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Abstract: The main aim of this paper is to propose a statistical indicator for wind shear prediction
from Light Detection and Ranging (LIDAR) observational data. Accurate warning signal of wind
shear is particularly important for aviation safety. The main challenges are that wind shear may
result from a sustained change of the headwind and the possible velocity of wind shear may have a
wide range. Traditionally, aviation models based on terrain-induced setting are used to detect wind
shear phenomena. Different from traditional methods, we study a statistical indicator which is used
to measure the variation of headwinds from multiple headwind profiles. Because the indicator value
is nonnegative, a decision rule based on one-side normal distribution is employed to distinguish
wind shear cases and non-wind shear cases. Experimental results based on real data sets obtained at
Hong Kong International Airport runway are presented to demonstrate that the proposed indicator
is quite effective. The prediction performance of the proposed method is better than that by the
supervised learning methods (LDA, KNN, SVM, and logistic regression). This model would also
provide more accurate warnings of wind shear for pilots and improve the performance of Wind shear
and Turbulence Warning System.

Keywords: machine learning methods; light detection and ranging data; prediction models; wind
shear detection

1. Introduction

Wind shear is a kind of microscale meteorological phenomenon which refers to a
sustained change in the wind direction and/or speed, resulting in a change in the headwind
or tailwind encountered by an aircraft, see, for instance, [1,2]. Accurate wind shear detection
is crucial for aviation safety in approach and landing. Typically, a sustained change of
the headwind or tailwind of 15 knots (7.72 m/s) or more for more than a few seconds is
significant wind shear. A significant wind shear occurring at low levels on approach and
departure zones at airport might result in the difficulty in control for aircrafts. This losing
of altitude could become very dangerous during an aircraft’s landing and takeoff phases.
Pilots require timely and appropriate corrective actions to ensure the safety of aircrafts
when they encounter wind shear.

There were models and hardware launched at various airports to detect wind shear.
Boilley and Mahfouf [3] studied a wind shear event using both observational and numerical
data and demonstrated that a numerical model (Meso-NH) could be used to detect wind
shear over the Nice airport. Weipert et al. [4] researched on low-level wind shear detection
systems consisting of an Xband polarimetric scanning radar and an infrared scanning
LIDAR (Light Detection and Ranging) to detect wind shear at the German international air-
ports of Frankfurt and Munich. Since 2017, Airport Low-level Wind Information (ALWIN)
system was operated at Tokyo International Airport (Haneda) and Narita International
Airport to detect low-level wind shear, see [5].
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Research on the low-level wind shear algorithm has begun using anemometers since
1970s and Doppler radars since 1980s. They are dedicated to some special weather phe-
nomena such as gust front and microbursts/mesocyclones. The detailed information of
Low-Level Windshear Alert System can be found in [6]. It is still used at some airports such
as those in the United States and Taiwan, to deal with wind shear issues. The siting of the
anemometers at critical locations is important for the success of the algorithm in capturing
low level wind shear due to microburst. Currently, it is also effective in the detection and
warning of low-level wind shear in rainy weather. However, there are limitations of the
use of anemometer-based algorithms and Doppler weather radars in capturing wind shear
due to dry microburst.

A method to capture low level wind shear in clear air situations is the use of wind
profilers, such as the system used at Juneau, United States [7]. It is claimed to be capable
of capturing wind shear due to terrain effects. However, wind profiler data consists
of 10-min averages and its wind alerts may not be fast enough (i.e., not so frequently
updated) to detect rapidly changing wind shear due to terrain effects, which may occur
in a time interval of a few minutes or even within one minute. The detection of wind
shear due to dry microburst and terrain effect points to the use of new remote sensing
instrumentation for wind shear detection, namely, the Doppler weather LIDAR system.
Recent advances in LIDAR techniques have spurred the development of several methods
(see for instance [8–12]), for predicting wind shear from the LIDAR data. Some researchers
have developed methods by using Doppler weather LIDAR to detect microburst wind
shear, see [11]. In contrast, much fewer methods have been developed on the detection of
terrain-induced wind shear by using Doppler weather LIDAR.

