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Abstract: Accidental or malicious releases in the atmosphere are more likely to occur in built-up
areas, where flow and dispersion are complex. The EMERGENCIES project aims to demonstrate
the operational feasibility of three-dimensional simulation as a support tool for emergency teams
and first responders. The simulation domain covers a gigantic urban area around Paris, France, and
uses high-resolution metric grids. It relies on the PMSS modeling system to model the flow and
dispersion over this gigantic domain and on the Code_Saturne model to simulate both the close
vicinity and the inside of several buildings of interest. The accelerated time is achieved through the
parallel algorithms of the models. Calculations rely on a two-step approach: the flow is computed
in advance using meteorological forecasts, and then on-demand release scenarios are performed.
Results obtained with actual meteorological mesoscale data and realistic releases occurring both
inside and outside of buildings are presented and discussed. They prove the feasibility of operational
use by emergency teams in cases of atmospheric release of hazardous materials.

Keywords: operational emergency modeling; atmospheric release; high-resolution metric grid; 3D;
PMSS modeling system; Code_Saturne; EMERGENCIES project

1. Introduction

Many types of accidents, malicious actions, or terrorist attacks lead to the releases of
noxious gases into the atmosphere. Densely built-up and highly populated areas, such
as industrial sites or urban districts, are the critical locations for such events. The health
effects are most severe close to the source of emission. On a local scale, the buildings
significantly influence the airflow and consequently the dispersion. Thus, atmospheric
dispersion models need to account for the influence on the flow of the three-dimensional
(3D) geometry of the buildings.

Up to now, first responders and emergency teams essentially relied on modified
Gaussian modeling. Most of the fast response modeling tools indeed use simplified flow
formulations in the urban canopy and concentration analytical solutions with assumptions
about the initial size of the plume and increased turbulence due to the urban environment:
for examples, see ADMS-Urban [1], PRIME [2], SCIPUFF [3], and the dispersion model
tested by Hanna and Baja [4]. However, Gaussian approaches do not apply to the complex
flow patterns in the vicinity of the release in built-up areas, where the most serious conse-
quences of the release are happening. Further away from the source, they cannot model
specific effects due to buildings, such as the entrapment and subsequent releases of noxious
substances due to canyon streets, cavity zones behind buildings, etc. Field experiments,
such as the Mock Urban Setting Test (MUST) field experiment [5], clearly demonstrated the
importance of high-resolution modeling in complex built-up areas: critical effects, such as
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change in the plume centerline direction compared to the inflow condition, were observed
and studied [6,7]. Models developed for scales too large to handle individual buildings
have difficulties taking into account such effects.

At the same time, more precise modeling tools are becoming increasingly available
for emergency situations at the mesoscale [8] and local scale [9,10]. Computational fluid
dynamics (CFD) models provide reference solutions by solving the Navier–Stokes equa-
tions. In particular, the Reynolds-averaged Navier–Stokes (RANS) approach can be used
on small setups by relying on heavy parallel computing and optimization [11] or precom-
putation [12,13].

The computational cost of CFD calculations, such as RANS and especially large
eddy simulation (LES), indeed makes their usability complex for real-time emergency
situations. To overcome this, a common strategy is to precompute a database of cases [12,13].
Nonetheless, the capability of the database to represent the variability of actual flows is
an important issue, especially for complex 3D flows: it requires discretizing not only
many inflow parameters, such as wind speed and wind direction, but also turbulence
parameters and requires consideration of multiple inflow locations, usually at least along
a vertical distribution. This leads to very large databases still lacking representativeness.
The representativeness is particularly critical in built-up environments where an actual
flow can be drastically different from a database case with similar but just slightly different
inflow conditions.

Other approaches strike a balance between model speed and accuracy. Röckle [14]
suggested such an approach by using mass consistency in combination with local wind
observations to solve the mean flow. Kaplan et al. [15] extended the approach by coupling
the flow modeling with Lagrangian particle dispersion modeling (LPDM, see [16]). This
approach has been completed to provide modeling solutions (see [17,18]).

