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Abstract: The PM2.5 concentration model is the key to predict PM2.5 concentration. During the
prediction of atmospheric PM2.5 concentration based on prediction model, the prediction model
of PM2.5 concentration cannot be usually accurately described. For the PM2.5 concentration model
in the same period, the dynamic characteristics of the model will change under the influence of
many factors. Similarly, for different time periods, the corresponding models of PM2.5 concentration
may be different, and the single model cannot play the corresponding ability to predict PM2.5

concentration. The single model leads to the decline of prediction accuracy. To improve the accuracy
of PM2.5 concentration prediction in this solution, a multiple model adaptive unscented Kalman filter
(MMAUKF) method is proposed in this paper. Firstly, the PM2.5 concentration data in three time
periods of the day are taken as the research object, the nonlinear state space model frame of a support
vector regression (SVR) method is established. Secondly, the frame of the SVR model in three time
periods is combined with an adaptive unscented Kalman filter (AUKF) to predict PM2.5 concentration
in the next hour, respectively. Then, the predicted value of three time periods is fused into the final
predicted PM2.5 concentration by Bayesian weighting method. Finally, the proposed method is
compared with the single support vector regression-adaptive unscented Kalman filter (SVR-AUKF),
autoregressive model-Kalman (AR-Kalman), autoregressive model (AR) and back propagation neural
network (BP). The prediction results show that the accuracy of PM2.5 concentration prediction is
improved in whole time period.

Keywords: support vector regression; adaptive unscented Kalman filter; Bayesian; multiple model

1. Introduction

In recent years, the global economic integration has developed rapidly. The Beijing–
Tianjin–Hebei region economic belt (Beijing–Tianjin–Hebei) as the development area has
gradually been formed. The severe haze event happened in Beijing in 2013 [1]. The fine
particle matter (PM2.5) is a particle with a diameter of 2.5µ or less in the atmosphere.
PM2.5 has a long atmospheric residence time, it has an important impact on environmental
quality, atmospheric visibility, human health and climate change. PM2.5 has become the
primary air pollutant in China. It mainly contains polycyclic aromatic hydrocarbons and
heavy metals [2]. The harmful substances mainly including heavy metals, microorganisms
and organic volatile compounds [3]. The human respiratory system is damaged by these
harmful substances, which leads to damage to human health and death [4]. The government
has also formulated a large number of policies, and a large number of software and
automatic monitoring equipment are installed throughout every corner of the city. Once
PM2.5 concentration monitored exceeds the specified range, the environmental supervision
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department will send effective information to inform people to reduce social activities to
avoid long-term exposure to the environment with high PM2.5 concentration [5].

The PM2.5 prediction method can be usually divided into physical and chemical
methods and statistical methods [6]. Physical and chemical reaction methods do not need a
large number of historical meteorological data. The chemical reactions of exhaust gas from
pollution sources, emissions and fuel energy consumption need to have a deterministic
description source. For example, Sun et al. proposed a cuckoo search algorithm based on
principal component analysis and least squares support vector machine (PCA-LSSVM)
to predict PM2.5 concentration [7]. Zhang et al. observed the pollution characteristics of
PM2.5 and PM1 in autumn in Beijing and identified the source regions of PM2.5 and PM1 by
the positive matrix decomposition (PMF), the backward trajectory and potential source
contribution function (PSCF) model [8].

