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Abstract: The spatial distribution of precipitation is one of the most important climatic variables
used in geographic and environmental studies. However, when there is a lack of full coverage
of meteorological stations, precipitation estimations are necessary to interpolate precipitation for
larger areas. The purpose of this research was to find the best interpolation method for precipitation
mapping in the partly densely populated Khorasan Razavi province of northeastern Iran. To achieve
this, we compared five methods by applying average precipitation data from 97 rain gauge stations
in that province for a period of 20 years (1994–2014): Inverse Distance Weighting, Radial Basis
Functions (Completely Regularized Spline, Spline with Tension, Multiquadric, Inverse Multiquadric,
Thin Plate Spline), Kriging (Simple, Ordinary, Universal), Co-Kriging (Simple, Ordinary, Universal)
with an auxiliary elevation parameter, and non-linear Regression. Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and the Coefficient of Determination (R2) were used to determine the
best-performing method of precipitation interpolation. Our study shows that Ordinary Co-Kriging
with an auxiliary elevation parameter was the best method for determining the distribution of annual
precipitation for this region, showing the highest coefficient of determination of 0.46% between
estimated and observed values. Therefore, the application of this method of precipitation mapping
would form a mandatory base for regional planning and policy making in the arid to semi-arid
Khorasan Razavi province during the future.

Keywords: precipitation interpolation; distribution of precipitation; geostatistics; cross-validation;
Khorasan Razavi province; northeastern Iran

1. Introduction

Precipitation systems can be mainly regrouped in convective and stratiform events,
and the main worldwide observed rainfall patterns can be considered as a combination of
these two components [1]. Considering the tempo-spatial changes of precipitation on the
one hand, and an often relatively low density of rain gauge stations on the other hand, it
is common to estimate, rather than measure, the precipitation distribution over a larger
area. The obtained isohyetal map describing this distribution is the basis of land-use
planning, environmental studies, disaster management, hydrological analysis, and water
resources management [2–4]. However, the accuracy of the production of these maps
depends on the methods used for the interpolation of the observed precipitation for the
total considered area. Many different interpolation methods have been used in climate
analysis so far [5–12], and finding the most suitable precipitation interpolation method is
still a research desideratum for many regions [4,13–17].
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Numerous studies were carried out in different regions on interpolation and estimation
of precipitation and the selection of the best interpolation method. For example, for the
Greater Sydney region of Australia, Ref [18] compared ANUDEM, Spline, Inverse Distance
Weighting (IDW), and Kriging, and concluded that the IDW method showed the best
performance. In the Qharesu Basin of northwestern Iran, Ref [19] examined Thiessen
Polygons (THI), IDW, and Universal Kriging (UNK), and concluded that the THI method is
most accurate in estimating precipitation and runoff in this basin. For annual precipitation
zoning on the Tibetan Plateau, Ref [20] compared Ordinary Kriging, Co-Kriging with an
auxiliary elevation variable, and Co-Kriging with an auxiliary Tropical Rainfall Measuring
Mission (TRMM) variable. Their results show that the last method was the most effective
one, and can be used as a new method for zoning precipitation in regions with a limited
number of rain-gauge stations. In another study, Ref [21] used IDW, Radar value (Radar),
Regression distance weighting (RIDW), Regression Kriging (RK), and Regression Co-
Kriging (RCK) to estimate precipitation in the Alpine Basin, and showed that the RCK
method had the best performance. In a study for northwestern China and the Qinghai Tibet
Plateau, Ref [22] used the ANUSPLIN method for precipitation zoning. Considering that
the precipitation of China is heavily influenced by its complex topography, they believe
that the ANUSPLINE method, taking into account the effect of topography in estimating
precipitation, could be a good method for zoning precipitation in this region. Generally, the
quality of the applied interpolation methods strongly varied between the different study
areas, demonstrating the need to individually test such methods for specific regions.

The arid to semi-arid Khorasan Razavi province in northeastern Iran is densely settled
today, and is partly intensively used for agriculture [23,24]. However, that region is
currently coping with drought-related problems and a general aridification trend [25,26].
Therefore, finding the most appropriate method for precipitation interpolation in dry
lands such as our study area is very important. Precipitation is the most important and
key atmospheric element in this area, which has many spatial and temporal dispersions.
Furthermore, due to the lack of synoptic and rain gauge stations in the region, the existence
of a suitable interpolation method that can accurately estimate the amount of precipitation
in the region is of great value and importance. Therefore, a reliable spatial assessment
of precipitation would be essential. However, for this region, the quality of different
techniques for the interpolation of precipitation distribution had not been systematically
studied thus far. Therefore, to fill this gap we compared five different interpolation
techniques to identify the best interpolation method of annual precipitation for this region.