Since first responders and emergency teams still essentially rely on modified Gaussian
modeling, the EMERGENCIES project was designed to prove the operational feasibility of
3D high-resolution modeling as a support tool for first responders or emergency teams.
As such, the modeling approach was defined to apply to a realistic chain of events and
applied to a geographic area compatible with the area of responsibility of an emergency
team. The approach selected was to precompute a 3D and high-resolution flow over this
huge domain by using mesoscale forecasts from one day to the next and then to compute
the dispersion on an on-demand basis.

While source term estimation is a critical issue, it is not covered in this paper, which
is dedicated to the modeling of flow and dispersion. Source term estimation requires
dedicated modeling to deal both with uncertainties regarding the situation and with the
particular physics that may be involved, such as fire or explosions.

The paper is organized in five parts: Section 2 contains a brief description of the
modeling tools, both the numerical models and the computing infrastructure, and Section 3
summarizes the EMERGENCIES project modeling set-up. Section 4 presents and comments
on the results of the simulations, including the operational aspects. Section 5 draws
conclusions on the potential use of this approach for emergency preparedness and response
in the case of an atmospheric release.

2. Modeling Tools

After describing the numerical models, we introduce the computing cluster used for
the simulations.

2.1. Presentation of the PMSS Modeling System

Operational modeling systems must provide reliable results in a limited amount of
time. This is all the more of a challenge when one needs to consider large simulation
domains, e.g., covering a whole urban area, at a high spatial resolution. The challenge
can be tackled by combining appropriate models with efficient parallelization. This was
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the basic motivation for the development of the Parallel Micro SWFT and SPRAY (PMSS)
modeling system.

2.1.1. The Modeling System

The PMSS modeling system [17,19–21] is a parallelized flow and dispersion modeling
system. It is constituted of the Parallel-SWIFT (PSWIFT) flow model and the Parallel-SPRAY
(PSPRAY), an LPDM, both used in small-scale urban mode.

The PSWIFT model [22–24] is a parallelized mass-consistent 3D diagnostic model
able to handle complex terrain using terrain-following coordinates. It uses analytical
relationships for the flow velocity around buildings and produces diagnostic wind velocity,
pressure, turbulence, temperature, and humidity fields. A calculation is performed using
the three sequential steps:

• First guess computation starting from heterogeneous meteorological input data, mix-
ing surface and profile measurements with mesoscale model outputs;

• Modification of the first guess using analytical zones defined around isolated buildings
or within groups of buildings [14,15];

• Mass consistency with impermeability on ground and buildings.

The PSWIFT model also incorporates a RANS solver [24,25]. It can be used as an alter-
nate in the third step above. The RANS solver provides a more accurate pressure field: this
is essential to derive the pressure on facades of buildings and model the infiltration inside.

The PSPRAY model [23,26,27] is a parallelized LPDM [16] that takes into account
obstacles. The PSPRAY model simulates the dispersion of an airborne contaminant by
following the trajectories of numerous numerical particles. The velocity of each virtual
particle is the sum of a transport component and a turbulence component. The transport
component is derived from the local average wind vector, while the turbulence component
is derived from the stochastic scheme developed by Thomson [28] that solves a 3D form
of the Langevin equation. This equation comprises a deterministic term that depends
on the Eulerian probability density function of the turbulent velocity, and is determined
from the Fokker–Planck equation, and a stochastic diffusion term that is obtained from
a Lagrangian structure function. The PSPRAY model treats elevated and ground-level
emissions, instantaneous and continuous emissions, or time-varying sources. Additionally,
it is able to deal with plumes with initial arbitrarily oriented momentum, negative or
positive buoyancy, and cloud spread at the ground due to gravity.

2.1.2. Scalability

In order to allow for very large calculations and near-real-time calculations, the PMSS
modeling system integrates parallelism using both weak and strong scalability [17].