On the other hand, the statistical methods are gradually applied in the field of artificial
intelligence. Some statistical method-based AIs have been adopted. For example, for regres-
sion model, neural network, machine learning algorithm, time series method and Kalman
filter, the relationship of pollutants and prediction variables are established by different
functions or network models. Coburn W. G. et al. proposed an enhanced PM2.5 air quality
prediction model based on nonlinear regression (NLR) and reverse trajectory concentration
to predict PM2.5 in Louisville metropolitan area, Kentucky [9]. Elangasinghe, M.A. et al.
analyzed the PM10 and PM2.5 concentration time series by artificial neural network and
K-means clustering [10,11]. For this method, the artificial neural network (ANN) model is
used, and it has better performance in picking up high concentrations. The artificial neural
network sometimes falls into the problem of local over fitting; but, the neural network
model needs a lot of historical data for training, which increases the complexity and time
of calculation. Zhou et al. proposed an ensemble empirical model decomposition general-
ized regression neural network (EEMD-GRNN) model to predict PM2.5 concentration in a
day [12]. The EEMD method is used to determine different information scales in the origi-
nal time series for this method. In addition, each decomposed IMF has similar frequency
characteristics. Thus, the efficiency and accuracy of prediction is improved. There are many
other experts who are beginning to focus on application of artificial intelligence algorithm
to propose the corresponding algorithm to predict PM2.5. For example, Zhan et al. studied
the spatial and temporal daily PM2.5 concentration prediction based on spatial explicit
machine learning algorithm [13]. In this study, geographically weighted gradient boosting
machine (GW-GBM) method is proposed. The deviation of PM2.5 concentration estimation
is overcome, so that the prediction is more accurate. Some other scholars use time series
method to predict the PM2.5 concentration [14–18]. For example, Akhil Kadiyala used a
vector time series and back propagation neural network (VTS-BPNN) method to review
articles of hybrid indoor air quality (IAQ) models. In dynamic atmosphere, it is some-
times impossible to measure every variable. The Kalman filter can estimate the missing
information by the limited, indirect and noisy measurement information, which has the
characteristics of small data storage and handling multidimensional and non-stationary
random processes. The Kalman filtering is also used to predict the future trend of dynamic
system [19]. For example, Federico Cassola used a Kalman filter to forecast weather by
2-year-long data sets. The traditional Kalman filtering method is only suitable for linear
system, and the observation equation must also be linear. The nonlinear Kalman filters are
applied to deal with the estimation of nonlinear systems [20–25]. However, the extended
Kalman filter (EKF) method needs to linearize the nonlinear function with the first or
second order term of Taylor formula, and the Jacobian matrix is calculated. The PM2.5
concentration prediction is not very accurate by the EKF method. To solve this problem,
the unscented Kalman filter (UKF) method is applied to predict the future trend.

The appeal method is used to predict PM2.5 concentration by a single model. In prac-
tice, the PM2.5 concentration is always changing in different environments or time periods.
A single model can usually predict the PM2.5 concentration in the current situation. Once
the original environment changes, the original model will not match the new environment,
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and the prediction error will be generated. Thus, it is the main problem to establish the
corresponding prediction model for different states. Blom, H.A.P. et al. have proposed
a multiple model theory [26]. For example, the problem of outlet temperature of flow
pressure controlled tubular heat exchanger is studied [27]. This method is based on the
linear generalized predictive control (LGPC). The main idea of the strategy uses multiple
linear models to represent the operating environment of multiple systems. Each system
is accurately identified by the intelligent decision mechanism (IDM) at every moment,
the target can be controlled more accurately. In addition, Xie et al. have proposed a
comprehensive vehicle trajectory prediction method based on the combination of physics
and mobility [28]. An interactive multiple model prediction method based on the two
prediction models is proposed, which realizes recursive adjustment and switching by the
probability of each model occurrence, and the lane change is analyzed to realize vehicle
trajectory. Li et al. used multiple model theory to control variables under different working
conditions or different states to improve control accuracy [29–32]. Although the idea of
multiple models is widely applied in the field of control, it has not been applied to the
prediction field of atmospheric PM2.5 concentration.

To predict PM2.5 concentration more accurately, the idea of multiple model is intro-
duced into the atmosphere prediction, and a multiple model adaptive unscented Kalman
filter method is proposed to predict PM2.5 concentration in the next hour. The contributions
of this paper are given as follows:

(1) The PM2.5 concentration prediction values of different time periods are fused to
predict the change trend and fluctuation of PM2.5 concentration by the multiple model
adaptive method.

(2) The proposed MMAUKF method also considers the estimation of noise in the predic-
tion process. When the PM2.5 concentration is predicted, the noise is also estimated
adaptively by estimator.

(3) The proposed MMAUKF method improves the accuracy and stability of PM2.5 con-
centration prediction.

The remaining sections of the paper are described as follows. Section 2 introduces
the establishment of PM2.5 concentration prediction system. Section 3 mainly describes
PM2.5 concentration prediction based on SVR-AUKF method. Section 4 is a multiple model
adaptive unscented Kalman filter for PM2.5 concentration prediction. Section 5 is the
simulation results. Section 6 is the conclusion of this paper.