2. Materials and Methods
2.1. Study Area and Data Description

This study is focused on the Khorasan Razavi province in northeastern Iran that covers
a total area of 118.854 km2 (ca. 7% of Iran; Figure 1). The province is limited to the north
and northeast by Turkmenistan, to the east by Afghanistan, to the west by the provinces of
Yazd and Semnan, to the northwest by the North Khorasan province, and to the south by
the South Khorasan province. A total of 49.2% of the province are mountain areas with
altitudes between 231 and 3305 m a.s.l. Precipitation in this region ranges between 114.2
and 310.2 mm/a, and is linked with westerly disturbances [27].

For our study, we used annual rainfall data of 97 climate stations. We concentrated on
the 20 years long period between 1994 and 2014 (annual data between 10th of October and
9th of October of the following year), since all stations showed complete data sets only for
these consecutive years. The data were delivered by the Regional Water Organization and
the Department of Climatology of the Khorasan Razavi province. Geographical locations
and altitudes of the climate stations are shown in Table 1.
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Table 1. Locations and altitudes of the meteorological stations used for this study.

Station Longitude Latitude Altitude
(m a.s.l.) Station Longitude Latitude Altitude

(m a.s.l.) Station Longitude Latitude Altitude
(m a.s.l.)

Emamzadeh-Mayamey 76◦88′68′ ′ 40◦35′25.1′ ′ 1039 Dolatabad Khoramdareh 69◦31′77′ ′ 40◦39′80.0′ ′ 1575 Khatiteh 51◦74′98′ ′ 40◦46′84.0′ ′ 1435
Balghoor 71◦36′48′ ′ 40◦67′52.4′ ′ 1941 Hey Hey Ghoochan 63◦58′99′ ′ 41◦08′34.3′ ′ 1344 Marosk 63◦86′67′ ′ 40◦43′51.6′ ′ 1525

Zoshk 72◦69′04′ ′ 40◦86′07.6′ ′ 1832 Sanobar 69◦37′55′ ′ 39◦21′18.2′ ′ 1707 Hendelabad 72◦58′93′ ′ 39◦89′92.5′ ′ 1206
Bakvol 69◦52′22′ ′ 39◦29′72.8′ ′ 1849 Namegh 65◦96′98′ ′ 39◦20′54.7′ ′ 1815 Hosseinabad 62◦45′86′ ′ 39◦88′70.7′ ′ 1072

Ghonchi 70◦15′02′ ′ 39◦32′19.3′ ′ 1892 Nari 73◦96′95′ ′ 39◦42′62.5′ ′ 1861 Karat 75◦41′55′ ′ 38◦75′63.2′ ′ 1084
Chakaneh Olya 72◦70′59′ ′ 40◦77′15.7′ ′ 1704 Kalateh Rahman 74◦69′26′ ′ 39◦62′05.3′ ′ 1619 Ghand e Jovein 53◦61′66′ ′ 40◦54′89.2′ ′ 1140
Darband Kalat 74◦95′86′ 40◦78′20.3′ ′ 960 Sharifabad-Kashafrood 70◦85′08′ ′ 40◦21′00.1′ ′ 1467 Rashtkhar 63◦18′58′ ′ 38◦52′25.2′ ′ 1155

Dizbad 70◦51′49′ ′ 39◦97′75.9′ ′ 1988 Farhadgerd-Fariman 74◦84′55′ ′ 39◦40′39.7′ ′ 1503 Sangerd 60◦30′34′ ′ 39◦61′80.5′ ′ 1291
Archangan 74◦26′34′ ′ 40◦98′00.7′ ′ 757 Chahchaheh 73◦11′33′ ′ 40◦73′49.8′ ′ 486 Kalateh 71◦40′70′ ′ 40◦01′73.9′ ′ 983

Jang 67◦64′01′ ′ 40◦74′98.4′ ′ 2313 Dargaz 64◦53′23′ ′ 41◦64′51.6′ ′ 494 Sahlabad 73◦06′76′ ′ 39◦05′49.4′ ′ 1360
Mareshk 74◦06′95′ ′ 40◦56′09.3′ ′ 1830 Hatamghaleh 72◦14′81′ ′ 41◦12′76.6′ ′ 493 Irajabad 60◦61′76′ ′ 39◦03′17.0′ ′ 1041

Yengjeh abshar 61◦27′00′ ′ 40◦76′67.8′ ′ 1703 Ghand Torbat 70◦14′68′ ′ 39◦13′15.1′ ′ 1474 Ghand Torbatjam 75◦75′41′ ′ 39◦53′87.6′ ′ 888
Mohammad Taghi Beyg 62◦84′49′ ′ 41◦61′05.4′ ′ 1009 Ghare Shisheh 76′16′ ′40◦ 39◦37′56.5′ ′ 1512 Edareh Mashhad 69◦70′23′ ′ 40◦23′74.2′ ′ 1018