Wind shear at Hong Kong International Airport (HKIA) is terrain induced. HKIA lies
to the north of the mountainous Lantau Island with highest peaks above 900 m and valleys
as low as 300 m, see Figure 1. Sometimes, the flow of air across this hilly terrain could
be disrupted to form mountain waves, gap outflow, etc., over the flight paths of HKIA,
inducing wind shear. Most of the wind shear episodes at HKIA are related to airflow
disturbances by the complex terrain near HKIA, see [1]. In addition, forecasters [8,9] in
Hong Kong Observatory can issue warnings for imminent wind shear based on the broad
prevailing meteorological conditions and the real time data from the Wind shear and
Turbulence Warning System [2]. Currently, this warning system can generate “up-to-the-
minute” alerts after wind shear is measured. The LIDAR alarm rate is about 0.76, see the
results reported in [1]. In 2016, a high-resolution numerical aviation model was employed
to forecast the terrain-induced wind shear at HKIA, see [12]. In 2018, a synthesized scheme
based on the combination of improved signal smoothing and wind shear detection was
proposed to detect wind shear. The scheme could capture 80.6% of wind shear according
to pilot reports from HKIA, see [10]. The performance of this warning system should be
further improved to issue timely warmings of wind shear for pilots. Therefore, further
research is ongoing to explore the use of LIDAR data in detection of wind shear at HKIA.

Modern data mining techniques can be applied to various datasets used in many
meteorological applications for prediction purposes. The main aim of this paper is to
propose an indicator for wind shear prediction from Light Detection and Ranging (LIDAR)
observational data. In the literature, the research on machine learning methods for wind
shear detection with LIDAR data has received some attention. In 2012, a chaotic oscillatory-
based neural network with a new learning algorithm was proposed to identify the wind
shear occurrence, see [13]. Li et al. [14] designed a new method that employs a neural
network as the position amendment module and exponential smoothing as the fluctuation
compensation module. This method was applied to HKIA Doppler LIDAR data and a
reasonable wind shear forecasting precision was obtained, see for example [15].

Different from the above traditional hardware-based and aviation methods, we pro-
pose in this paper to use supervised learning methods for wind shear detection. We will
present a statistical indicator which is used to measure the variation of headwinds from
multiple headwind profiles. The indicator is based on the maximum spread of measured
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velocities along the range of the measurement beam with respect to different azimuth
ranges. Because the indicator value is a nonnegative number, we employ a decision rule
based on one-side normal distribution to distinguish a wind shear case and a non-wind
shear case. Experimental results based on real data sets on two different periods obtained
at Hong Kong International Airport runway are presented to demonstrate the proposed
indicator is quite effective. In particular, the prediction accuracies of the proposed model
are 98.0% for training data collected at 2015 and 92.0% for testing data collected at 2018,
which are better than the other methods like LDA, KNN, SVM and logistic regression.

Figure 1. Map of Hong Kong International Airport and Lantau Island (height contours: 100 m) [1],
with the location of the LIDAR (red square). Runway corridors are shown as pink arrows with the
names marked alongside.

The outline of this paper is given as follows. In Section 2, we study the LIDAR
observational data from HKIA. In Section 3, we present the proposed method. In Section 4,
results are presented to demonstrate the effectiveness of the proposed method for wind
shear prediction. Finally, some concluding remarks are given in Section 5.

2. LIDAR Observational Data

To measure the variable wind profile to be encountered by the aircraft at HKIA,
Hong Kong Observatory developed Glide Path Scan (GPScan) strategy for the LIDAR [2].
A diagram of a glide path scan is given in Figure 2. For arrival corridors, three-degree
glide paths originating from the touchdown points of the runways are considered. The
laser beam of the LIDAR is used to slide along the glide paths and measure the winds. The
azimuth and elevation motions of the LIDAR scanner must be configured so that the laser
beam can slide smoothly. The radial wind measurements along a glide path are considered
together to construct a headwind profile. During the scanning process, the wind velocities
are measured at the locations represented by slant ranges (or range gates), azimuth angles,
and elevation angles in three-dimensional space.