2. The Establishment of PM2.5 Concentration Prediction System

Most scholars pay attention to the prediction of PM2.5 concentration. A large num-
ber of atmospheric PM2.5 monitoring points are established in the city. In this paper, a
monitoring point of a campus in the Chaoyang District of Beijing is taken as the research
area, and the monitoring of PM2.5 concentration on campus is provided 24 h a day. The
PM2.5 concentration is predicted by monitoring the historical atmospheric meteorological
data monitoring platform. The data monitoring platform is composed of an outdoor air
sensor probe, upper computer and solar power supply system. The measurement error of
the monitoring probe is less than 0.05%, which has a stable operating environment and
avoids the interference of the external environment. The monitor can directly access the
monitored data by the network cloud. The power supply system of the equipment is a
stable power supply system, which is provided by the renewable energy solar panel for
the real-time and stable operation. The data monitoring platform is shown in Figure 1.

The simulation experimental data are obtained by this platform in this section. The
main monitoring data of the atmospheric monitoring platform include PM2.5, PM10, SO2,
NO2, CO, O3, humidity (RH), temperature (T) and air quality index (AQI). The historical
data of PM2.5 concentration in July 2018 are used as the study object in this paper. The
relationship between PM2.5 concentration and other potential variables was illustrated by
the scatter plot of PM2.5 concentration in Figure 2 (the blue points represent PM2.5 and
other air pollutants, the green points represent PM2.5 and meteorological conditions).
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Figure 1. Schematic of atmospheric data monitoring platform.
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Figure 2. The scatterplot of PM2.5 concentration with other monitored variables.
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The mean and variance of pollutants and meteorological conditions are given by
statistical methods in Table 1. The mean represents the mean of time series, and standard
deviation represent the mean change of the time series of the monitored data.

Table 1. Descriptive statistics of pollutants and meteorological conditions.

Unit Mean Standard Deviation

PM2.5 µg/m3 51.37 24.38
PM10 µg/m3 71.20 29.99
SO2 µg/kg 5.57 4.38
NO2 mg/m3 28.77 11.84
CO mmol/L 0.98 0.41
O3 mg/m 127.04 65.70
RH % 31.50 4.28
T ◦C 71.21 19.42

According to the analysis of literature [12], the PM2.5 concentration is closely related
to other monitoring variables, the monitored variables (PM2.5, PM10, SO2, NO2, CO, O3,
humidity (RH), temperature (T)) are used as the input variables of the SVR model, and
PM2.5 concentration is used as the output variables of the model. To improve the accuracy
of the proposed method in predicting PM2.5 concentration, the prediction accuracy of the
proposed method is compare with the other single model method by three error indexes.
The three error statistics methods are given as follows:

MAE =
1
n

n

∑
k=1
|yk+1 − ŷk+1| (1)

MAPE =
1
n

n

∑
k=1
|yk+1 − ŷk+1

yk+1
| × 100% (2)

RMSE =

√
1
n

n

∑
k=1

(yk+1 − ŷk+1)2 (3)

where yk+1 represents the actual PM2.5 concentration value, ŷk+1 is PM2.5 concentration
prediction value at time k + 1, (k = 0, 1, ..., n), n is the number points in the test dataset.
The MAE is mean absolute error. The MAPE is mean absolute percentage error. The RMSE
denotes root mean square error. These performance indexes analyze the error between the
predicted value and the actual value, and compare the prediction of PM2.5 concentration
by different methods.

3. PM2.5 Concentration Prediction Based on the SVR-AUKF Method
3.1. Support Vector Regression

In this section, the state space equation framework based on SVR is introduced.
The state equation framework is combined with adaptive Kalman filter to achieve state
regression and adaptive noise estimation. The support vector machine (SVM) is a theo-
retical method of pattern recognition, which is usually used for classification and regres-
sion [33–35]. The artificial intelligence is developed rapidly, the regression problem is also
widely used. The SVR is one of the emerging methods [36]. In the regression problem, the
correlation function is establish between input variables and output variables. The SVR
method mainly constructs linear decision function in high-dimensional space to realize
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model prediction. In SVR, a set of training samples {xi, yi}, (i = 1, 2, ..., n) is usually given.
The sample regression function is described as follows:

f (x) = 〈w, x〉+ b (4)

where w is the regression coefficient, and b is bias. 〈, 〉 represents the dot product, which
can be solved by convex optimization problems [37]. When the f exists and approximates
(xi, yi), the errors are allowed. The slack variables ξ, ξ∗i is introduced to cope with infeasible
constraints of the optimization problem. The formula is shown as follows:

min
1
2
‖w‖2 + C

N

∑
i=1

(ξi + ξ∗i ) (5)

s. t.