Talghor 67◦63′94′ ′ 40◦40′11.4′ ′ 1563 Beyroot 60◦40′18′ ′ 39◦51′53.0′ ′ 1452 Sharifabad 55◦94′24′ ′ 39◦10′36.0′ ′ 1100
Ferizi 67◦40′19′ ′ 40◦51′60.6′ ′ 1631 Andarokh 70◦97′98′ ′ 40◦30′68.6′ ′ 1207 Janatabad 71◦01′54′ ′ 38◦46′69.3′ ′ 925

Eishabad 66◦43′19′ ′ 40◦18′99.4′ ′ 1406 Sad Torogh 63◦16′77′ ′ 40◦78′32.1′ ′ 1242 Chenaran 74◦30′31′ ′ 39◦98′62.8′ ′ 1186
Saghbeig 62◦67′89′ ′ 40◦64′65.2′ ′ 1532 Karkhaneh Ghand 64◦34′74′ ′ 40◦17′69.6′ ′ 1207 Kashmar 63◦26′35′ ′ 38◦99′53.5′ ′ 1503
Taghoon 65◦09′47′ ′ 40◦32′14.9′ ′ 1503 Gharehtikan 72◦49′66′ ′ 41◦15′04.3′ ′ 527 Sabzevar 56◦15′69′ ′ 40◦08′14.9′ ′ 988
Kariz No 83◦63′25′ ′ 38◦93′23.1′ ′ 1798 Dahneh Shoor 59◦61′67′ ′ 40◦48′15.0′ ′ 1243 Gonabad 65◦49′15′ ′ 38◦01′27.5′ ′ 1117

Ardak 72◦95′87′ ′ 40◦06′13.2′ ′ 1320 Kariz Kashmar 61◦79′71′ ′ 39◦25′09.9′ ′ 1420 Darooneh 53◦71′94′ ′ 38◦92′74.1′ ′ 870
Kapkan 66◦93′47′ ′ 41◦24′35.3′ ′ 1437 Talkhbakhsh 66◦83′64′ ′ 39◦54′93.2′ ′ 1496 Mazinan 48◦33′62′ ′ 40◦19′47.1′ ′ 848
Moghan 69◦05′38′ ′ 40◦57′48.2′ ′ 1788 Sheikh Abolghasem 69◦99′75′ ′ 39◦01′17.0′ ′ 1320 Bezangan 81◦94′49′ ′ 40◦22′02.4′ ′ 1027

Goosh Bala 73◦18′37′ ′ 40◦30′50.6′ ′ 1569 Kartian 71◦60′22′ ′ 40◦20′75.1′ ′ 1240 Fadak 75◦86′40′ ′ 38◦50′12.3′ ′ 991
Agh Darband 75◦24′70′ ′ 40◦15′90.5′ ′ 602 Roohabad 66◦71′86′ ′ 39◦92′84.4′ ′ 1138 Shahrno Bakharz 80◦31′88′ ′ 38◦76′84.0′ ′ 1282
Tabarokabad 65◦27′15′ ′ 41◦17′00.7′ ′ 1510 Ghadirabad 71◦05′44′ ′ 40◦78′18.3′ ′ 1195 Sangar Sarakhs 87◦71′56′ ′ 40◦14′52.2′ ′ 343

Al 72◦89′19′ ′ 40◦66′63.3′ ′ 1464 Zarandeh 63◦44′80′ ′ 40◦37′28.0′ ′ 1403 Hesar Dargaz 71◦17′68′ ′ 41◦46′14.6′ ′ 289
Gardaneh Kalat 63◦56′16′ ′ 37◦80′69.7′ ′ 966 Mozdooran 73◦80′58′ ′ 40◦51′80.8′ ′ 927 Sad Kardeh 73◦94′44′ ′ 40◦56′ ′35.5′ 1279

Golmakan 67◦69′40′ ′ 40◦39′72.8′ ′ 1440 Dereakht Toot 71◦96′53′ ′ 40◦71′55.5′ ′ 1254 Abghad Ferizi 67◦59′48′ ′ 40◦40′22.3′ ′ 1390
Sarasiab 73◦10′51′ ′ 40◦21′77.9′ ′ 1296 Malekabad 71◦79′93′ ′ 38◦90′87.3′ ′ 1195 Zirban Golestan 70◦70′16′ ′ 40◦21′26.9′ ′ 1434