The weak scalability relies on domain decomposition (DD). The domain is divided
into tiles that are compatible in size with the memory available to a single core. The strong
scalability is implemented differently within the PSWIFT and PSPRAY models. Within the
PSWIFT model, strong scalability relies on the diagnostic property of the code: time frames
are computed in parallel. Within the PSPRAY model, strong scalability is achieved by
distributing the virtual particles among the computing cores. An example of a combination
of strong and weak scaling is illustrated for the PSWIFT model and for the PSPRAY model
in Figure 1.
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The PMSS modeling system has also the ability to handle multiple nested domains.
The PSPRAY model can hence use a nested domain computed by the PWIFT flow model
or computed by another flow model such as, in our case, Code_Saturne (see Section 2.2).
The results of this flow model on the nested domain must be stored in the same binary
format as a PSWIFT calculation, and they must contain at least wind velocity and turbu-
lence fields.

The PMSS modeling system has been validated both in scalar mode [22,26,27] and
regarding parallel algorithms [17,20]. The parallel testing was performed in computa-
tional environments ranging from a multicore laptop to several hundred cores in a high-
performance computing center.

2.2. Presentation of the Code_Saturne Model

In an urban area, one cannot exclude transfers of pollutants from outside to the inner
part of buildings or, vice versa, pollution originating in a building and being transferred
outside. Neither the diagnostic nor the momentum version of PSWIFT is appropriate to
model the flow inside a building. Thus, computational fluid dynamics (CFD) is needed;
more specifically, we used the Code_Saturne model [29], an open-source general-purpose
and environmental application-oriented CFD model.

The Code_Saturne model (http://code-saturne.org, accessed on 17 May 2021) is an
open-source CFD model developed at EDF R&D. Based on a finite volume method, it
simulates incompressible or compressible laminar and turbulent flows in complex 2D
and 3D geometries. Code_Saturne solves the RANS equations for continuity, momentum,
energy, and turbulence. The turbulence modeling uses eddy-viscosity model or second-
moment closure, such as k-epsilon. The time-marching scheme is based on a prediction of
velocity followed by a pressure correction step. Additional details are provided in [29].

The Code_Saturne model also has an atmospheric option [7]. The model has been
used extensively, not only for atmospheric flow but also to model the flow within buildings,
including the complicated setup of an intensive care hospital room [30].

2.3. The Computing Infrastructure

Modeling the flow and dispersion at high resolution in very large domains of several
tens of kilometers of extent requires parallel domain decomposition using several hundreds
or even thousands of cores of a supercomputer.

The simulations were carried out on a supercomputer consisting of 5040 B510 bull-X
nodes, each with two eight-core Intel Sandy Bridge EP (E5-2680) processors at 2.7 GHz and
with 64 GB of memory. The network is an InfiniBand QDR Full Fat Tree network. The file
system offers 5 PB of disk storage.

3. The EMERGENCIES Project

The EMERGENCIES project aims to demonstrate the operational feasibility of accel-
erated time tracking of toxic atmospheric releases, be they accidental or intentional, in a
large city and its buildings through 3D numerical simulation.

After describing the domain setup, we present the flow modeling and then the re-
lease scenarios.

3.1. Domain Setup

The modeling domain covers Greater Paris: it includes the City of Paris, the Hauts-de-
Seine, the Seine-Saint-Denis, and the Val-de-Marne (see Figure 2). It extends to the airports
of Orly, to the south, and of Roissy Charles de Gaulle, to the north. This geographic area is
under the authority of the Paris Fire Brigade.

http://code-saturne.org
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Figure 2. View of the domain boundaries (green line) and the department boundaries (blue line) (© OpenStreetMap Contributors).

The simulation domain has a uniform horizontal resolution of 3 m and dimensions of
38.4 km × 40.8 km, leading to 12,668 × 13,335 points in a horizontal plane. The vertical
grid has 39 points from the ground up to 1000 m, the resolution near the ground being
1.5 m. The grid, therefore, has more than 6 billion points.

The static data used for the modeling consists of the following:

• The topography at an original resolution of 25 m taken from the BD Topo of the French
National Geographical Institute (IGN);

• The land use data with the same gridded resolution but obtained from the CORINE
Land Cover data [31];

• The buildings data, taken also from the BD Topo of IGN, consisting of 1.15 million
polygons with height attributes.

These data have a disk footprint ranging from 1 GB for the topography or land
use to 3 GB for the building data. Figure 3 presents a view of the topography and the
building data.
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This very large domain is treated using domain decomposition: the domain is divided
into horizontal tiles of 401 × 401 horizontal grid points (see Figure 4). In total, 1088 tiles are
used to cover the domain, 32 along the west–east axis, and 34 along the south–north axis.
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Figure 4. Domain decomposition of the domain in 1088 tiles.