yi − 〈w, x〉 − b ≤ ε + ξi

−yi + 〈w, x〉+ b ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

where C is trade off parameter between f and larger than ε, ε is the tolerance coefficient. The
dual optimization problem is obtained by using Lagrange multipliers, which is described
as follows:

Max− 1
2

N

∑
i=1,j=1

(αj − α∗i )(αj − α∗j )K(xi, xj)−
N

∑
i=1

(αi + α∗i )ε +
N

∑
i=1

(αi − α∗i )yi (6)

where αi, α∗i is Lagrange multipliers, K(xi, xj) represents kernel function. ∑N
i=1 yi(αi− α∗i ) = 0

is constraint condition. 0 < αi, α∗i < C. The regression function equation can be obtained
as follows:

f (x) =
N

∑
i=1

(αi − α∗i )K(x, x∗i ) + b (7)

where 〈w, x〉 can be obtained as follows:

〈w, x〉 =
N

∑
i
(αi − α∗i )xi (8)

K(x, xi) = exp(−
‖xi − xj‖2

σ2 ) (9)

where σ is the radial basis function (RBF) width. The b is calculated by Karush–Kuhn–
Tucker (KKT) conditions [37]. In this paper, the optimal choice of C and σ are respectively
25 and 0.0825 by multi-fold cross-validation.

b = yi − 〈w, xi〉 − ε, 0 < αi < C (10)

b = yi − 〈w, xi〉+ ε, 0 < α∗i < C (11)

When the PM2.5 concentration is predicted, the environment is always complex and
changeable. There are always various external noises, uncertainties and randomness, which
results in the prediction accuracy deviation [38]. In this paper, the unscented Kalman filter
(UKF) method is introduced to deal with the uncertainty and randomness by constantly
updating the status.
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3.2. Unscented Kalman Filter Method

The traditional KF method often loses its optimality [39]. The UKF is introduced in
this section. The UKF method is based on UT transform and adopts Kalman linear filter
framework. The SVR-UKF is used in this paper. The nonlinear state equation frame of SVR
method is given as follows:

xk+1 = f (xk) + wk (12)

yk = h(xk) + vk (13)

where f and h are the nonlinear equation and observation function, respectively. wk and vk
are the Gaussian white noise of xk and yk, respectively. q and r are the mean values of wk
and vk, respectively. Q and R are covariance matrices of wk and vk, respectively. Assuming
nonlinear change y = f (x), the state vector is an n dimensional random variable. The x is
mean value, and the P is variance. xk denotes the state vector of PM2.5 concentration. yk
represents the observation vector of PM2.5 concentration. The n is state dimension. The
initial value of the filter is calculated as follows:

x0 = E(x0) (14)

P0 = E[(x0 − x0)(x0 − x0)
T ] (15)

where E is expected average, x0 is mean value, P0 is covariance. The derivation process of
UKF is given in [38]. The final derivation result of UKF is given directly in this paper. The
x̂k+1|k is given as follows:

x̂k+1|k =
2n

∑
i=0

ω(i)x(i)k+1|k + qk (16)

where ω is a non-negative weight coefficient. The covariance matrix is calculated as follows:

Pk+1|k =
2n

∑
i=0

ω(i)[x̂k+1|k − x(i)k+1|k][x̂k+1|k − x(i)k+1|k]
T + Qk (17)

The predicted observation value is obtained as follows:

y(i)k+1|k = h[x(i)k+1|k] (18)

The predicted mean and covariance of the system are described by weighted sum
as follows:

yk+1|k =
2n

∑
i=0

ω(i)y(i)k+1|k + rk (19)

The Kalman gain is calculated as follows:

Kk+1 = Pxkyk P−1
ykyk

(20)

where Pykyk , Pxkyk is calculated separately as follows:

Pykyk =
2n

∑
i=0

ω(i)[y(i)k+1|k − yk+1|k)][y
(i)
k+1|k − yk+1|k]

T + Rk (21)

Pxkyk =
2n

∑
i=0

ω(i)[x(i)k+1|k − yk+1|k][x
(i)
k+1|k − yk+1|k]

T (22)

The state update is calculated as follows:

x̂k+1|k+1 = x̂k+1|k + Kk+1[yk+1 − ŷk+1|k] (23)
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The covariance update is calculated as follows:

Pk+1|k+1 = Pk+1|k − Kk+1Pykyk KT
k+1 (24)

For PM2.5 concentration prediction problems, statistical characteristics of interference
signals are always not known. To solve the influence of noise on PM2.5 concentration
prediction, the AUKF method is used to estimate the noise in the next section.

3.3. Adaptive Unscented Kalman Filter Noise Estimation for PM2.5 Concentration Prediction

When the statistical characteristics of the prior noise are given, the SVR-UKF predic-
tion accuracy is usually accurate [37]. In complex atmospheric environments, the PM2.5
concentration prediction is accompanied by various kinds of noise, and the process noise
(qk, Qk) and the measurement noise covariance (rk, Rk) are usually unknown or incorrect,
which affects accuracy of prediction. The AUKF method is used to estimate noise adap-
tively and effectively avoid the deviation caused by noise in this paper. The Figure 3 shows
the schematic diagram of the SVR-AUKF PM2.5 concentration prediction method.

Figure 3. The schematic diagram of the SVR-AUKF algorithm for PM2.5 concentration prediction.

The noise estimation formula is given as follows. The mean value of process noise is
given as follows:

q̂k+1 = (1− dk+1)q̂k + dk+1[x̂k|k −
2n

∑
i=0

ω
(m)
i f (x(i)(k))] (25)

where dk+1 is obtained as follows:

dk+1 =
1− b

1− bk+1 (26)

where b is the forgetting factor, which is set as 0.98 in this paper. The process noise
covariance is estimated as follows:

Q̂k+1 = (1− dk+1)Q̂k + dk+1[Kk+1Fk+1FT
k Kk+1 + Pk+1|k+1

−
2n

∑
i=0

ω
(m)
(i) (x(i)k+1|k − x̂k+1|k)(x(i)k+1|k − x̂k+1|k)

T ]
(27)

where Fk+1 is obtained as follows:

Fk+1 = yk+1 − ŷk+1 (28)

The mean value of measured noise is estimated as follows:

r̂k+1 = (1− dk+1)r̂k + dk+1[yk+1 −
2n

∑
i=0

ω
(m)
i h(x(i)k+1|k)] (29)
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The measurement noise covariance is estimated as follows:

R̂k+1 = (1− dk+1)R̂k + dk+1[Fk+1FT
k+1 −

2n

∑
i=0

ω
(c)
i (y(i)k+1|k − ȳk+1|k)(y

(i)
k+1|k − ȳk+1|k)

T ] (30)

The SVR-AUKF method has been given in this section. The PM2.5 concentration is
predicted based on the SVR-AUKF method, and the prediction result of this method is
shown as follows:

It can be seen from Figure 4 that the curve of PM2.5 concentration predicted by single
model SVR-AUKF method is basically consistent with the curve of actual measured value.
There will be large error at some individual time points. The concentration of PM2.5 also
changed in different time periods. The single model SVR-AUKF method can not fully
reflect the change of PM2.5 concentration in the whole process and then produce errors.
In order to fully reflect the change of PM2.5 concentration, the multiple model prediction
method is introduced to improve the prediction accuracy of PM2.5 concentration and reduce
error. The PM2.5 concentration prediction of multiple model adaptive unscented Kalman
filter is described in the next section.
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Figure 4. The PM2.5 concentration prediction of single SVR-AUKF method.