Cheharbagh 65◦41′56′ ′ 40◦46′18.4′ ′ 1599 Emamzadeh-Radkan 74◦02′51′ ′ 39◦35′00.5′ ′ 1214 Fariman 75◦74′80′ ′ 39◦53′90.3′ ′ 1419
Taroosk 70◦13′99′ ′ 39◦27′39.7′ ′ 1704 Olang e Asadi 72◦60′73′ ′ 40◦05′93.0′ ′ 912 Timnak Sofla 82◦65′63′ ′ 39◦32′37.0′ ′ 1176
Fadiheh 67◦46′92′ ′ 39◦16′82.4′ ′ 1611 Bagh Sangan 78◦82′12′ ′ 38◦29′78.5′ ′ 937 Deh Menj 80◦21′48′ ′ 38◦79′86.7′ ′ 1273

Dahaneh Akhlamad 65◦16′63′ ′ 40◦78′63.2′ ′ 1467
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Figure 1. Location of the Khorasan Razavi province in Iran, and distribution of the meteorological stations used for this
study (Map sources: Digital Elevation Model GTOPO30: https://earthexplorer.usgs.gov (accessed on 28 April 2021) and
Digital Elevation Model ALOS PALSAR: https://vertex.daac.asf.alaska.edu (accessed on 28 April 2021)).

2.2. Methods

During this study, we tested five different interpolation methods to map annual
precipitation in the Khorasan Razavi province that are described below. The models
used include deterministic models (Inverse distance weighting and Radial basis function),
geostatistical models (Kriging and Co-Kriging), and non-linear regression. The data were
processed using GIS 10.5 and Curve Expert Pro Ver 2.6.5 software (Hyams Development,
Alabama, United States).

2.2.1. Inverse Distance Weighting (IDW)

In the IDW method, the value of a single point is more strongly related to the nearby
points around instead of points farther away. The equation is given by Equation (1):

Zo =

s
∑

i=1
Zi

1
di

k

s
∑

i=1

1
di

k

. (1)

Zo is the estimated point o, Zi is the value of Z at point i, di is the distance between
points i and o, s is the number of points used in the estimate, and k is specified power. The
power k controls the degree of local impact. A power of 1 means a constant amount of
change in weighting of the known points with distance (linear interpolation), and a power
of 2 or >2 indicates that the weighting of known points close to the point of interest is much
greater than the distance would suggest. The degree of local impact also depends on the

https://earthexplorer.usgs.gov
https://vertex.daac.asf.alaska.edu
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number of known points that are used for the estimate. Some studies showed that a lower
number of points (6 points) provides more favorable estimates than more points (12 points).
The most important feature of the IDW method is that all predicted values range between
the maximum and minimum known points [28].

2.2.2. Radial Basis Function (RBF)

RBF uses a generic function that depends on the distance between the points of
interpolation and sampling [29]. The mathematical equation is given by Equation (2):

Z(x) =
n

∑
i−1

ai fi(x) +
n

∑
i−1

bjψ(dj). (2)

In this equation, ψ(d) is the radial base function, and (dj) shows the distance between
the points of sampling and the predicted point x. F(x) represents the process of the
function and the fundamental member for polynomials with degrees less than m. The RBF
calculations were based on the functions of Completely Regularized Spline (CRS), Spline
with Tension (ST) and Multiquadric (MQ), Inverse Multiquadric (IMQ), and Thin Plate
Spline (TPS). All equations are given below in Equations (3)–(7).

CRS ψ(d) = ln(
cd
2

2
) + E1(cd)2 + y (3)

ST : ψ(d) = ln(
cd
2
) + I0(cd) + γ (4)

MQ : ψ(d) = (
√

d2 + c2) (5)

IMQ : ψ(d) = (
√

d2 + c2) −1 (6)

TPS : ψ(d) = c2d2 ln(cd) (7)

d: Is the distance from sample to prediction location
c: Is a smoothing factor
I0(): Is the modified Bessel function
E: Euler’s constant [30].

2.2.3. Kriging Method

Kriging differs from the other interpolation methods, because it can determine the
quality of interpolation with the magnitude of error that occurred in predicting values.
The Kriging method uses a semi-variogram to measure the spatially related component or
spatial self-correlation (Please see the explanation of the semi-variogram in Appendix A).
Kriging is calculated as given below in Equation (8):

∧
Z(x0)− µ =

N

∑
i=1

ωi[Z(xi)− µ(x0)]. (8)

Here,
∧
Z(x0) is the estimated random field (prediction attribute) value at point x0, and

µ is the stationary mean treated as constant over the whole region of interest (RoI). The
parameter ωi is the weight assigned to the ith interpolating point calculated from the semi
variogram, and Z(xi) is the measured attribute value at a point xi [31].