Since the aircraft on approach closely follows the three-degree glide slope in the final
three nautical miles prior to touchdown on the runway, we only analyze the LIDAR of
three-degree elevation angle. On the other hand, the glide path area in HKIA is measured
by around 250-degree azimuth angle. Here we focus on the azimuth angles in between
220 degrees and 280 degrees. The slant ranges of the LIDAR data are from 350 to 10,000 m.
However, the LIDAR data points with slant ranges over 4500 m are neglected since there
are many missing Doppler velocities. In this paper, we focus on the LIDAR data at three-
degree elevation angle, the azimuth angles in between 220 and 280 degrees, and the slant
ranges in between 350 and 4500 m. At HKIA, the LIDAR scanner takes about four seconds
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to obtain velocities at 1560 locations which refer to the combination of 39 azimuth angles
and 40 slant ranges in the above setting.

Figure 2. Diagram illustrating a LIDAR glide path scan along the 3-degree glide path for the western
approach towards the north runway.

In Table 1, we show an example of the collected LIDAR data on 2 March 2015. The
LIDAR cannot return actual locations in elevation angles, azimuth angles and slant ranges
of measured velocities, and it only provides their minimum and maximum values. In
Table 1, the differences between the maximum and minimum values in azimuth angles are
about one-degree. However, the differences between the maximum and minimum values
in slant ranges are from 10 to 105 m.

Table 1. An example of the collected LIDAR data at HKIA.

Time Velocity
(Knots)

Elevation Angle
(Degrees)

Azimuth Angle
(Degrees)

Slant Range
(Meters)

2 March 2015 15:13:44 6.24 (3.00 3.00) (220.06 221.63) (464.49 569.49)
2 March 2015 15:13:44 4.59 (3.00 3.00) (220.06 221.63) (569.49 674.49)

: : : : :
2 March 2015 15:13:44 1.85 (3.00 3.00) (220.06 221.63) (4454.49 4559.49)

2 March 2015 15:13:44 7.12 (3.00 3.00) (221.66 223.25) (359.49 464.49)

: : : : :

2 March 2015 15:13:47 8.59 (3.00 3.00) (280.88 282.44) (4349.49 4454.49)

2 March 2015 15:13:47 8.44 (3.00 3.00) (280.88 282.44) (4454.49 4559.49)

3. The Detection Method

In this section, we show developed data mining techniques for wind shear prediction
from Light Detection and Ranging (LIDAR) observational data. We aimed to convert
the raw LIDAR dataset into headwind profiles as wind shear results from a sustained
change of the headwind. Since the exact location and range of wind shear are unknown,
considering LIDAR in one azimuth range from 220 to 280 degrees for each episode is
not enough. For the wind shear episodes that happen within a narrow range, such as
from 245 to 255 degrees, there would be a large noise by considering all LIDAR data
ranging from 220 to 280 degrees. Moreover, we may lose information about wind shear
if we consider a narrow azimuth range for wind shear occurring in a wide azimuth
range. Therefore, for each episode, we consider seven different azimuth ranges where
one headwind profile is constructed for each azimuth range. Then there are seven differ-
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ent headwind profiles for each episode. The seven azimuth ranges are included as fol-
lows: az1 = 220◦–280◦, az2 = 230◦–270◦, az3 = 240◦–260◦, az4 = 245◦–255◦, az5 = 248◦–252◦,
az6 = 249◦–250◦, az7 = 250◦–251◦. Moreover, there are 40 measurements along the slant
range. Each headwind profile is a vector of size 40. For convenience, we set xi,j to be the
headwind profile for the j-th azimuth range at the i-th episode, where j = 1, 2, . . . , 7 and
i = 1, 2, . . . , N. Here N is the size of the training dataset.

To detect a wind shear case, we study two statistical indicators based on seven head-
wind profiles to measure the variation of headwind for each episode, which are given
as follows:

ki,1 = max {max(xi,j) − min(xi,j)}
j = 1, . . . ,7 (1)

where max(xi,j) and min(xi,j) refer to the largest and smallest magnitudes of the values
in xi,j with respect to the slant range in the headwind profile (i.e., all forty values in the
vector); and

ki,2 = max {var(xi,j)}
j = 1, . . . ,7 (2)

where var(xi,j) refers to the variance of the forty values in xi,j. For ki,1, the maximum spread
of measured velocities along the range of the measurement beam (slant range) with respect
to different azimuth ranges (azj) is used. For ki,2, the maximum variance of measured
velocities along the range of the measurement beam (slant range) with respect to different
azimuth ranges (azj) is used. Both indicators are considered to check a change in the wind
direction and/or speed across multiple headwind profiles.

