data analytics algorithm in Section 3 to 

training datasets in 2015. Fivefold cross-validation is applied to the statistical indicator ki,1 

of training datasets to set a decision boundary according to (3). The cross-validation re-

sults of wind shear and nonwind shear in March 2015 are presented in Table 7. The cross-

validation accuracy is 0.980, which is better than those of other methods by at least 3.00%. 

In Table 8, we show the values of mnon, mwind, snon, and swind and the determined threshold 

value z in the five cross-validation tests. Note that the average threshold value is z = 2.290, 

i.e., if ki,1 (the maximum spread of measured velocities along the range of the measurement 

beam) is greater than or equal to 2.290, then it is a wind shear case; otherwise, it is a non-

wind shear case. Correspondingly, the number (mwind − 2.290)/swind of standard deviations 

of the truncated normal distribution of wind shear cases and the number (2.290 − mnon)/snon 

of standard deviations of the truncated normal distribution of non-wind shear cases are 

about 2.458. 

Table 7. Cross-validation results of wind shear and non-wind shear in March 2015 under the proposed data analytics 

algorithm. 

Prediction Ground Truth Wind Shear Ground Truth Non-Wind Shear Cross-Validation Accuracy 

Wind shear 50.0 2.0 
0.980 

Non-wind shear 0.0 48.0 

Table 8. The values of mnon, mwind, snon, and swind and the determined threshold value z in the five cross-validation tests. 

Mean (Wind Shear 

Case) 

Standard Deviation  

(Wind Shear Case) 

Mean (Non-Wind Shear 

Case) 

Standard Deviation 

(Non-Wind Shear Case) 

Determined 

Threshold Value 

5.137 1.452 1.550 0.307 2.062 

6.226 1.248 1.284 0.265 2.098 

6.313 1.794 1.811 0.118 2.070 

6.750 1.879 1.646 0.285 2.597 

6.084 1.936 1.466 0.303 2.646 

4.2. Results for 2018 

In this subsection, we show the testing results for LIDAR in 2018 under the models 

trained by the LIDAR data in March 2015. There are thirty-nine wind shear cases and 

thirty-nine non-wind shear cases in March 2018. It is an out-of-training-sample test. 

For supervised PCA with (r1), we apply five training models under each classification 

method respectively to test all the seventy-eight cases in March 2018. In Table 9, we cal-

culate the wind shear prediction accuracy and non-wind shear prediction accuracy by av-

eraging the results over five training models for each classification method. The prediction 

accuracy is calculated by averaging wind shear prediction accuracy and non-wind shear 

prediction accuracy for each classification method. Similarly, for supervised PCA with (r1, 

r2) and (r1, r2, r3), the prediction accuracy results are summarized in Tables 10 and 11. Fur-

thermore, the prediction results based on the proposed statistical indicators (ki,1) and (ki,1, 

ki,2) are shown in Tables 12 and 13, respectively. Moreover, we apply the determined 

threshold value (z = 2.290) trained from the LIDAR data in March 2015 to the LIDAR data 

in March 2018 to detect wind shear cases and non-wind shear cases. The prediction accu-

racy results are shown in Table 14. 

By comparing the prediction accuracy results in Table 14 with those in Tables 9–13, 

we observe that the proposed statistical indicator ki,1 is more effective than supervised 

PCA features and statistical indicator ki,2. The prediction accuracy of wind shear cases and 
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non-wind shear cases in March 2018 by the proposed data analytics algorithm is 0.920, 

which is higher than the average prediction accuracy results of other machine learning 

methods based on (r1), (r1, r2), (r1, r2, r3), (ki,1) and (ki,1, ki,2). We also see from Tables 9–13 

that the prediction accuracy of wind shear cases is very high, but the prediction accuracy 

of non-wind shear cases is very low. The models trained by the LIDAR data in March 2015 

may be overfitting. 

On the other hand, the prediction accuracy by the proposed data analytics algorithm 

is also higher than 0.806, the prediction accuracy of wind shear cases and non-wind shear 

cases by a recent synthesized scheme in [10]. Overall, our data analytics algorithm has a 

good performance in predictions of wind shear cases and non-wind shear cases, which 

could be applied to more the LIDAR data to predict wind shear. 

Table 9. Cross-validation results of wind shear cases and non-wind shear cases in March 2018 under four classification 

methods with supervised PCA with (r1). 