If there is a spatial dependence in the dataset, the points of contact that are close to
each other must have a lower semi-variance compared with more distant points. Ordinary
Kriging (OK), Universal Kriging (UK), and Simple Kriging (SK) are the Kriging methods
that are used in this research. The difference between OK and SK is the assumption of
stationarity, which expects the mean and distribution to remain constant throughout the
region. SK utilizes this assumption while OK does not, and instead recalculates the mean
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across the modeled area by a shifting search radius. But in reality, the mean value of some
spatial data cannot be assumed to be constant in general but varies, since it also depends on
the absolute location of the sample. For this sake, we use the UK method aiming to predict
Z(x) at unsampled places as well [32,33]. One precondition for using Kriging methods is
the normalization of the data, or at least a near normally distributed dataset so that this
method can give the best estimate with the lowest error coefficient. Here we used the
log-normal method for normalization.

2.2.4. Co-Kriging Method

Co-Kriging is a multivariate version of Kriging that uses the spatial correlation be-
tween the primary variable (annual precipitation) and an auxiliary variable (here the
elevations of the gauging stations) to estimate the main variable. Similar to the Kriging
method, Ordinary Co-Kriging (OCo-K), Universal Co-Kriging (UCo-K), and Simple Co-
Kriging (SCo-K) are used here. In Co-Kriging, along with calculating the semi variogram
of the primary and secondary variable, it is necessary to calculate the cross semi-variogram
that expresses the spatial correlation between those two variables (Please see the explana-
tion of the semi-variogram in the Appendix B). The Co-Kriging equation (Equation (9)) is
as follows:

Z ∗ (xi) =
n

∑
i=1

λiZ(xi)
n

∑
k=1

λkU(xk). (9)

In this equation, λi is the weight of the main Z variable in xi position, λk is the weight
of the U auxiliary variable in xk position, and U(xk) is the observed value of the xk auxiliary
variable in the position [34].

2.2.5. Non-Linear Regression

Non-linear regression analysis enables us to predict the changes of dependent vari-
ables through independent variables, and the contribution of every independent variable
is determined by the presentation of a dependent variable [35]. Similar to Co-Kriging,
we selected elevation as an independent variable, since this factor generally has a signifi-
cant effect on the amount of precipitation. For interpolation using non-linear regression
methods, first appropriate regression models have to be determined. This is achieved by
calculating the degrees of correlation between the selected dependent and independent
variables for several potential models. To find the best model for precipitation zoning in
the study area, 69 non-linear regression models were evaluated (please see a list of all
models in Table S1 of Supplementary Material). From these we selected the Sinusoidal,
Hoerl, and Steinhart-Hart equations, since these gave the highest correlations between
annual precipitation and elevation. The equations and coefficients of these selected models
are as follows:

Equation (10) and Coefficients of Sinusoidal regression:

y = a + b cos(cx + d)
a = 259.660192
b = 69.766364
c = 0.002285
d = 1.056829

(10)

Equation (11) and Coefficients of Hoerl regression:

y = abxxc

a = 9080.760939
b = 1.000938
c = −0.688939

(11)
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Equation (12) and coefficients of Steinhart-Hart equation regression:

y = 1
a + b ln(x) + c(ln(x))3

a = −0.039299
b = 0.010284
c = −0.000081

(12)

The values of x in Equations (10)–(12) are the station elevation data taken from the Kho-
rasan Razavi province Meteorology Organization and the digital elevation model (DEM) of
the studied region (GTOPO30: https://earthexplorer.usgs.gov (accessed on 28 April 2021)
and ALOS PALSAR: https://vertex.daac.asf.alaska.edu (accessed on 28 April 2021)).

2.2.6. Validation Criteria for the Applied Methods

There are various criteria for validating interpolation methods, with one of the most
important being k-fold cross-validation [36]. This method estimates a value for every
observation point by means of interpolation. Subsequently, the estimated value is compared
with the observed value, and the model with the least error is regarded as the superior one.
There are various ways to compare estimated and observed values, and the most important
ones include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the
Coefficient of Determination (R2) [37–40]. The equations to calculate RMSE (Equation (13)),
(MAE) (Equation (14)), and R2 (Equation (15)) are given below:

RMSE =

√√√√ 1
n

nv

∑
i=1

(z(xi)− ẑ(xi))
2

(13)

MAE =
1

nv

nv

∑
i=1
|z(xi)− ẑ(xi)| (14)

R2 =

n
∑

n=1
XnYn√

n
∑

n=1
Xn2 ∑ Yn2

. (15)

In Equations (13) and (14), z(xi) is the observed value, ẑ(xi) is the estimated value and
n is the number of sites. In Equation (15), Xn is the observed amount, Yn is the estimated
amount and n is the number of data. Lower values of MAE and RMSE and higher values
of R2 indicate a better performance of the interpolation method. In case of a very precise
estimator, MAE and RMSE would be zero, and R2would be 1.

3. Results
3.1. General Statistics

Table 2 shows the descriptive statistics of the annual precipitation data of the studied
gauging stations. According to that table, average annual precipitation in the study area
is 229.77 mm. The coefficient of variation (CV) is 25.67 mm, indicating a relatively low
spatial variation of regional precipitation. Furthermore, that low CV value also indicates
the absence of large outliers in the regional dataset.