In this paper, we propose to determine a threshold value of the indicator to identify
a wind shear case or a non-wind shear case. In other words, if ki,1 (or ki,2) is larger than
the threshold value, then a wind shear case is identified, otherwise a non-wind shear case
is identified. In Figure 3, we report the histograms of ki,1 and ki,2 for a data set in March
2015 at Hong Kong International Airport. The detailed information of the data set will
be described and used in Section 4. The values of ki,1 and ki,2 for wind shear cases and
non-wind shear cases are shown in the histograms. We see from the figure that wind shear
and non-wind shear cases cannot be distinguished clearly though ki,2 is one measure of the
variation of wind velocity. However, there is a clear boundary to separate wind shear cases
and non-wind shear cases in the histogram of ki,1. In the following discussion, we consider
how to determine a decision boundary of ki,1 for wind shear and non-wind shear cases.

Figure 3. Histograms of ki,1 and ki,2 for wind shear and non-wind shear cases in March 2015. (left)
ki,1 for wind shear and non-wind shear cases; (right) ki,2 for wind shear and non-wind shear cases.

According to (1), we know that the value of ki,1 is nonnegative. Moreover, we use the
same data set in Figure 3 to show a QQ Plot in Figure 4. We find that the values of ki,1 for
wind shear and non-wind shear cases are skewed and the measurements are not normal
distributed. Because of these two issues, we may not set a boundary point using classical
quadratic discriminant analysis which assumes that the measurements from each class are
normally distributed (see for instance [16]).
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Figure 4. QQ Plot of ki,1 for wind shear and null wind shear cases in March 2015. (a) ki,1 for wind
shear; (b) ki,1 for non-wind shear cases.

In this paper, we fit one-sided normal distributions with truncation of the lower tail
for ki,1 of wind shear cases and non-wind shear cases. Then we calculate the means and
standard deviations of the truncated normal distributions for wind shear cases and non-
wind shear cases. The means of the truncated normal distributions for non-wind shear
cases and wind shear cases are denoted as mnon and mwind, respectively. The standard
deviations of the truncated normal distributions for non-wind shear cases and wind shear
cases are denoted as snon and swind, respectively. A decision boundary, denoted as z, is
simply selected such that the number of standard deviations from the mean of non-wind
shear cases and that from the mean of wind shear cases, are equal, i.e.,

(z − mnon)/snon = (mwind − z)/swind (3)
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Here the main idea is to find a threshold value for the change in the wind direction
and/or speed (the unit is knot) that can distinguish wind shear cases and non-wind shear
cases. In (3), the normalization is done within wind shear cases and non-wind shear cases.
The threshold value is measured in terms of z-score in the standard normal distribution
after normalization. In the next section, we validate the proposed method in our case study
by using HKIA data sets.

4. Prediction Results and Discussion

The training and testing LIDAR datasets were collected for validation of our pro-
posed method in Section 3. Both training and testing datasets were for the glide path
at a specific time. Training data was collected from the LIDAR data in 2015, whereas
testing data was collected from the LIDAR data in 2018. Pilot reports serve as ground
truth for the occurrence of wind shear. Wind shear training data was collected according
to the timestamps of wind shears from pilot reports in 2015. For each timestamp of wind
shear reported, the recent timestamp from the LIDAR data was matched and their related
headwind profiles were collected. Non-wind shear training data sets were collected on
2 March 2015 where there was no wind shear. Moreover, on 2 March 2015, there was no
cross-mountain airflow in HKIA though the easterly winds were fresh (it was around
5 knots). Similarly, wind shear testing data was collected according to the timestamps
of wind shears from pilot reports in 2018. Non-wind shear testing data was collected on
the days in March 2018 when there was no wind shear under the suggestion from Hong
Kong Observatory. In total, there are fifty training wind shear cases and thirty-nine testing
wind shear cases. There are also fifty training non-wind shear cases and thirty-nine testing
non-wind shear cases. For each case, the LIDAR scanner takes about four seconds to obtain
velocities at 1560 locations (see Section 2).