Classification 

Method 

Wind Shear Average 

Prediction Accuracy 

Non-Wind Shear Average 

Prediction Accuracy 

Average Prediction 

Accuracy 

Linear SVM 0.530 0.990 0.760 

LDA 0.440 1.000 0.720 

Logistic Regression 0.670 0.970 0.820 

kNN (k = 3) 0.550 0.980 0.770 

Table 10. Cross-validation results of wind shear cases and non-wind shear cases in March 2018 under four classification 

methods with supervised PCA with (r1, r2). 

Classification 

Method 

Wind Shear Average 

Prediction Accuracy 

Non-Wind Shear Average 

Prediction Accuracy 

Average Prediction 

Accuracy 

Linear SVM 1.000 0.000 0.500 

LDA 0.970 0.000 0.490 

Logistic Regression 0.960 0.190 0.580 

kNN (k = 3) 0.970 0.650 0.810 

Table 11. Cross-validation results of wind shear cases and non-wind shear cases in March 2018 under four classification 

methods with supervised PCA with (r1, r2, r3). 

Classification 

Method 

Wind Shear Average 

Prediction Accuracy 

Non-Wind Shear Average 

Prediction Accuracy 

Average Prediction 

Accuracy 

Linear SVM 1.000 0.000 0.500 

LDA 0.970 0.000 0.490 

Logistic Regression 0.970 0.000 0.490 

kNN (k = 3) 0.970 0.650 0.810 

Table 12. Cross-validation results of wind shear cases and non-wind shear cases in March 2018 under four classification 

methods with supervised PCA with (ki,1). 

Classification 

Method 

Wind Shear Average 

Prediction Accuracy 

Non-Wind Shear Average 

Prediction Accuracy 

Average Prediction 

Accuracy 

Linear SVM 0.890 0.880 0.890 

LDA 0.760 0.950 0.860 

Logistic Regression 0.950 0.870 0.910 

kNN (k = 3) 0.940 0.880 0.910 
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Table 13. Cross-validation results of wind shear cases and non-wind shear cases in March 2018 under four classification 

methods with supervised PCA with (ki,1, ki,2). 

Classification 

Method 

Wind Shear Average 

Prediction Accuracy 

Non-Wind Shear Average 

Prediction Accuracy 

Average Prediction 

Accuracy 

Linear SVM 0.900 0.890 0.900 

LDA 0.760 0.920 0.840 

Logistic Regression 0.860 0.870 0.870 

kNN (k = 3) 0.930 0.880 0.910 

Table 14. Cross-validation results of wind shear cases and non-wind shear cases in March 2018 under the proposed data 

analytics algorithm. 

Prediction Ground Truth Wind Shear Ground Truth Non-Wind Shear Prediction Accuracy 

Wind shear 38 5 
0.920 

Non-wind shear 1 34 

5. Conclusions 

In this paper, we construct headwind profiles from the LIDAR observations. With 

the unknown location and range of wind shear, seven different azimuth ranges are con-

sidered where one headwind profile is constructed for each azimuth range, which could 

gain a higher accuracy than one headwind profile for measuring a wind shear case. After 

that, a statistical indicator is proposed on the seven headwind profiles to measure the 

variation of headwinds for each episode. Then a decision rule is generated from the pro-

posed statistical indicator. A wind shear case is identified when the indicator is larger than 

2.290 that is obtained by using the LIDAR data in 2015, a non-wind shear case otherwise. 

The training and testing results in 2015 and 2018 respectively show that the proposed sta-

tistical indicator is more effective than supervised PCA features. Furthermore, the predic-

tion accuracies of the proposed model are 98.0% for training data and 92.0% for testing 

data, which are better than the other methods like LDA, KNN, linear SVM and logistic 

regression. 

In the future, the proposed model could be applied to more LIDAR datasets to pre-

dict wind shear. We plan to check the performance of the decision point to the LIDAR 

data in different locations and different periods. We would like to improve this model 

that can provide more accurate warnings of wind shear for pilots and improve the perfor-

mance of Wind shear and Turbulence Warning System. On the other hand, doppler LI-

DARs are increasingly more commonly used for detecting airflow turbulence. The turbu-

lence may arise from natural terrain, or even by man-made structures and buildings. The 

behavior of the turbulence from Terrain and buildings may be different. As a future re-

search topic, the methods studied in the present paper may be applied to other meteoro-

logical conditions, such as tropical cyclones, thunderstorms, and other kinds of disturbed 

airflow, such as building effects on the low-level wind. 

Supplementary Materials: The extracted features (r1, r2, r3) and (ki,1, ki,2) of LIDAR data of wind shear 

cases and non-wind shear cases are available online at http://hkumath.hku.hk/~mng/mng_files/sup-

plementary-data.xlsx. 
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