Three buildings of particular interest have been chosen: a museum (M), a train station
(TS), and an administration building (A). Their locations are presented in Figure 5. They
have been selected to demonstrate the capability of the system to provide relevant informa-
tion regarding releases either propagating from inner parts of buildings to the outside or
occurring in the urban environment and then penetrating buildings. Three nested domains
around M, TS, and A have been defined using a grid with a very high horizontal and
vertical resolution both inside the buildings and in their vicinity. The characteristics of
these nested domains are summarized in Table 1. The grid size is about 1 m horizontally
and vertically.
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Table 1. Nested domain main characteristics.

Domain M TS A

Domain extension (m) 390 × 350 × 100 385 × 290 × 100 230 × 170 × 100
Number of vertical grid levels 42 43 43

Number of cells (million) 5.6 4.6 2.6

3.2. Flow Simulations

The flow accounting for the buildings in the huge EMERGENCIES domain is down-
scaled from the forecasts of the mesoscale Weather Research and Forecasting (WRF)
model [32]. These simulations run every day and require 100 computing cores for 2 h
10 min for 72 h simulated.

The WRF forecasts are extracted every hour on vertical profiles inside the huge
urban simulation domain and provided as inputs to the PMSS modeling system. Thus,
24 timeframes of the microscale 3D flow around buildings are computed by PSWIFT.
Finally, the inflow conditions for flow and turbulence are extracted on the boundaries of
the very high resolution nested domain to perform the Code_Saturne simulations.

These calculations can be performed routinely every day provided the computing
resource is available. The flow and turbulence fields are then available every day in advance
both for the full domain and the chosen nests. Accidental scenarios can then be simulated
on an on-demand basis.

3.3. Dispersion Simulations

In the framework of the project, fictitious multiple attacks consisting of the releases of
substances with potential health consequences were considered. These substances could
be radionuclides, chemical products, or pathogenic biological agents. Substances were
assumed to be released inside or near the public buildings introduced in the previous
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section. All sources are fictitious point releases of short durations occurring on the same
day (taken as an example), in real meteorological conditions.

The day for the release was chosen arbitrarily to be 23 October 2014. The releases were
carried out in the morning, starting at 10 a.m. for the first one. The simulated period for
the dispersion is a 5-h duration period between 10 a.m. and 3 p.m.

The flow conditions for 23 October 2014 show an average wind speed of 3 m/s at
20 m above ground with winds coming from the southwest.

Each release has a 10 min duration, and the material emitted is considered to be a
gas, without density effect, or fine particulate matter, i.e., with aerodynamic diameters
below 2.5 µm. One kilogram of the material is emitted during each release. The first release
occurs at 10 a.m. local time in the museum, the second one occurs at 11 a.m. inside the
administration building, and the last one starts at 12 a.m. in front of the train station.

All these releases are purely fictional, but the intention is to try to apply the modeling
system to a scenario that could be faced by emergency teams and first responders.

The nested modeling is handled in a two-way mode by the LPDM PSPRAY model
within the PMSS modeling system: numerical particles move from the nested domains
around the buildings where the attacks take place to the large domain encompassing the
Paris area or, vice versa, from this large domain back to a nested domain.

4. Results and Discussion

In this section, the results obtained in the framework of the EMERGENCIES project
are presented and discussed, taking into account the characteristics of the simulations
and the associated computational resources (duration, CPU required, and storage). After
describing the results for the flow simulations, we then present the results obtained for the
dispersion before briefly discussing the constraints in rapidly and efficiently visualizing
very large results.

4.1. Flow Simulations

After presenting the flow results for the large domain and the nested domains, we
discuss the operating applicability of the system developed in the frame of the EMERGEN-
CIES project.

The calculation for the flow on the whole domain using the PMSS modeling system
requires a minimum of 1089 computing cores, i.e., one core per tile plus a master core.
Time frames can be simulated in parallel. Several parallel configurations have been tested
and are presented in Table 2. An example of the level of precision of the flow obtained
throughout the whole domain is presented in Figure 6.