In the comparison, we test supervised principal component analysis [17] that mini-
mizes Bayes error for data classification. By applying to headwind profiles of episodes in
2015, supervised Principal Component Analysis (PCA) selects the three features [r1, r2, r3]
that greatly separate a wind shear case and a non-wind shear case. Moreover, linear dis-
criminant analysis (LDA), k-nearest neighbor (kNN), linear support vector machine (SVM),
and logistic regression (see [16]) are used to classify wind shear cases and non-wind shear
cases. LDA assumes that the covariance matrices of wind shear class and non-wind shear
class are the same, and determines a linear combination of features (i.e., (r1), (r1, r2), or
(r1, r2, r3) in our experiment) and a threshold. A wind shear case (a non-wind shear case)
can be determined if the inner product between the linear combination weights and the
input features of a testing example is larger than (less than or equal to) the threshold value.
SVM maps input features (i.e., (r1), (r1, r2), or (r1, r2, r3) in our experiment) of wind shear
examples and non-wind shear examples to points and maximizes the width of the gap
between the wind shear cases and non-wind shear cases. The gap can be represented by the
maximum-margin hyperplane. The class of a testing case based on its input features can
be determined if the corresponding point lies on the one side of the hyperplane. Logistic
regression assumes a linear relationship between the response variables (a wind shear case
or a non-wind shear case) and the log-odds of the event of wind shear case. After the
regression coefficients are estimated from input features of wind shear cases and non-wind
shear cases, the logistic regression can be used to model the probability of a headwind
profile existing such as a wind shear or a non-wind shear case based on input features (r1),
(r1, r2), or (r1, r2, r3). kNN is a non-parametric classification method with the headwind
profile being assigned to the wind shear case or non-wind shear case most common among
its k nearest neighbors.

The proposed detection method in Section 3 is to compute a threshold about the change
in the wind direction and/or speed in the boundary of two one-sided normal distributions
with truncation of the lower tails for wind shear cases and non-wind shear cases. The
proposed method assumes that the distributions of wind shear cases and non-wind shear
cases are one-sided normal which is different from LDA. Moreover, we do not employ a
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linear combination of weights in LDA, a hyperplane in SVM and a linear relationship in
logistic regression. Instead of using neighbors in kNN, we consider the distributions of
wind shear examples and non-wind shear examples in the proposed method. The proposed
method is different from the above compared classification methods.

4.1. Results for 2015

By applying to headwind profiles of episodes in 2015, supervised PCA selects the
three features [r1, r2, r3] that greatly separate a wind shear case and a non-wind shear
case. Then we apply the features selected by supervised PCA to wind shear cases and non-
wind shear cases for classification. The three selected features are tested with LDA, kNN,
SVM, and logistic regression. Here a fivefold cross validation procedure is applied to each
supervised learning method. In fivefold cross-validation, the wind shear cases (or non-wind
shear cases) are randomly partitioned into five equal sized subsamples. Each subsample
contains 10 windshear cases and 10 non-wind shear cases. Of the five subsamples, a single
subsample is retained as the validation data for testing the model, and the remaining four
subsamples are used as training data. The cross-validation process is then repeated five
times, with each of the five subsamples used exactly once as the validation data. The five
results can then be averaged to produce cross-validation accuracy results. In Tables 2–4,
we show the cross-validation results based on three different combinations of supervised
PCA features ((r1), (r1, r2), (r1, r2, r3)), see Supplementary Materials.

Table 2. Cross-validation results of wind shear cases and non-wind shear cases in March 2015 under four classification
methods with supervised PCA with (r1).

Classification Method Prediction Ground Truth
Wind Shear

Ground Truth
Non-Wind Shear

Cross-Validation
Accuracy

Linear SVM
Wind shear 43.0 3.0

0.900Non-wind shear 7.0 47.0

LDA
Wind shear 41.0 1.0

0.900Non-wind shear 9.0 49.0

Logistic Regression Wind shear 44.0 1.0
0.930Non-wind shear 6.0 49.0

kNN (k = 3)
Wind shear 44.0 3.0

0.910Non-wind shear 6.0 47.0

Table 3. Cross-validation results of wind shear cases and non-wind shear cases in March 2015 under four classification
methods with supervised PCA with (r1, r2).