4. Multiple Model Adaptive Unscented Kalman Filter for PM2.5
Concentration Prediction

In the process of predicting PM2.5 concentration, the single model is often not accurate
enough, because the dynamic characteristics of the model will be affected by a variety
of variables in different time periods. According to the reference [40], even in the same
day, the pollutants will fluctuate greatly in different time periods. The model will also
be affected. To predict PM2.5 concentration more accurately in different time periods, the
MMAUKF method is proposed. Due to the change of temperature and humidity in the
morning, middle and evening, the concentration of PM2.5 also changes, the typical time of
the day is mainly in the morning, noon and evening. The three representative time periods
are selected as the research object. The predicted PM2.5 concentration data are divided into
three time periods, which are 23:00∼6:00, 7:00∼14:00, 15:00∼22:00, respectively. The PM2.5
concentration model is established based on the data of different time periods. The PM2.5
concentration data in different time periods are shown in Figure 5.
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Figure 5. The modeling data of PM2.5 concentration in three time periods.

The obtained PM2.5 concentration prediction values from different time periods are
fused by Bayesian method. The proposed MMAUKF method is implemented to predict
PM2.5 concentration. The structure chart of MMAUKF method is shown as follows:

As shown in Figure 6, the structure chart of MMAUKF method for PM2.5 prediction
concentration based on SVR-AUKF method is given. The final predicted value is obtained
by weighting. The feedback of each adaptive Kalman filter total output is used as the
initial value for predicting the next moment. When the MMAUKF method is used to
predict PM2.5 concentration, the weight value calculation is the key to solving the PM2.5
concentration prediction. The weight value is determined by the probability of selected
model in the current period. The prediction error reflects the accuracy of the method. The
error is small, which indicates the prediction accuracy of the selected model is high, and
the probability of the selected model is high. The final fusion PM2.5 concentration value is
obtained by Bayesian method.

Figure 6. The structure chart of the MMAUKF method for PM2.5 concentration prediction.
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In this section, the Bayesian theory is adopted to predict PM2.5. The ŷ1, ŷ2 and ŷ3 are
obtained for PM2.5 concentration prediction value at the corresponding time period. When
the predicted value is close to the measured value in the current time period, the weight
value is lager. The predicted values in three time periods are calculated as follows:

ŷk+1 = W1 · ŷ1,k+1 + W2 · ŷ2,k+1 + W3 · ŷ3,k+1 (31)

where W is the weight values. The weighted sum is given as follows:

W1 + W2 + W3 = 1 (32)

The prediction error ε is given as follows:

εi,k+1 = yi,k+1 − ŷi,k+1 (33)

where yi,k+1 is the measured PM2.5 concentration value, (i = 0, 1, 2, ..., n). ŷi,k+1 is the
estimated PM2.5 concentration value. k is the sampling period. Thus, the weight or the
probability of selected model are given as follows: the initial values probability of the ith
model are equal for each time period. The initial values are calculated as follows:

P(Mi|y(0)) = 1/Mi (34)

The conditional probability density function of the measured value is obtained
as follows:

f (yi,k+1|Mi) =
1

(2π)m/2Q1/2
i,k+1

exp(−1
2

εT
i,k+1Q−1

i,k+1(k)εi,k+1) (35)

where Mi represents the parameter set of the ith (i = 1, 2, 3) model. m is the number of
measurement value, m = 1. Qi,k represents the process noise variance corresponding to the
ith filter estimator.

Wj = P(Mj|yi,k+1) =
f (yi,k+1|Mi)P(Mj)

∑3
i=1 f (yi,k+1|Mi)P(Mi)

(36)

The conditional probability density of the measured values of each time period model
according to Bayesian theory is calculated as follows:

P(Mi|yi,k) =
P(yi,k|Mi)P(Mi)

P(yi,k)
(37)

where P(yi,k|Mi) = P(yi,k). The formula (36) is deduced as follows:

Wj,k+1 = P(Mj|yi,k+1) =
f (yi,k+1|Mi)P(Mj|yi,k)

∑3
i=1 f (yi,k+1|Mi)P(Mj|yi,k)

(38)

where j is observer number. According to the above formula, the weight is calculated in
three different time periods for PM2.5 concentration prediction, and the fusion prediction
result is obtained by formula (31).

5. The Simulation Results

In this section, the prediction results of different methods are described, and the
performance indexes of the error are given. In order to verify the accuracy of the pro-
posed method, the three time periods of PM2.5 concentration are predicted, and the PM2.5
concentration of the whole time period is predicted by the proposed method. Through
the comparison of different methods, a more accurate prediction method is shown. The
predicted PM2.5 concentration value by SVR-AUKF1 is given in Figure 7.