Table 2. Duration of simulations for the flow on the large domain.

Number of Time Frames
in Parallel Number of Cores Simulation Duration

(min)

1 1089 161
4 4353 92
8 8705 82

The duration ranges from around 2 h 40 min using the minimum number of cores
down to around 1 h 20 min when computing eight timeframes concurrently. Regarding the
storage, a single time frame requires 200 GB for the whole domain, leading to around 8 TB
for 24 timeframes.

When considering the simulation for the nested domains, the Code_Saturne CFD
model has been set up using around 200 cores per nested domain and per time frame.
It requires 14,400 cores to handle the 24 timeframes for each of the three domains. The
simulation duration is then 100 min for the domain M, 69 min for the domain TS, and
64 min for the domain A. The storage per time frame is 281, 232, and 80 MB, respectively.
The storage for the detailed computations in and around the buildings is low compared
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to the large urban domain covering Greater Paris, contrarily to the computational costs.
Indeed, the CFD model is much more computationally intensive than the diagnostic
approach used in the PMSS modeling system. An example of the flow both in the close
vicinity of and inside the administration building is presented in Figure 7.
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The flow modeling is intended for use on a daily basis: each day, a high-resolution
flow modeling over the whole Paris area is simulated to be made available should any
dispersion modeling of accidental or malevolent airborne releases be necessary.

After the WRF forecast modeling, around 3 h down to no more than 1 h 20 min is
required to downscale the flow on the large Parisian domain at 3 m resolution, depending
on the number of cores dedicated, respectively 1089 and 8705.

Then, around 5000 cores are required to handle the 24 timeframes of each nest in less
than 1 h 40 min. If the three nested domains at very high resolution are treated, around
10,000 cores need to be available for 2 h: 5000 cores available each hour to handle the
domain TS and then the domain A and 5000 cores to handle the domain M for 1 h 40 min.

Hence, the whole microscale flow modeling could be performed in 3 h 20 min using
10,000 cores.

4.2. Dispersion Simulations

After presenting the dispersion results for the large domain and the nested domains,
we discuss the operating applicability of the system developed in the framework of the
EMERGENCIES project.
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The dispersion modeling benefits from two-way nested computations: numerical
particles can move from the inner-most 1 m resolution domains to the large domain over
Paris and its vicinity, and vice versa. At each 5 s emission step, 40,000 numerical particles
are emitted. Since there are three 10 min-long releases, 14.4 million particles are emitted.
A parametric study regarding the number of cores is presented in Table 3. Concentrations
are calculated every 10 min using 10 min averages.

Table 3. Influence of the number of cores on the duration of the dispersion simulation.

Number of Cores Simulation Duration (min)

250 150
500 88
750 96
1000 120

Five hundred cores were retained for operational use. The simulation results produce
90 GB for 5 simulated hours. Eighty tiles of the large domain were reached by the plumes
during the calculation, plus the three nested domains.

Figure 8 illustrates the evolution of the plume inside, in the vicinity of, and further
away from the museum.
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Using 500 cores, the duration of the calculation, one and a half hours, has to be compared 
to the physical duration of five hours simulated here. The simulation is thus 3.3 times 
faster than the reality. Moreover, the results can be analyzed on the fly, without requiring 
the whole simulation to be completed. 

4.3. Visualization of the Simulation Results 
Due to the large amount of data generated, the efficient visualization of data for op-

erational use has proved to be a challenge in itself. After introducing a first attempt using 
a traditional scientific visualization application, we present a short overview of a more 
operative approach [33]. 

3D modeling results can be explored using 3D scientific visualization applications. 
Due to the large quantity of data, the viewer chosen has to handle heavy parallelization. 
We chose the open-source software ParaView and developed a dedicated plugin. None-
theless, interactive visualization using several hundred cores required several seconds or 
tens of seconds for refreshing: this is too ineffective for a user to navigate the results. Non-
interactive image rendering has also been used (see Figure 1), but it would be ineffective 
for the user in an emergency situation. 