Classification Method Prediction Ground Truth
Wind Shear

Ground Truth
Non-Wind Shear

Cross-Validation
Accuracy

Linear SVM
Wind shear 42.0 3.0

0.890Non-wind shear 8.0 47.0

LDA
Wind shear 41.0 0.0

0.900Non-wind shear 9.0 50.0

Logistic Regression Wind shear Logistic model is not significant to be reported. NilNon-wind shear

kNN (k = 3)
Wind shear 44.0 1.0

0.930Non-wind shear 6.0 49.0

For logistic regression based on (r1, r2) or (r1, r2, r3), there are more than one group
of parameters estimated not significant at the 0.05 level of significance. Therefore, logistic
regression models are not significant in Tables 3 and 4. Tables 2–4 show that four classifica-



Atmosphere 2021, 12, 644 9 of 13

tion algorithms based on supervised PCA features could predict wind shear and non-wind
shear with a cross-validation accuracy up to 0.930.

Table 4. Cross-validation results of wind shear cases and non-wind shear cases in March 2015 under four classification
methods with supervised PCA with (r1, r2, r3).

Classification Method Prediction Ground Truth
Wind Shear

Ground Truth
Non-Wind Shear

Cross-Validation
Accuracy

Linear SVM
Wind shear 45.0 2.0

0.930Non-wind shear 5.0 48.0

LDA
Wind shear 38.0 1.0

0.870Non-wind shear 12.0 49.0

Logistic Regression Wind shear Logistic model is not significant to be reported. NilNon-wind shear

kNN (k = 3)
Wind shear 44.0 1.0

0.930Non-wind shear 6.0 49.0

In addition, we show the fivefold cross-validation results for linear SVM, LDA, kNN,
and logistic regression based on the statistical indicators ki,1 and ki,2 in (1) and (2), see
Supplementary Materials. We test on two combinations of statistical indicators: (ki,1) and
(ki,1, ki,2). The cross-validation results are summarized in Tables 5 and 6. We note from
Tables 5 and 6 that kNN performs best in terms of the cross-validation accuracy for wind
shear cases in March 2015, which are 0.960 based on (ki,1) and 0.940 based on (ki,1, ki,2). For
the general prediction of wind shear cases and non-wind shear cases in March 2015, kNN
also reaches the most satisfactory cross-validation results which are 0.950 based on (ki,1)
and 0.940 based on (ki,1, ki,2). We observe in the four machine learning methods that the
proposed statistical indicator ki,1 is more effective than the supervised PCA features and
the statistical indicator ki,2 in terms of cross-validation accuracy for wind shear cases and
non-wind shear cases.

Table 5. Cross-validation results of wind shear cases and non-wind shear cases in March 2015 under four classification
methods with supervised PCA with (ki,1).

Classification Method Prediction Ground Truth
Wind Shear

Ground Truth
Non-Wind Shear

Cross-Validation
Accuracy

Linear SVM
Wind shear 45.0 3.0

0.920Non-wind shear 5.0 47.0

LDA
Wind shear 42.0 1.0

0.910Non-wind shear 8.0 49.0

Logistic Regression Wind shear 47.0 3.0
0.940Non-wind shear 3.0 47.0

kNN (k = 3)
Wind shear 48.0 3.0

0.950Non-wind shear 2.0 47.0

On the other hand, we apply the proposed data analytics algorithm in Section 3 to
training datasets in 2015. Fivefold cross-validation is applied to the statistical indicator
ki,1 of training datasets to set a decision boundary according to (3). The cross-validation
results of wind shear and nonwind shear in March 2015 are presented in Table 7. The
cross-validation accuracy is 0.980, which is better than those of other methods by at least
3.00%. In Table 8, we show the values of mnon, mwind, snon, and swind and the determined
threshold value z in the five cross-validation tests. Note that the average threshold value
is z = 2.290, i.e., if ki,1 (the maximum spread of measured velocities along the range of
the measurement beam) is greater than or equal to 2.290, then it is a wind shear case;
otherwise, it is a non-wind shear case. Correspondingly, the number (mwind − 2.290)/swind
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of standard deviations of the truncated normal distribution of wind shear cases and the
number (2.290 − mnon)/snon of standard deviations of the truncated normal distribution of
non-wind shear cases are about 2.458.