Atmosphere 2021, 12, 607 12 of 20

07/03 00:00 07/08 00:00 07/13 00:00 07/18 00:00 07/23 00:00 07/28 00:00 08/02 00:00

time

0

50

100

150

P
M

2
.5

 C
o

n
ce

n
tr

at
io

n
s(

g
/m

3
)

Measured PM
2.5

SVR-AUKF1 Prediction PM
2.5

Figure 7. The PM2.5 concentration prediction of SVR-AUKF1.

The prediction residuals of SVR-AUKF1 are shown in Figure 8.
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Figure 8. Boxplot of SVR-AUKF1 prediction residuals.

For further simulation, this paper assumes that the unknown noise is Gaussian white
noise. According to the actual PM2.5 concentration in three time periods, the initial states
x1,(0) = 120, x2,(0) = 58 and x3,(0) = 78 are given, respectively. Figure 7 shows the PM2.5
concentration prediction of SVR-AUKF1. It can be seen that there are still some errors for
the whole sampling period in Figure 7. The MAE is 4.1994, the MAPE is 9.6523 and the
RMSE is 6.2302. When the prediction is relatively accurate at the beginning of the time
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period. The errors will be produced in some point of time period. The SVR-AUKF1 method
cannot predict PM2.5 concentration accurately in the whole time period. The predicted
PM2.5 concentration value by SVR-AUKF2 is given in Figure 9.
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Figure 9. The PM2.5 concentration prediction of SVR-AUKF2.

The prediction residuals of SVR-AUKF2 are shown in Figure 10.
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Figure 10. Boxplot of SVR-AUKF2 prediction residuals.

Figure 9 shows the predicted PM2.5 concentration based on SVR-AUKF2 method. The
prediction value is closer to the measured PM2.5 concentration in the time range of (07/08
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00:00∼07/13 00:00). The MAE is 4.3706, the MAPE is 10.7784 and the RMSE is 5.9424.
Although the single model can accurately predict the PM2.5 concentration in the current
time period, the model will be affected by the environmental changes in different periods,
which will affect the accuracy of PM2.5 concentration prediction. The predicted PM2.5
concentration value by SVR-AUKF3 is given in Figure 11.
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Figure 11. The PM2.5 concentration prediction of SVR-AUKF3.

The prediction residuals of SVR-AUKF3 are shown in Figure 12.
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Figure 12. Boxplot of SVR-AUKF3 prediction residuals.
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The Figure 11 shows the predicted PM2.5 concentration value based on the SVR-
AUKF3 method. The prediction value is close to the measured value in the time range of
(07/13 00:00∼07/18 00:00). The MAE is 4.4815 the MAPE is 11.8585 and the RMSE is 6.2018.
In other time periods, the prediction accuracy of individual points can still be improved. In
order to further improve the prediction accuracy, the multiple model method should be
used to predict PM2.5 concentration in different time periods.

The proposed MMAUKF method is compared with SVR-AUKF1, SVR-AUKF2 and
SVR-AUKF3 methods in Figure 13.
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Figure 13. The comparison results of the proposed MMAUKF method and three single SVR-
AUKF methods.

The statistical errors based on SVR-AUKF methods for PM2.5 concentration in three
time periods are shown in Table 2.

Table 2. The error performance index of three SVR-AUKF and MMAUKF methods.

Method MAE MAPE(%) RMSE

MMAUKF 4.0492 9.5337 5.9130
SVR-AUKF1 4.1994 9.6523 6.2302
SVR-AUKF2 4.3706 10.7784 5.9424
SVR-AUKF3 4.4815 11.8585 6.2018

In Figure 13, the precision of MMAUKF is compared with the three single model of
SVR-AUKF to predict PM2.5 concentration. The MAE of MMAUKF method is 4.0492, the
MAPE is 9.5337, the RMSE is 5.9130. The MAE of SVR-AUKF1 is 4.1994, the MAPE is
9.6523, and the RMSE is 6.2302. The MAE of SVR-AUKF2 is 4.3706, the MAPE is 10.7784,
and the RMSE is 5.9424. The MAE of SVR-AUKF3 is 4.4815, the MAPE is 11.8585 and the
RMSE is 6.2018. By the comparison of statistical errors, the error of MMAUKF method is
smaller than the other method, and the proposed method overcomes that a single model
cannot predict PM2.5 concentration accurately under different time periods. The Table 2
shows the statistical errors based on SVR-AUKF methods for PM2.5 concentration in three
time periods. The boxplot of prediction residuals is shown in Figure 14,
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Figure 14. Boxplot of SVR-AUKF1, SVR-AUKF2, SVR-AUKF3 and MMAUKF prediction residual.