Figure 8. View of the plume inside and in the vicinity of the museum: (a) 1 min after the release; (b) 3 min; (c) 4 min;
(d) 6 min (e) 8 min; (f) 10 min. The change from the 1 m resolution of the inner domain to the 3 m resolution of the large
domain can be noticed. The threshold for 500 µg/m3 of concentration is in red, while that for 1 µg/m3 is in orange and that
for 0.001 µg/m3 is in green.

In an operational context, the dispersion simulation would be activated on demand.
Using 500 cores, the duration of the calculation, one and a half hours, has to be compared
to the physical duration of five hours simulated here. The simulation is thus 3.3 times
faster than the reality. Moreover, the results can be analyzed on the fly, without requiring
the whole simulation to be completed.

4.3. Visualization of the Simulation Results

Due to the large amount of data generated, the efficient visualization of data for
operational use has proved to be a challenge in itself. After introducing a first attempt
using a traditional scientific visualization application, we present a short overview of
a more operative approach [33].

3D modeling results can be explored using 3D scientific visualization applications.
Due to the large quantity of data, the viewer chosen has to handle heavy parallelization. We
chose the open-source software ParaView and developed a dedicated plugin. Nonetheless,
interactive visualization using several hundred cores required several seconds or tens
of seconds for refreshing: this is too ineffective for a user to navigate the results. Non-
interactive image rendering has also been used (see Figure 1), but it would be ineffective
for the user in an emergency situation.
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Hence, we relied finally on a tiled web map approach. The results of the simulation
are processed on the fly as results are produced [33]. Multiple vertical levels can be treated
to provide views not solely on the ground but also in the volume at multiple heights above
the ground. Processing takes a few minutes for each time frame since it consists only of a
change of file format. Then, results can be consulted in real time through a tile map service
using any web browser. Figures 6, 8 and 9 use such an approach.
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LLC—www.terrametrics.com © Google 2021, accessed on 30 April 2021).

5. Conclusions

The EMERGENCIES project proved it is feasible to provide emergency teams and first
responders with high-resolution simulation results to support field decisions. The project
showed that the areas of responsibility of several tens of kilometers of length can be
managed operationally. The domain, at a 3 m resolution, includes very high resolution
modeling for specific buildings of interest where both the outside and the inside of the
building have been modeled at 1 m resolution.

The modeling is carried out in two steps: First, the modeling of the flow is computed
in advance starting from mesoscale forecasts provided each day for the following day. Then,
these flows are used for on-demand modeling of dispersion that can occur everywhere in
the domain and at multiple locations.

The modeling of the flow for the 24 timeframes can be achieved in 3 h 20 min using
10,000 cores both for the large domain and the three nested domains. If 5000 cores are
available, the large domain requires 1 h 30 min and each nested domain requires an
additional duration ranging between 1 h and 1 h 40 min. Five hundred cores are then
required to be ready for on-demand modeling of the dispersion: the dispersion is modeled
3.3 times faster than it occurs in real life.

This amount of computer power is large but not inconsistent with the means usually
dedicated to crisis management.

The dispersion requires a lower amount of computing cores than the modeling of
the flow. This allows the modeler to perform several dispersion calculations concurrently,
particularly to create alternate scenarios for the source terms. This is of particular interest
considering the uncertainties related to the source term estimation. Successive scenarios
may also be considered as information is updated and the comprehension of the situation
by the emergency teams improves.

A large amount of 3D data was produced: 200 GB for the flow and 90 GB for the
dispersion. While data produced near the ground are of the uttermost importance, the

www.terrametrics.com
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vertical distribution of concentration from the ground to a moderate elevation is also partic-
ularly relevant. Firstly, calculations of inflow and outflow exchanges for specific buildings
of interest require such information. Then, the vertical distribution of concentration can
support decisions to design evacuation strategies for specific buildings, such as moving
people toward the building rooftop rather than evacuating them at the ground level into
the neighboring streets.

One key aspect also put forward during the project is the difficulty of efficiently
visualizing this huge amount of data produced. After focusing initially on a parallel scien-
tific visualization application, we relied on on-the-fly data processing to create tiled web
maps for the flow and the dispersion. These data can then be accessed in real time by the
emergency team. This approach to visualizing data will be the focus of a dedicated paper.
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