Table 6. Cross-validation results of wind shear cases and non-wind shear cases in March 2015 under four classification
methods with supervised PCA with (ki,1, ki,2).

Classification Method Prediction Ground Truth
Wind Shear

Ground Truth
Non-Wind Shear

Cross-Validation
Accuracy

Linear SVM
Wind shear 43.0 3.0

0.900Non-wind shear 7.0 47.0

LDA
Wind shear 42.0 2.0

0.900Non-wind shear 8.0 48.0

Logistic Regression
Wind shear 45.0 3.0

0.920
Non-wind shear 5.0 47.0

kNN (k = 3)
Wind shear 47.0 3.0

0.940Non-wind shear 3.0 47.0

Table 7. Cross-validation results of wind shear and non-wind shear in March 2015 under the proposed data analytics algorithm.

Prediction Ground Truth Wind Shear Ground Truth Non-Wind Shear Cross-Validation Accuracy

Wind shear 50.0 2.0
0.980Non-wind shear 0.0 48.0

Table 8. The values of mnon, mwind, snon, and swind and the determined threshold value z in the five cross-validation tests.

Mean (Wind
Shear Case)

Standard Deviation
(Wind Shear Case)

Mean (Non-Wind
Shear Case)

Standard Deviation
(Non-Wind Shear Case)

Determined
Threshold Value

5.137 1.452 1.550 0.307 2.062
6.226 1.248 1.284 0.265 2.098
6.313 1.794 1.811 0.118 2.070
6.750 1.879 1.646 0.285 2.597
6.084 1.936 1.466 0.303 2.646

4.2. Results for 2018

In this subsection, we show the testing results for LIDAR in 2018 under the models
trained by the LIDAR data in March 2015. There are thirty-nine wind shear cases and
thirty-nine non-wind shear cases in March 2018. It is an out-of-training-sample test.

For supervised PCA with (r1), we apply five training models under each classification
method respectively to test all the seventy-eight cases in March 2018. In Table 9, we calculate
the wind shear prediction accuracy and non-wind shear prediction accuracy by averaging
the results over five training models for each classification method. The prediction accuracy
is calculated by averaging wind shear prediction accuracy and non-wind shear prediction
accuracy for each classification method. Similarly, for supervised PCA with (r1, r2) and (r1,
r2, r3), the prediction accuracy results are summarized in Tables 10 and 11. Furthermore,
the prediction results based on the proposed statistical indicators (ki,1) and (ki,1, ki,2) are
shown in Tables 12 and 13, respectively. Moreover, we apply the determined threshold
value (z = 2.290) trained from the LIDAR data in March 2015 to the LIDAR data in March
2018 to detect wind shear cases and non-wind shear cases. The prediction accuracy results
are shown in Table 14.
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Table 9. Cross-validation results of wind shear cases and non-wind shear cases in March 2018 under four classification
methods with supervised PCA with (r1).

Classification Method Wind Shear Average
Prediction Accuracy

Non-Wind Shear Average
Prediction Accuracy Average Prediction Accuracy

Linear SVM 0.530 0.990 0.760
LDA 0.440 1.000 0.720

Logistic Regression 0.670 0.970 0.820
kNN (k = 3) 0.550 0.980 0.770

Table 10. Cross-validation results of wind shear cases and non-wind shear cases in March 2018 under four classification
methods with supervised PCA with (r1, r2).

Classification Method Wind Shear Average
Prediction Accuracy

Non-Wind Shear Average
Prediction Accuracy Average Prediction Accuracy

Linear SVM 1.000 0.000 0.500
LDA 0.970 0.000 0.490

Logistic Regression 0.960 0.190 0.580
kNN (k = 3) 0.970 0.650 0.810

Table 11. Cross-validation results of wind shear cases and non-wind shear cases in March 2018 under four classification
methods with supervised PCA with (r1, r2, r3).

Classification Method Wind Shear Average
Prediction Accuracy

Non-Wind Shear Average
Prediction Accuracy Average Prediction Accuracy

Linear SVM 1.000 0.000 0.500
LDA 0.970 0.000 0.490

Logistic Regression 0.970 0.000 0.490
kNN (k = 3) 0.970 0.650 0.810

Table 12. Cross-validation results of wind shear cases and non-wind shear cases in March 2018 under four classification
methods with supervised PCA with (ki,1).