Figure 14 shows that 75% of the residual error predicted by the proposed MMAUKF
method is approximately up to 4, which is smaller than other methods. Thus, the proposed
MMAUKF method is more accurate for predicting PM2.5 concentration. The proposed
MMAUKF method and SVR-AUKF, AR-Kalman, AR and BP methods is used to predicted
PM2.5 concentration in Figure 15.
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Figure 15. The comparison results of the proposed MMAUKF method and SVR-AUKF, AR-Kalman,
AR and BP methods.
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The prediction results of the proposed method is displayed, the fitting results between
the predicted values and the actual values for different methods are shown in Figure 16.
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Figure 16. Boxplot of different methods’ prediction residual.

It can be seen from Figure 16 that the fit result of MMAUKF method is better than
the other prediction methods. Figure 15 shows the comparison between the proposed
method and other methods. The statistical error is shown in Table 3. The MAE is 4.0492,
the MAPE is 95,337 and the RMSE is 5.9130. The prediction accuracy of other methods is
not as good as the proposed method. The proposed MMAUKF method provides better
prediction results than other single model methods. The proposed MMAUKF method can
globally predict the PM2.5 concentration in the next hour, and which has good stability.

Table 3. The error performance index of MMAUKF and other single model methods.

Method MAE MAPE(%) RMSE

MMAUKF 4.0492 9.5337 5.9130
SVR-AUKF 4.2304 9.7704 6.1347
AR-Kalman 5.07 10.2621 6.8705

AR 5.8735 12.7705 9.5259
BP 7.2173 21.2940 8.3226

In order to better reflect the prediction accuracy of the proposed method, the predic-
tion residuals for different methods are given by the method of statistical analysis. The
prediction errors of proposed MMAUKF method and SVR-AUKF, ARKalman, AR and BP
methods are shown Figure 17.
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Figure 17. The comparison results of the proposed MMAUKF method and SVR-AUKF, AR-Kalman,
AR and BP methods.

It can be seen from Figure 17 that the residual error of 75% of the proposed MMAUKF
method is very small. The results show the prediction accuracy has been improved. In this
section, the proposed MMAUKF method is used to predict PM2.5 concentration, which
has important practical significance to the public. The prediction results have reference
significance for government departments to establish early warning system, which reduces
the impact of public travel and avoids people exposed to high PM2.5 concentration for a
long time.

6. Conclusions

Previous studies found that PM2.5 will affect people’s life and travel. In order to
protect people from the impact of PM2.5 concentration on air quality, an accurate PM2.5
concentration prediction model that can deal with different environments is an urgent re-
quirement. In this paper, the multiple model adaptive unscented Kalman filter (MMAUKF)
is proposed to predict the atmospheric PM2.5 concentration in the next hour. In addition, to
evaluate the prediction applicability effect of the proposed method on PM2.5 concentration
in a campus in the previous hour. The proposed MMAUKF method is compared with
SVR-AUKF, AR-Kalman, AR and BP methods. The error performance index of several
different methods is analyzed, which includes MAE, MAPE and RMSE. The box chart of
statistical analysis is given. The experimental results show that the proposed method has
the smallest error and can accurately predict PM2.5 concentration in different time periods.
The MAE of the proposed MMAUKF method is 4.0492, MAPE is 9.5337 and RMSE is 5.9130.
The prediction results fully show that the multiple model prediction method overcomes
the shortcomings of the single model which is easily affected by the environment. The
proposed method not only guarantees the accuracy of predicting PM2.5 concentration when
the noise is inaccurate, but also overcomes the limitations of the single model method. The
validity and effectiveness of the proposed method is also proved. The PM2.5 concentration
is also closely related to spatial distribution. In the future, PM2.5 concentration spatial dy-
namic model and tracing to the source may be considered and studied, which is combined
with advanced prediction algorithm to predict PM2.5 concentration more accurately.
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