Table 2. Descriptive statistics of 20-year mean annual precipitation data of the Khorasan Razavi
province 1994–2014.

Min Max Mean Std.Dev Skewness Kurtosis CV

137 400 229.77 58.081 0.131 2.44 25.669

https://earthexplorer.usgs.gov
https://vertex.daac.asf.alaska.edu
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3.2. Interpolation Methods
3.2.1. Inverse Distance Weighting (IDW)

Based on the results of the cross-validation, the parameters (k) and maximum and
minimum number of neighborhood points (s) were optimized to minimize RMSE and
MAE. Doing so, a power (k) of 1, a minimum number of neighborhood points of 2 and
a maximum number of 6 neighborhood points gave the lowest possible error values of
53.07 for RMSE and of 1.108 for MAE, and the highest value for of 0.166, respectively. The
resulting interpolated annual precipitation map of the Khorasan Razavi province is shown
in Figure 2.
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3.2.2. Radial Basis Function (RBF)

Of the five Radial Basis Functions that were evaluated, Spline with Tension showed
the lowest RMSE error, an intermediate MAE error, and the highest R2 value, and therefore
turned out to be the best method (Table 3). It should be noted that the number of neighbor-
ing points was at least 2 and at most 8, and for optimizing and minimizing the estimation
errors [41], the Kernel function 5/195387 was used. Interpolated annual precipitation
maps of the Khorasan Razavi province derived from the five RBF functions are shown in
Figure 3.

Table 3. Error values and R2 for the five applied RBF methods.

Method RMSE MAE R2

Completely Regularized Spline 52.57 1.120 0.177
Spline with Tension 52.46 1.116 0.179

Multiquadric 61.21 1.515 0.098
Inverse Multiquadric 53.39 1.060 0.147

Thin Plate Spline 270.87 2.490 0.048
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3.2.3. Kriging

Ordinary, Universal, and Simple Kriging methods were used in this study. The results
of the cross-validation show that Simple Kriging (SK) had the largest MAE error but the
least RMSE error and the highest coefficient of determination, and therefore turned out
to be the best method (Table 4). In order to achieve the best estimate with the SK method,
we used the Hole Effect’s theoretical model to fit the semi-variogram with a maximum
of 6 neighborhoods. The interpolated annual precipitation maps of the Khorasan Razavi
province derived from the three applied Kriging methods are shown in Figure 4.
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Table 4. Error values and R2 for the three applied Kriging methods.

Method
Semi-Variogram

Theoretical Model
(Appendix A)

RMSE MAE R2

Ordinary (OK) Circular 51.33 1.128 0.211
Simple (SK) Hole Effect 50.90 1.145 0.224

Universal (UK) Exponential 51.33 1.128 0.211
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3.2.4. Co-Kriging

Given that Co-Kriging generally uses an auxiliary parameter, we used the elevation
as such an effective auxiliary parameter for precipitation interpolation in the Khorasan
Razavi province. Simple (SCoK), Ordinary (OCoK), and Universal (UCoK) Co-Kriging
were compared with each other. Despite showing a higher MAE error compared with
SCoK, OCoK and UCoK showed the lowest and identical RMSE errors and the highest
and identical R2 values (Table 5). Therefore, OCoK and UCoK turned out to be the best
Co-Kriging methods. The interpolated annual precipitation maps of the Khorasan Razavi
province derived from the three Co-Kriging methods are shown in Figure 5.



Atmosphere 2021, 12, 592 11 of 19

Table 5. Error values and R2 for the three applied Co-Kriging methods.

Method Cross Semi-Variogram
Theoretical Model RMSE MAE R2

OCoK K-Bessel 42.18 1.108 0.468

SCoK K-Bessel 45.45 0.777 0.377

UCoK Exponential 42.18 1.108 0.468
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3.2.5. Non-Linear Regression Method