Classification Method Wind Shear Average
Prediction Accuracy

Non-Wind Shear Average
Prediction Accuracy Average Prediction Accuracy

Linear SVM 0.890 0.880 0.890
LDA 0.760 0.950 0.860

Logistic Regression 0.950 0.870 0.910
kNN (k = 3) 0.940 0.880 0.910

Table 13. Cross-validation results of wind shear cases and non-wind shear cases in March 2018 under four classification
methods with supervised PCA with (ki,1, ki,2).

Classification Method Wind Shear Average
Prediction Accuracy

Non-Wind Shear Average
Prediction Accuracy Average Prediction Accuracy

Linear SVM 0.900 0.890 0.900
LDA 0.760 0.920 0.840

Logistic Regression 0.860 0.870 0.870
kNN (k = 3) 0.930 0.880 0.910

By comparing the prediction accuracy results in Table 14 with those in Tables 9–13,
we observe that the proposed statistical indicator ki,1 is more effective than supervised
PCA features and statistical indicator ki,2. The prediction accuracy of wind shear cases
and non-wind shear cases in March 2018 by the proposed data analytics algorithm is 0.920,
which is higher than the average prediction accuracy results of other machine learning
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methods based on (r1), (r1, r2), (r1, r2, r3), (ki,1) and (ki,1, ki,2). We also see from Tables 9–13
that the prediction accuracy of wind shear cases is very high, but the prediction accuracy
of non-wind shear cases is very low. The models trained by the LIDAR data in March 2015
may be overfitting.

Table 14. Cross-validation results of wind shear cases and non-wind shear cases in March 2018 under the proposed data
analytics algorithm.

Prediction Ground Truth Wind Shear Ground Truth Non-Wind Shear Prediction Accuracy

Wind shear 38 5
0.920Non-wind shear 1 34

On the other hand, the prediction accuracy by the proposed data analytics algorithm
is also higher than 0.806, the prediction accuracy of wind shear cases and non-wind shear
cases by a recent synthesized scheme in [10]. Overall, our data analytics algorithm has a
good performance in predictions of wind shear cases and non-wind shear cases, which
could be applied to more the LIDAR data to predict wind shear.

5. Conclusions

In this paper, we construct headwind profiles from the LIDAR observations. With the
unknown location and range of wind shear, seven different azimuth ranges are considered
where one headwind profile is constructed for each azimuth range, which could gain a
higher accuracy than one headwind profile for measuring a wind shear case. After that, a
statistical indicator is proposed on the seven headwind profiles to measure the variation of
headwinds for each episode. Then a decision rule is generated from the proposed statistical
indicator. A wind shear case is identified when the indicator is larger than 2.290 that is
obtained by using the LIDAR data in 2015, a non-wind shear case otherwise. The training
and testing results in 2015 and 2018 respectively show that the proposed statistical indicator
is more effective than supervised PCA features. Furthermore, the prediction accuracies of
the proposed model are 98.0% for training data and 92.0% for testing data, which are better
than the other methods like LDA, KNN, linear SVM and logistic regression.

In the future, the proposed model could be applied to more LIDAR datasets to predict
wind shear. We plan to check the performance of the decision point to the LIDAR data in
different locations and different periods. We would like to improve this model that can
provide more accurate warnings of wind shear for pilots and improve the performance
of Wind shear and Turbulence Warning System. On the other hand, doppler LIDARs are
increasingly more commonly used for detecting airflow turbulence. The turbulence may
arise from natural terrain, or even by man-made structures and buildings. The behavior of
the turbulence from Terrain and buildings may be different. As a future research topic, the
methods studied in the present paper may be applied to other meteorological conditions,
such as tropical cyclones, thunderstorms, and other kinds of disturbed airflow, such as
building effects on the low-level wind.

Supplementary Materials: The extracted features (r1, r2, r3) and (ki,1, ki,2) of LIDAR data of wind
shear cases and non-wind shear cases are available online at http://hkumath.hku.hk/~mng/mng_
files/supplementary-data.xlsx.
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