According to our preceding analysis, the best non-linear regression models with
respect to annual precipitation and elevation data in the study area are the Sinusoidal,
Hoerl, and Steinhart-Hart equations, since these show the highest correlations between
annual precipitation as the dependent and elevation as the independent variable: The
correlations were 0.607, 0.576, and 0.566, and the R2 values were 0.364, 0.332, and 0.324,
respectively. In Figure 6, the regression lines of the three different non-linear regression
methods are shown in a scatter plot that displays altitude and annual precipitation of the
gauging stations in the study area.
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In order to integrate altitudinal zoning, equations and correlation coefficients of the
three models were combined with the digital elevation model (DEM) of the study area,
resulting in interpolated annual precipitation maps of the Khorasan Razavi province
(Figure 7).
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According to the cross-validation, on the one hand the Sinusoidal model shows the
highest RMSE and MAE errors, but on the other hand it shows the highest R2 value of all
non-linear regression models (Table 6). As can be seen by the regression lines in Figure 6,
maximal annual precipitation calculated with the Hoerl and Steinhart-Hart equations
is much higher than that calculated with the Sinusoidal model, resulting in values for
maximal annual precipitation of 757 mm (Hoerl) and 1076 mm (Steinhart-Hart) compared
with 329 mm (Sinusoidal). By comparing the calculated values of these three models with
the observed data (Figure 6), it can be seen that the Hoerl and Steinhart-Hart models have
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estimated 357 and 676 mm more than the highest measured amount of precipitation in
the region, respectively, whereas the Sinusoidal model has estimated 71 mm less than the
actual amount of observed precipitation in the region. Therefore, it can be concluded that
the amount of precipitation estimated by the Sinusoidal model is closer to reality, so that
this model was selected for further evaluation.

Table 6. Errors and correlations between observed and estimated annual precipitation amounts of
the three selected non-linear regression methods.

Method RMSE MAE R2

Sinusoidal 56.73 1.477 0.119

Hoerl 56.37 0.707 0.111

Steinhart-Hart Equation 55.63 0.699 0.110

4. Discussion

The results of the analysis for the five compared interpolation methods are compar-
atively shown in Table 7 and Figure 8 (in case of several sub-methods the result(s) of
the best-performing method(s) was/were selected). Ordinary and Universal Co-Kriging
showed the lowest errors with an R2 value of 0.469, as well as showing the highest R2 values
of all methods, and therefore gave the most correct results of interpolation for the Khorasan
Razavi province. Among the deterministic and geostatistical methods, with an R2 value
of just 0.166, IDW seems to be the worst method for annual precipitation interpolation in
the Khorasan Razavi province. However, with an R2 value of 0.119, the (best-performing)
regression method with Sinusoidal function gave the worst annual precipitation estimation
in the study area of all methods.

Table 7. Errors and correlations between observed and estimated annual precipitation amounts of
the compared five methods.

Method (in the Case of Several Sub-Methods, the
Best-Performing One Was Selected) RMSE MAE R2

IDW 53.07 1.108 0.166
RBF (Spline with Tension) 52.46 1.116 0.179
Kriging (Simple Kriging) 50.90 1.145 0.220

Co-Kriging (Ordinary and Universal Co-Kriging) 42.18 1.108 0.469
Non-linear regression (Sinusoidal) 56.73 1.477 0.119

Generally, due to the regular application of altitude as an auxiliary elevation vari-
able when estimating precipitation for an area, in the case of a missing high correlation
between elevation and precipitation regression methods are not capable of interpolating
precipitation with high accuracy. In our present study, the average correlation between
annual precipitation and elevation of the best-performing Sinusoidal function was only 60%
(Figure 7). Therefore, our precipitation estimation using regression models was very weak
(Table 7). The observed low correlation between annual precipitation and elevation could
be due to: (i) The lack of rain gauge and synoptic stations at altitudes above 2313 m a.s.l.
led to a lack of observational data for these higher regions. Therefore, the model has
to determine precipitation for these altitudes using recorded data from lower altitudes,
what decreases the general accuracy of this model; (ii) An unequal distribution of observa-
tion stations in the area (Figure 1); (iii) Luff-lee effects, leading to different precipitation
amounts upwind and downwind of moisture-laden airflow at similar altitudes. Similarly,
also during former studies, it was found that in case of a low correlation between annual
precipitation and elevation regression models show rather bad results compared with the
Kriging and Co-Kriging methods [42–44].
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Generally, there is no model that can decisively be selected as the best one for all
regions. With respect to Iran, for some regions with a high correlation between precipita-
tion and elevation, regression models turned out to be the best [4,14–17], whereas in most
regions, Kriging and Co-Kriging gave more accurate results compared with the other meth-
ods [15,16,20]. Similarly, despite some studies describing IDW as the best method [45–47],
many studies emphasize the high accuracy of geostatistical methods (Kriging and Co-
Kriging) for precipitation estimation for other regions as well, with Co-Kriging using the
auxiliary elevation variable often showing the highest accuracy [9,12,48–55]. Similar to in
the above-mentioned studies, also during this study an acceptable accuracy of (Ordinary
and Universal) Co-Kriging, using the auxiliary elevation variable, was found. Unlike
regression models that only use elevation as an auxiliary parameter, Co-Kriging takes
into account the autocorrelation factor and the statistical relationship between data in the
region, leading to more reliable estimates compared with regression methods.

The annual precipitation map obtained by ordinary Co-Kriging shows highest an-
nual precipitation concentrated in the mountainous northern part of the province. In
contrast, in the southern and western part, showing lower altitudes, annual precipitation
decreases. Corresponding with this natural water supply, the population density of the
province decreases from North to South (Figure 9). Generally, finding a suitable method
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for interpolating and estimating precipitation in an area can have many applications based
on different aspects. On the one hand, the accurate interpolation of precipitation can be
of great help for land-use planners to allocate suitable agricultural, industrial, tourist,
residential and other uses. On the other hand, for controlling and managing natural and
environmental disasters such as floods, dust phenomena, landslides, desertification, de-
forestation, etc., which are directly and indirectly related to the amount of precipitation in
the region, accurate estimations of precipitation can be very useful and effective. Conse-
quently, an accurate interpolation of precipitation in a region provides decision-makers
with a comprehensive view of precipitation conditions, which can be used to plan well and
control water resources. Therefore, finding a suitable model for accurate spatial estimation
of precipitation in the arid to semi-arid study area, which is always in crisis in terms of
precipitation, is a major challenge.
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Kriging, main streams and main settlements combined with the main contour lines of a DEM
(Map sources: Digital Elevation Model GTOPO30: https://earthexplorer.usgs.gov (accessed on
28 April 2021)).

5. Conclusions

The precipitation map is a main database for environmental issues and studies such
as disaster management, hydrological analysis, agricultural management, etc. Therefore,
figuring out an accurate interpolation method to estimate the distribution of precipitation
in regions that largely lack synoptic and rain gauge stations is an urgent task. During this
study, for the first time we systematically compared five different methods to interpolate
annual precipitation for the Khorasan Razavi province in northeastern Iran. This should
allow extensive simulations of regional precipitation with high confidence. Similar to for-
mer studies, our results showed that with a coefficient of determination of 46.9% Ordinary
Co-Kriging, also taking into account elevation, gave the most reliable results. In contrast,
regression methods showed the largest errors and lowest coefficient of determination of
only 12%. Therefore, our study suggests that the application of precipitation mapping
using Ordinary Co-Kriging with an auxiliary elevation variable would form a mandatory
base for future water supply-related regional planning and policy making in the Khorasan
Razavi province. This holds especially true against the background of the current global
climate change leading to a regional aridification trend in this province, and given its

https://earthexplorer.usgs.gov
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partly high population density and intensive agriculture. It should be noted that the results
obtained from this study can be applied not only in this region, but also in neighboring
areas with similar environmental conditions.
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Appendix A

Semi-Variogram

One of the common geostatistical tools to investigate spatial changes of climatic
elements is the semi-variogram. The semi variogram indicates the dissimilarity between
the values of a feature when the distance between the samples increases. For accurate
estimation and minimization of estimates performed by the semi-variogram, eleven models
including Circular, Spherical, Tetra-spherical, Penra-spherical, Exponential, Gaussian,
Rational Quadratic, Hole Effect, K-Bessel, J-Bessel, and Stable are used. It should be noted
that from these models that one with the best fit with the data is selected and used for the
estimation process. In practice, the semi-variogram is equal to half of the mean square
of the difference between the amounts of each pair of points located at a distance h from
each other:

y∗(h) =
1

2n(h)

n(h)

∑
i=1

[Z(xi)− Z(xi + h)]2 (A1)

In this equation, y∗(h) is the semi-variogram, n(h) denotes the total number of pairs of
observation points with distance h, Z(xi) the observed amount of the variable Z in position
xi, and Z(xi + h) is the measured attribute value at the point which is separated by lag
distance h from xi [40].

Appendix B

Cross Semi-Variogram

In some cases, data of other variables are available for the same locations or exist in
larger numbers than the primary variable, and the primary and secondary variable are well
correlated with each other. In such cases the accuracy of estimating the primary variable
can be improved by using the Co-Kriging method that uses data related to the primary or
secondary variable. In this method, next to calculating the semi variogram of the primary
and secondary variable, it is necessary to calculate the cross semi-variogram that expresses

https://www.mdpi.com/article/10.3390/atmos12050592/s1
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the spatial correlation between those two variables. The cross semi-variogram is calculated
as follows:

y∗v,w(h) =
1

2n(h)

n

∑
i=1

(Zv(xi)− Zv(xi + h)(Zw(xi)− Zw(xi + h))) (A2)

In this equation, y∗v,w(h) is the experimental cross semi-variogram, n(h) the total
number of pairs of observation points with distance h, Zv(xi) the amount of the observed
variable Zv in position xi, Zv(xi + h) the amount of the observed variable Zv in position
xi + h, Zw(xi) the amount of the observed variable Zw in position xi, and Zw(xi + h) the
amount of the observed variable Zw in position xi + h. Whereas the semi-variogram should
always be positive by definition, the cross semi-variogram can be negative when the
relationship between the two variables is negative [56].
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